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ABSTRACT

Motivation: Microarray-based gene expression data have been
generated widely to study different biological processes and
systems. Gene co-expression networks are often used to extract
information about groups of genes that are ‘functionally’ related
or co-regulated. However, the structural properties of such
co-expression networks have not been rigorously studied and fully
compared with known biological networks. In this article, we aim
at investigating the structural properties of co-expression networks
inferred for the species Saccharomyces Cerevisiae and comparing
them with the topological properties of the known, well-established
transcriptional network, MIPS physical network and protein–protein
interaction (PPI) network of yeast.
Results: These topological comparisons indicate that co-expression
networks are not distinctly related with either the PPI or the
MIPS physical interaction networks, showing important structural
differences between them. When focusing on a more literal
comparison, vertex by vertex and edge by edge, the conclusion is
the same: the fact that two genes exhibit a high gene expression
correlation degree does not seem to obviously correlate with the
existence of a physical binding between the proteins produced by
these genes or the existence of a MIPS physical interaction between
the genes. The comparison of the yeast regulatory network with
inferred yeast co-expression networks would suggest, however, that
they could somehow be related.
Conclusions: We conclude that the gene expression-based co-
expression networks reflect more on the gene regulatory networks
but less on the PPI or MIPS physical interaction networks.
Contact: hongzhe@mail.med.upenn.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Gene co-expression networks are constructed from data of gene
expression microarray experiments by using different correlation-
based inference methods. The vertices of these networks represent
genes, while their edges are related to the values of the pairwise
correlation coefficient that is calculated from the expression
data of the genes. Co-expression networks, in contrast with
other networks whose edges represent well-defined biological
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interactions, are composed of edges that show co-expression patterns
of genes over different experimental conditions (Stuart et al.,
2003). Groups of genes derived from modular analysis on such
co-expression networks often show enrichment of certain Gene
Ontology categories (Horvath and Dong, 2008; Stuart et al.,
2003; Yan et al., 2007; Zhang and Horvath, 2005), indicating
that the edges of such networks indeed contain some biological
meaning. This, in turn, suggest that co-expression networks have
to be biologically meaningful by themselves. However, it is still
unclear how co-expression networks are related to true biological
networks.

The meaning of the edges is a relevant question when talking
about network analysis. Graphs, by their own nature, are abstract
representations of the pairwise interactions or relationships between
the different parts or subunits of a complex system. Thus, there
exists an important difference between analyzing co-expression data
by using networks tools and analyzing networks constructed from
co-expression data. In the first case, the focus of the analysis lies
(or have been lain so far) on the statistical study of sets of genes
which are interesting due to whatever statistical-biological reason
(set enrichment analysis, for example), regardless of the pairwise
interactions among the genes in the sets. In the second case, the
focus of the analysis is on the structure of the pairwise interactions
and the meaning of this structure. Both types of analysis are relevant
and biologically interesting. We concentrate here on the second type
of analysis, the structure of the pairwise interactions or correlations.

In this article, in order to attack the question of the meaning of
co-expression edges, co-expression networks inferred from a yeast
gene expression microarray dataset are compared with available,
well-established network data of the same organism, the yeast.
The yeast networks that are compared with are the following: the
yeast protein-protein interaction (PPI) network (Breitkreutz et al.,
2008; Jensen et al., 2009; Steffen et al., 2002), the yeast MIPS
physical interaction network (Munich Information center for Protein
Sequences) and the yeast regulatory network reflecting transcription
factor (TF)-DNA binding (Harbison et al., 2004). The ultimate
purpose of this comparison will be to determine whether the edges
of a co-expression network may (or may not) represent (i) a physical
interaction between those proteins resulting from the expression of
the genes, (ii) some type of biological regulation or (iii) something
similar to what edges of the MIPS network represents.

The article is organized as follows. Section 2 describes (i) the
procedures that we employ to infer the co-expression networks,
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(ii) the method we use to compare the different topologies between
the networks and (iii) the statistical method we apply to estimate the
accuracy of our analysis. The results of the comparisons between
the networks are presented in Sections 3 and 4. Finally, some
conclusions are drawn in Section 5.

2 METHODS

2.1 Construction of co-expression networks
When inferring co-expression networks from high-throughput gene
expression data, one usually takes as primary input the data from a set
of n independent measurements of the mRNA gene expression levels and
then, by using whatever correlation-based inference method, constructs the
corresponding network. The mRNA measurements are carried out by means
of microarray techniques, and each measurement, which is able to collect
information of a very big number (p) of genes, corresponds to a particular
group of cells of a certain individual. In this article, our main experiment is
based on a recent genome-wide study on expression variation by crossing
two yeast strains (Brem et al., (2002, 2005), where 112 segregants were
individually genotyped at 2956 marker positions and 6228 gene expressions
were measured for each segregant. Our analysis only uses the gene expression
data. The reason for choosing this particular gene expression dataset is that
the 112 yeast segregants studied in Brem et al. (2002, 2005) are randomly
assigned genotypes (Mendelian randomization), which allows us to consider
them as independent and identically distributed (i.i.d.) samples from the
population of all segregants. Given that valid inferences on correlations
require the assumption that the observations are i.i.d., the choice of the
above dataset ensures the legitimacy of the standard correlation calculations
and inferences. In contrast, pooling data from different experiments—i.e.
measured under different biological conditions—may, first, violate the i.i.d.
assumption, and secondly, may result in very different co-expression patterns
that could either mask the true co-expressions or even introduce false ones.
Time course experiments, on the other hand, might yield non-independent
observations.

The more basic co-expression inference network model that one can find
in the literature consists in calculating first the linear pairwise correlation
coefficient r of all possible pairs of genes (using for this purpose the data of
the n=112 microarray measurements), and then, establishing a link between
those gene pairs that show a ‘large enough’value of r. The natural assumption
behind this construction process is that a large value of the correlation
coefficient signifies some functional relationship among the pair of genes
involved. Of course, an important aspect that needs to be precisely established
is the meaning of ‘large enough’. When inferring co-expression networks,
people working in the field usually address this question by fixing a cutoff
(r2

cf ) for the squared values of r, so that, if r2 is larger than the cutoff, then a

link between the pair of genes is established, and if r2 is smaller, the gene pair
remains unlinked. This solution shifts certainly the problem to the question
of what cutoff’s value should be imposed.

The inference methods we employ to construct our co-expression
networks are based on the above-mentioned co-expression inference network
model, but specially adjusted to generate networks with specific properties so
that these co-expression networks can ‘fairly’be compared with the available
yeast network data. Our approach to the subject is 2-fold. On the one hand,
we suggest to modify the basic model in such a way that the resulting co-
expression networks are composed of a desired number of vertices and edges.
The rationale for this constraint is that a network needs to have the same
number of vertices and edges as the network which it has to be compared
with. We will refer to this procedure as network inference procedure I. On
the other hand, we propose as a second procedure to use the basic inference
model directly, without modifications, but compelling r2

cf to take large values
only. The idea behind this second method is now to be able to generate
networks containing only highly trustworthy edges. We will refer to it as
network inference procedure II.

The co-expression networks thus constructed are then compared with the
following yeast networks: (i) The PPI network compiled by (Steffen et al.,
2002), which contains 3775 proteins and 5983 protein interactions. (ii) The
MIPS physical interaction network (MIPS) from the Munich Information
center for Protein Sequences, which contains 4139 vertices and 7377 edges.
And (iii), the transcriptional regulatory network (REG) based on the TF-DNA
binding data from (Harbison et al., 2004), where 203 TFs were tested for their
binding profiles in yeast. By using P<0.001 as threshold for positive binding
(as the authors do in the original article), this REG network contains 167
genes and 429 edges. All these data correspond to the networks considered
as simple graphs, i.e. once the few loops contained in all three datasets
are eliminated. Since the data of these three networks have extensively
been verified by experiments, the above networks may be thought of being
highly reliable networks. We will call them throughout the paper true yeast
networks.

As can be noted, the number of genes considered by the different datasets
is considerably different. Indeed, many genes belonging to the co-expression
network dataset are missing in the ‘true’ PPI, REG or MIPS networks, and a
few nodes present in them are absent in the co-expression data. In order to
carry out even comparisons, we only consider the larger subgraphs contained
in the network datasets that can be generated by the vertices (genes) that
belong to both datasets. Thus, the number of genes that can be found in both
the PPI dataset and gene expression dataset is N =3711, and the number of
edges belonging to the PPI network subgraph generated by these 3711 genes
is M =5869. In the MIPS case, the number of vertices belonging to both
the MIPS and expression datasets is N =4112, and the number of edges in
the subgraph is N =7327. In the REG network case, the number of vertices
belonging to both the reg and expression datasets is N =166, and the number
of edges in the subnetwork, N =427. From here on, when we talk about the
inferred co-expression networks or the true PPI, MIPS and REG networks,
we will always refer to the above (sub)networks.

Network inference procedure I consists explicitly in calculating r2 for all
pairs of genes, and taking then the m largest found values of r2, where m is the
number of edges of the true PPI, MIPS or REG (sub)network, respectively.
As a result, the graphs to be compared have exactly the same number of nodes
and edges, which allows a correct comparison from a topological viewpoint.
Note that this way to proceed indirectly fixes a cutoff too.

Network inference procedure II works by directly fixing r2
cf to take

high values only. Given the small probability that large values of r2

appear by chance, one expects that this way to proceed generates co-
expression networks containing only trustworthy edges, i.e. edges that
represent ‘reliable’relationships among genes. Unfortunately, as a side effect,
the networks thus inferred tend to contain a small number of edges, which
results in a big number of isolated network vertices. These isolated nodes can
safely be excluded of our analysis since they provide no information about
the gene pairwise interactions. Thus, in order to perform the comparisons,
we proceed as follows: from the co-expression network constructed, we
remove the isolated vertices, leaving the rest of the network unchanged.
From the corresponding true network, we extract that subnetwork generated
by the genes that belong to both the true network and the set of non-
isolated co-expression nodes. The co-expression network remaining after
eliminating the isolated vertices and the mentioned extracted true subnetwork
will be the graphs that we will compare. The above procedure answers, of
course, the purpose of getting networks having exactly the same number
of vertices. Note, however, that the inferred co-expression network and the
corresponding true network may have a different number of edges.

2.2 Comparison of different network structures
Depending on what network aspect one focuses on, two networks can be
compared in several ways. One usual way is to focus on their structural
features, regardless of the name or label of the network vertices. In this case,
the focus of the comparison falls on network topologies such as the average
shortest path length, the mean clustering coefficient, the degree distribution,
etc. Another way to compare two networks is to compare them node by node
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and edge by edge. In this case, the purpose is to know whether an edge or
vertex belongs to both networks or not. Note that an edge is defined by the
vertices to which it is attached, which entails that, if one edge belongs to both
networks, then the vertices ‘defining’ the edge have necessarily to belong to
both networks too. In this second case, two networks are said to be equal if
they contain the same set of nodes and the same set of edges.

We apply here both comparison methods. The structural one, because
topological similarities (or differences) between networks can provide useful
information about the strengths (and weaknesses) of the association model
used to infer the co-expression network. The second one, because high
degrees of network similarity mean in this case that most nodes and edges can
be found in both networks, which, in turn, supports the thesis that the nodes
and edges of both networks may share a common meaning in biological
terms.

Regarding the structural method, the following network topologies are
investigated in this study [see (Albert and Barabási, 2002; Newman, 2003a)
for a review].

(1) The average shortest path length (l), defined as the mean distance
between each two vertices of a network, being the distance between
any two vertices the number of edges along the shortest path
connecting them.

(2) Network diameter (d), which is the distance between the two
vertices which are furthest from each other. (Note that both previous
definitions assume the network to be completely connected. If this is
not the case, both l and d are, respectively, defined as the average
path length and diameter of the network largest component.)

(3) The degree distribution (P(k)), which gives the probability that a
randomly selected node of a network has degree k, i.e. that it is
connected to k other different vertices. Most real networks are scale-
free, meaning the P(k)∼k−γ , where γ is a constant usually between
1 and 3.

(4) The mean clustering coefficient (C) and the local or degree-dependent
clustering coefficient (C(k)), which are both related to the meaning
of clustering coefficient of a vertex, which, in turn, is defined as the
ratio between the number of connections existing among its neighbors
and the maximal number of edges that can exist among them (Watts
and Strogatz, 1998). C and C(k) are then, respectively, defined as the
average of the clustering coefficients over all network vertices (or,
more correctly, over all vertices having a degree equal or larger than
two) and over all network vertices of degree k. Note that biological
networks have been found to be highly interconnected and therefore
have a high mean clustering coefficient.

(5) The nearest neighbor average degree function (k̄nn(j)), which can be
written as k̄nn(j)=[∑i i(1+δij)Eij]/[∑i′ (1+δi′j)Ei′j], and provides a
convenient measure of the degree-degree correlations of a network.
Here, Eij is the degree-degree correlation function, which gives the
probability that a randomly selected edge connects one vertex of
degree i to another of degree j. Degree-degree correlations, apart
from being an essential measure for characterizing the topology
of networks, have became important as a result of the discovery
that biological networks are dissortative (high-degree vertices tend
to connect to low-degree vertices), while social networks are
assortative (high-degree vertices attach preferably other highly
connected vertices) (Newman, 2003b). Function k̄nn(j) takes constant
value k̄nn(j)=〈j2〉/〈j〉 if no type of network degree-degree correlation
exists (i.e. when Eij = (2−δij)iP(i)jP(j)/〈i〉2), while it is a decreasing
(increasing) function if dissortative (assortative) mixing is present
(Vázquez et al., 2002).

(6) In addition to all these quantities, we also inquire into the network
maximum degree, which is the degree of that network vertex that
has the maximum degree, and the number of nodes (or order) of the
network largest component (lco).

With respect to the second method of comparison, we introduce only one
quantity to measure the degree of similarity of two networks. In order to
explain this quantity, we introduce first some notation. Consider that the
networks to be compared, say, network a and network b, have exactly the
same set of nodes. Let A be the set of edges of network a, and B, the set of
edges of network b. Finally, let #(S) mean the number of elements of a set S.
Then, the degree of similarity of two networks is said to be

s= #(A∩B)

#(A∪B)
= 1

1/fa +1/fb −1
, (1)

where fa = (#(A∩B))/(#A) and fb = (#(A∩B))/(#b). Notice a few things
about this definition. First, s takes the value 1 when both networks are
equal, and vanishes when the number of edges belonging to both networks
is zero. Second, s can be expressed as a function of fractions fa and fb,
which indicates that s does not depend on the absolute values #(A) and #(B).
Hence, it does not depend on the size of the networks, but on the proportion
of edges that belong to both networks. Third, the definition of s is suitable
for only ‘deterministic’ networks, i.e. network whose edges are present with
probability either one or zero.

2.3 The bootstrap procedure
The co-expression network model takes the measurements of n independent
microarray measurements, each of them corresponding to a certain
individual, and constructs a co-expression network by assuming that high
linear correlations reflect some type of functional gene relationships. The
result is one only graph which intends to rephrase in network terms
the biology of the system under study. However, because this network
construction process is based on a small sample n of measurements, it can
only provide estimates of the network properties. The question that arises
then is how accurate these estimates are.

We address this question by using the bootstrap method (Efron and
Tibshirani, 1993). In our case, the randomly sampled original data points
are the n microarray runs, each of them containing p expression values
corresponding to the p genes analyzed by the microarray. Every bootstrap
sample is a random sample of size n drawn, with replacement, from the
original n microarray runs. For each bootstrap run, we recalculate the network
statistics listed in previous section and then obtain the standard error of the
estimated statistics based on the original data.

It is worth to mention that statistics comes to the problem not because
of the model used to infer the network—which, indeed, is a deterministic
model—but due to the fact that the raw data, the microarrays, represent a
small sample of the population of all individuals.

3 RESULTS
Tables 1, 2 and 3 show the results of comparing the inferred co-
expression networks with, respectively, the ‘true’ PPI, MIPS and
REG networks. The tables are divided in sections, each of them
corresponding to one of the two network inference procedures
described in Section 2. All three tables show the obtained values
of the following quantities: number of nodes (nodes), number of
links (edges), average shortest path length (l), diameter (d), mean
clustering coefficient (C), network maximum degree (max. deg.),
number of nodes of the largest component (lco), network similarity
(s), cutoff (r2

cf ) and coefficient of resemblance (R). The last quantity
will be discussed in Section 3.3. Standard errors are displayed in
brackets. They are estimated by using 10 000 independent bootstrap
replications in all cases.

3.1 Comparison based on procedure I
The comparison of the different results shown in the tables indicate
that, with respect to the first inference procedure, procedure I,
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Table 1. Comparison of the co-expression network and the PPI network based on different procedures

Procedure I Procedure II: r2
cf =0.7 Procedure II: r2

cf =0.9

Quantity PPI Co-expression PPI Co-expression PPI Co-expression

Edges 5869 5869 116 (46.7) 2234 (1080) 0 (2.46) 17 (14.3)
Nodes 3711 3711 497 (72.4) 497 (72.4) 30 (12.7) 30 (12.7)
l 5.940 3.427 (0.788) 3.07 (1.09) 3.745 (0.764) 0 (0.425) 1.333 (0.619)
d 15 14 (3.06) 7 (3.03) 10 (2.94) 0 (0.678) 2 (1.75)
C 0.1181 0.6479 (0.0268) 0.4 (0.0455) 0.6274 (0.0239) 0 (0.304) 0.778 (0.209)
Max. deg. 99 122 (19.3) 7 (2.92) 47 (25.9) 0 (0.931) 3 (2.04)
lco 3178 418 (137) 11 (16.4) 245 (88.5) 1 (0.931) 4 (5.23)

Similarity 0.003448 (0.000295) 0.00988 (0.00139) 0.0000 (0.0283)
Cutoff 0.6242 (0.0241) 0.70 0.90
R 0.002823 (0.000471) 0.00659 (0.00430) 0.0423 (0.0284)

l: average shortest path length; d: network diameter; C: mean clustering coefficient; max.deg: network maximum degree; lco; number of nodes of the network
largest component; s: network similarity; R: coefficient of resemblance. Numbers in the parentheses are the standard errors based on 10 000 bootstrap samples.

Table 2. Comparison of the co-expression network and the MIPS physical interaction network based on different procedures

Procedure I Procedure II: r2
cf =0.7 Procedure II: r2

cf =0.9

Quantity MIPS Co-expression MIPS Co-expression MIPS Co-expression

Edges 7327 7327 198 (61.8) 3147 (1507) 0 (2.80) 26 (20.9)
Nodes 4112 4112 589 (83.8) 589 (83.8) 39 (15.4) 39 (15.4)
l 4.843 3.491 (0.823) 4.67 (1.04) 3.716 (0.829) 0 (0.373) 1.533 (0.793)
d 13 14 (3.18) 13 (3.37) 9 (3.26) 0 (0.623) 3 (2.13)
C 0.0998 0.6418 (0.0248) 0.2788 (0.0313) 0.6350 (0.0226) 0 (0.295) 0.611 (0.133)
Max. deg. 288 134 (17.4) 26 (3.07) 61 (29.6) 0 (1.01) 4 (1.87)
lco 3848 473 (153) 95 (55.0) 293 (108) 1 (1.04) 6 (7.39)

Similarity 0.003767 (0.000304) 0.008745 (0.00131) 0.0000 (0.0202)
Cutoff 0.6338 (0.0242) 0.70 0.90
R 0.003154 (0.000469) 0.00527 (0.00460) 0.0294 (0.0297)

l: average shortest path length; d: network diameter; C: mean clustering coefficient; max.deg: network maximum degree; lco; number of nodes of the network
largest component; s: network similarity; R: coefficient of resemblance. Numbers in the parentheses are the standard errors based on 10 000 bootstrap samples.

the inferred co-expression networks substantially differ from the
PPI, MIPS and REG networks. As can be seen, they differ in, mainly,
the mean clustering coefficient and the number of nodes belonging to
the largest network component. The comparison of the average path
lengths and diameters does not provide any fundamental information
(specially in the PPI and MIPS cases), due to the considerable
difference in size of the corresponding largest network components.
Another evident discrepancy between the networks can be found in
the value of their maximum degree. Finally, the degree of network
similarity, s, demonstrate that ‘true’ and co-expression networks
have only an insignificant percentage of edges in common.

The analysis of the non-scalar measures seems to lead to the same
conclusion. An inspection of the corresponding degree distributions
indicates that they are sensibly different from each other (in spite
of all of them approximately decaying as power law functions). As
an example, Figure 1 illustrates the difference in degree distribution
between the true PPI network and the corresponding co-expression
network. Although not shown, similar results are found for the MIPS
and REG networks. Further, the degree-degree correlations appear
also to be notably different, principally in the PPI and MIPS cases.

For example, the nearest neighbors average degree functions of the
true MIPS network and the corresponding co-expression network are
plotted in Figure 2. It can easily be seen in the figure that the MIPS
network shows a clear dissortative behavior, while the co-expression
network exhibits an explicitly assortative mixing. Again, similar
results can be found for the PPI and REG networks. Regarding
the local clustering coefficients, the results also indicate that the
networks are different. Plots of the degree-dependent clustering
coefficients of the true PPI, MIP and REG networks remarkably
differ from those corresponding to the co-expression networks.
Interestingly, C(k) shows in no case an explicit power law decay
of the form P(k)∼k−β. As an example, Figure 3 compares C(k) for
the PPI and the corresponding co-expression network.

The results suggest that, at least with relation to inference
procedure I, co-expression networks differ remarkably from both
the PPI and MIPS networks, and considerably from REG networks.
Note that these findings are specially relevant in view of the
fact that, from both construction procedures, procedure I is
the one that can provide more conclusive results in terms of
topological network comparison. The reason, of course, is that
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Table 3. Comparison of the co-expression network and the regulatory network based on different procedures

Procedure I Procedure II: r2
cf =0.5 Approach II: r2

cf =0.6 Procedure II: r2
cf =0.7

Quantity REG Co-expression REG Co-expression REG Co-expression REG Co-expression

Edges 427 427 3 (4.05) 12 (7.47) 1 (0.779) 1 (2.76) 1 (0.118) 1 (0.564)
Nodes 166 166 12 (5.15) 12 (5.15) 2 (2.81) 2 (2.81) 2 (0.781) 2 (0.781)
l 3.352 3.037 (0.128) 1.333 (0.590) 1.3 (0.558) 1 (0.165) 1 (0.294) 1 (0.0798) 1 (0.101)
d 8 8 (1.04) 2 (1.68) 2 (1.53) 1 (0.482) 1 (0.840) 1 (0.0879) 1 (0.298)
C 0.1270 0.3919 (0.0424) 0 (0.121) 0.571 (0.190) 0 (0.0198) 0 (0.385) 0 (0.000) 0 (0.127)
Max. deg. 17 27 (3.05) 2 (1.14) 4 (1.42) 1 (0.329) 1 (0.993) 1 (0.0879) 1 (0.327)
lco 160 117 (7.63) 3 (3.09) 5 (4.29) 2 (0.519) 2 (1.38) 2 (0.0879) 2 (0.346)

Similarity 0.02768 (0.00505) 0.0714 (0.0304) 1.000 (0.233) 1.000(0.227)
Cutoff 0.2004 (0.0165) 0.50 0.60 0.70
R 0.0160 (0.0358) 0.013 (0.207) 0.262 (0.441) 0.879(0.283)

l: average shortest path length; d: network diameter; C: mean clustering coefficient; max.deg: network maximum degree; lco; number of nodes of the network largest component;
s: network similarity; R: coefficient of resemblance. Numbers in the parentheses are the standard errors based on 10 000 bootstrap samples.
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Fig. 1. Degree distribution, P(k), of the true PPI network (cycles) and
the corresponding co-expression network inferred by network inference
procedure I (squares) as a function of k. The inset panel displays P(k)
in double logarithmic scales, showing that P(k) approximately decays as
a power law. These results indicate that, in spite of being both networks
approximately scale free (at least, for all k : k >1), their degree distribution
is different. For the co-expression network, the standard errors are plotted
based on 104 bootstrap samples.

the compared networks have in this case, by construction, the
same number of vertices and links. This important condition
should not be underestimated when comparing networks, since
two networks having different number of vertices and/or edges
can exhibit different values of relevant topological measures—such
as the average path length, the mean clustering coefficient, etc—
even if both networks derive from the same generating network
model.

3.2 Comparison based on procedure II
When inference procedure II is used, the situation seems to change
slightly. The results still appear to indicate that co-expression
networks are substantially different from the PPI and MIPS

Fig. 2. Nearest neighbors average degree function, k̄nn(j), of the true MIPS
network (cycles) and the corresponding co-expression network inferred by
network inference procedure I (squares), indicating that the MIPS network
is dissortative while the co-expression network is assortative. For the
association network, the standard errors are also plotted based on 104

bootstrap samples.

networks. However, they suggest that co-expression networks may
somehow be related to regulatory networks.

Let us first comment on the results corresponding to the PPI and
MIPS networks (Tables 1 and 2). As we can see from both tables,
when cutoff r2

cf takes the value r2
cf =0.7 or r2

cf =0.9, the number
of edges of the co-expression networks is always much more larger
than the number corresponding to PPI or MIPS networks. Bearing
in mind that the amount of edges of a network plays a deciding role
on its structure, this unique difference would be enough to conclude
that these networks may not come from the same generating network
model. The values of lco and similarity s seem only to confirm this
statement. (Note that a comparison of measures l, d and C is not
suitable here because these measures are very sensible to differences
in the number of network edges.)
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Fig. 3. Degree-dependent clustering coefficient, C(k), of the true PPI
network (cycles) and the corresponding co-expression network inferred by
network inference procedure I (squares). The picture shows that both C(k)
functions are different, being the local clustering coefficient of the co-
expression network always substantially larger than that of the yeast PPI
network. Note that C(k) does not decay as C(k)∼k−β (β a constant, usually
close to 1). For the co-expression network, the standard errors are also plotted
based on 104 bootstrap samples.

Functions P(k), Eij and C(k) does not provide any additional,
relevant information either. The reason is that the domain of
these functions (or, in other words, the maximum degree of
the networks) is too small to make any indubitable, statistical
conclusion. Nevertheless, the difference in the function domain
between true and co-expression networks would already show that
both PPI and MIPS networks are different from the corresponding
co-expression networks.

Table 1 shows an illustrative example of how different co-
expression and PPI networks can be when r2

cf =0.9. In this case, the
co-expression network inferred by procedure II contains 30 nodes
and 17 edges. The structure of this network is the following: 26 of
the 30 nodes are making up 13 isolated components consisting of
two vertices and only one link joining them. The other four vertices
are joined together in a unique component whose form is a ‘triangle
with a tail’ (two vertices of degree 2, one of degree 3 and one of
degree 1). In fact, C is so large in this network because the vertices
having a degree >2 are those belonging to the ‘triangle’ of the last
described component. Note also that, by construction, no isolated
vertices can appear in this network. Let us further remark the obvious
fact that this network is really simple, so simple that it seems to be
uninteresting! Remember, however, that networks constructed by
using high cutoff values in procedure II are interesting to us not
because of its structural complexity (or simplicity) but because of the
fact that all edges of these networks are presumably highly reliable.
Next, we identify the 30 nodes of the network, look for these same
nodes within the PPI network and analyze the subnetwork generated
by them. What it can be observed is that no edges among these
30 nodes are present in the PPI subnetwork. In other words, all
vertices of the PPI subnetwork thus generated are isolated. Table 2
show similar results regarding the MIPS and the corresponding co-
expression network when r2

cf =0.9. When one takes into account the

standard errors associated with two different topologies, the picture
does not substantially changes.

The comparison with the regulatory suggests, however, certain
relationship between reg and co-expression networks. Table 3 shows
the results of the corresponding reg and co-expression networks
when the selected cutoff is, respectively, r2

cf =0.5, r2
cf =0.6 and

r2
cf =0.7. (No gene pairs of the gene expression dataset exhibits

a squared pairwise correlation coefficient larger than r2 =0.77.)
In the two last cases, both the co-expression network and the
corresponding REG subnetwork coincide. When r2

cf =0.5, however,
the networks have only one edge in common. In all cases, the
networks are too small to gain any topological information of
them. The results, specially when r2

cf ≥0.6, would appear to provide
relevant information, but the small size of the networks involved
does not make reliable this conclusion (when r2

cf ≥0.6, the networks
only contain two vertices and one link).

Network similarity s seems to be a more promising measure when
comparing networks being small to show any complex structure.
The results of network similarity, s, tell us that PPI and MIPS
networks are not related with their corresponding co-expressed
counterparts, while the REG network coincide with the inferred co-
expression network when r2

cf ≥0.6. Unfortunately, the small size
of the networks in the last case does not seem to make that result
reliable enough.

3.3 Coefficients of resemblance
In order to better grasp the variance of the different networks, we
introduce the coefficient of resemblance (R). The idea behind this
coefficient is to provide a network measure similar to s, but more
suitable for capturing the statistical aspect of the networks. This
coefficient should improve similarity s in the following aspects:
(i) in being able to somehow capture the variance shown by
standard errors and (ii) correcting the value of s to be zero when
the networks are positively non-related, i.e. when the number of
common edges that they share is due to simple chance (in this
respect, note that the estimated values of s might appreciably be
distorted if the networks are small). The coefficient we propose
involves substituting estimators θ̂=s(x), which are obtained from
the original data points x={x1,x2,··· ,xn} (i.e. obtained from the
one only network generated from the n=112 individuals data), for
the mean of the bootstrap estimators θ̂∗i =s(x∗), which is obtained
from the average over all bootstrap networks generated. Thus,
analogously as the definition of s, we estimate the bootstrap degree
of similarity of two probabilistic networks as

s′ = 1

b

b∑

i=1

#(A∗i ∩B∗i)

#(A∗i ∪B∗i)
, (2)

where A∗i and B∗i are the sets of edges of the bootstrap networks a∗i

and b∗i. Bearing also in mind that the final coefficient must vanish
when no causal connection between the networks exists, we define
the coefficient of resemblance, R, as

R= s′−s′rand
1−s′rand

, (3)

where (i) s′ is the bootstrap degree of similarity between the
PPI, MIPS or REG networks and the corresponding co-expression
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network model and (ii) s′rand is the bootstrap degree of similarity
between the PPI, MIPS or REG networks and the ‘randomized’
corresponding co-expression network. Randomized co-expression
networks can be obtained by interchanging in the gene expression
dataset the expression values of two genes whatever, regardless
whether they belong to the same individual or not. This process,
when repeated sufficiently many times, destroys any pairwise
correlations in the dataset, and consequently, the co-expression
networks that result from the process cannot be biologically related
to the PPI, MIPS or REG networks.

We randomize the gene expression dataset by repeating the
gene expression value interchange process 109 times. Then, by
applying procedures I and II to this randomized dataset, we construct
the corresponding randomized co-expression networks. These
networks, of course, have no significance, meaning that their edges
do not represent any physical or biological relationship between
genes, but they will permit us to quantify how large s′ is when no
relationship between the networks exists. The randomization process
is carried out 10 000 times, and each time procedures I and II are
applied. As a result, 10 000 randomized realizations of the networks
are obtained. These randomized networks are compared with the
corresponding PPI, MIPS and REG networks to estimate s′rand .

The coefficients of resemblance shown in Tables 1, 2 and 3
indicate that the inferred yeast co-expression networks are not
related with the true PPI or MIPS networks. However, it does seem
to suggest that some type of connection between regulation and co-
expression networks may does exist. According to the results, this
connection would be more evident between the genes showing a very
high linear correlation coefficient. As the values of the correlation
coefficient decrease, more and more edges appear that would not
represent a direct regulation among the genes involved.

4 THE PPI NETWORK CASE REVISITED
Given the current importance of PPI networks in the field, in this
section we extend the previous analysis to include two additional,
currently updated and well-established PPI yeast networks: the
STRING PPI network (Jensen et al., 2009) and the BioGRID
network (Breitkreutz et al., 2008).

We repeat the analysis with these two additional networks
to confirm whether the previous PPI results presented in the
last section remain valid when more updated PPI networks are
considered. The STRING database provides a quality-controlled
collection of protein–protein associations for a large number
of organisms (the yeast among them), where a protein–protein
association can mean either a direct physical binding or an
indirect interaction such as participation in the same metabolic
pathway or cellular process. The associations are derived from
high-throughput experimental data, from the mining of databases
and literature and from predictions based on genomic context
analysis. Thus, STRING takes a more generalized perspective on
protein and their associations than other databases whose main
purpose is to collect and curate direct experimental evidence about
protein–protein physical interactions. Because the STRING network
explicitly includes indirected protein–protein associations from
high-throughput co-expression data, it is expected that a comparison
with the corresponding inferred co-expression networks yields a
much higher degree of likeness between the networks than what
we obtained using the PPI network of (Steffen et al., 2002).

To extract from the STRING database the analyzable PPI network
of yeast, we take the STRING file protein.links.v8.1.txt.gz (Jensen
et al., 2009) (which is the current release of the protein–protein
network database), and select from it the interactions for all proteins
starting with the ID assigned to S.Cerevisiae, ID= 4932. From the
set of all interactions thus obtained, we pick next those interactions
having a combined score ≥900 (von Mering et al., 2005). This
process results in a preliminary network of 3622 proteins and 17 684
interactions, which, after eliminating all proteins/nodes which are
not present in the co-expression data (Brem et al., 2005, 2002)
(together with the edges attached to them), gives us a final PPI
network of 3590 nodes and 17 514 edges. Using this new PPI
network, we repeat then the analysis described in the preceding
sections. The results of this analysis can be found in Supplementary
Table S1 and Supplementary Figure 4(1c), 4(2c) and 4(3c). It is
clear to observe that the new results indicate that the compared
networks are certainly not equal, but much more similar than when
the Steffen’s PPI network was used for the comparison. The results
are expected since the STRING PPI network also includes the pairs
derived from co-expression analysis. The results further confirm the
validity of using the co-expression data (Brem et al., 2005, 2002)
for carrying out our analysis.

The second network we consider is the BioGRID PPI network
(Breitkreutz et al., 2008). The BioGRID database provides curate
evidence of physical (direct and indirect) and genetic PPIs, and has
the peculiarity of being organized in such a way that extracting
a subnetwork composed only of direct physical protein–protein
interactions can quite easily be achieved. BioGRID data, however,
does not tell the user which physical interactions are known to
be direct and which to be indirect, but only the method used
to demonstrate the interaction. It is left to the user to decide
based on all the evidence codes annotated for a given interaction
how likely that interaction is to occur and how likely it is to be
direct. That said, the Affinity Capture methods and Co-fractionation,
Co-purification and Co-localization methods (Breitkreutz et al.,
2008) are generally accepted to be much more likely to show co-
complex (indirect) interactions than the other physical methods.
Thus, in order to select those interactions that can more likely be
direct physical protein–protein bindings, we select from all PPIs
listed on the last release of BioGRIG (BIOGRID-ORGANISM-
2.0.55-tab.zip, S.Cerevisiae) those yeast interactions recordered only
under the following experimental systems: Biochemical activity,
Co-crystal structure, Far Western, FRET, Protein-peptide, Protein-
RNA, Reconstituted Complex and Two-hybrid (Breitkreutz et al.,
2008). The result is a PPI network of 4442 proteins and 23 553
interactions. After removing from this network, all proteins which
are absent in the co-expression data of Brem et al. (2005, 2002)
(together with the edges attached to them), the resulting network
contains 4315 nodes and 17 446 edges. Supplementary Table S2 and
Supplementary Figure 4(1a), 4(2a) and 4(3a) shows the comparison
results between this final network and the corresponding inferred
co-expression networks. These results clearly indicate that just like
the PPI network of Steffen et al. (2002), the co-expression network
is very different from the PPI network in structures and in topology.

As a last issue, we investigate what the comparison results
would be if the complete yeast BioGRID PPI network, i.e. the
network which includes both physical and genetic PPIs listed on
file BIOGRID-ORGANISM-2.0.55-tab.zip, would be the chosen
PPI network. In this case, the PPI network would contain 5601
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Fig. 4. Panels (1a–c): degree-dependent clustering coefficient, C(k), of the true PPI networks (cycles) and the corresponding co-expression networks inferred
by procedure I (squares). Panels (2a–c): degree distribution, P(k), of the true PPI networks (cycles) and the corresponding co-expression networks inferred
by procedure I (squares). Panels (3a–c): nearest neighbors average degree function, k̄nn(j), of the true protein-protein interaction networks (cycles) and the
corresponding co-expression networks inferred by procedure I (squares). Note that panels (a) correspond to the direct physical BioGRID PPI network, panels
(b) correspond to the entire BioGRID PPI network, and panels (c) correspond to the STRING PPI network (see text for details). For the co-expression
networks, the standard errors are plotted based on 2000 bootstrap samples. The plots show (i) that the direct physical BioGRID PPI network is topologically
different from its associated co-expression network (they show, for example, different types of degree-degree correlation and a big difference in C(k)), (ii)
the topological differences between the entire BioGRID network and its associated co-expression networks are sensibly smaller and (iii) those differences,
although still appreciable, begin to disappear when the compared networks are the STRING PPI and its associated co-expression network.

proteins and 94 246 interactions. After removing all proteins which
are not produced by the genes present in our co-expression data
(together with the edges attached to them), the resulting network is
made up of 5387 nodes and 93 239 edges. The comparison results
between this complete BioGRID PPI network and the corresponding
co-expression networks are shown in Supplementary Table S3 and
Supplementary Figure 4(1b), 4(2b) and 4(3b). Interestingly, the
results indicate now a better match between the networks than
in the purely direct physical PPI case [Supplementary Table S2
and Supplementary Figure 4(1a), 4(2a) and 4(3a)]. In spite of
matching better, the compared networks keep showing, however,
some essential differences between them, differences that become
even more important in view of the likeness between the STRING
PPI and corresponding inferred co-expression networks.

Taken together, the conclusion that could be extracted from
the whole presented PPI analysis is that co-expression networks
does not seem to reflect on PPI networks whose edges represent
direct physical protein-protein bindings, but they seem to better and
better reflect on the PPI networks as indirect physical, genetic and
predicted interactions are progressively included in the definition of
the PPI network.

5 CONCLUSIONS AND DISCUSSION
We compare the co-expression networks inferred from yeast gene
expression data with three well-established yeast networks whose
biological meaning is well-known and manifest in terms of the
biological pairwise interactions of their elements. The networks are
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the yeast PPI network, the yeast MIPS physical interaction network
and the undirected yeast regulatory network.

The comparisons indicate that co-expression networks are not
distinctly related, in any sense, with either PPI or the MIPS networks.
The very basic structure of the networks would be the usual
structure that can be found in most biological networks, i.e. scale-
free character, small-world behavior and large degrees of clustering.
However, their very specific structure explicitly shows important
topological differences between them.

When focusing on a more literal comparison, vertex by vertex
and edge by edge, the conclusion is the same: the fact that two
genes exhibit a high gene expression correlation degree does
not seem to obviously correlate with the existence or not of
a protein–protein or MIPS interaction between these genes. In
fact, we only observed that a few large protein complexes such
as ribosome and proteasome appeared in both PPI and the co-
expression networks. Our observations largely agree with reports
in literature on relationships between gene expression and PPIs.
For example, Ge et al. (2001) showed that interacting protein
pairs are more likely to be in the same expression cluster than
random pairs for yeast. However, when the self-interactions or
homodimers were removed from their analysis, Mrowka et al. (2003)
observed that the number of intracluster protein pairs did not differ
significantly from the random expectation. Similarly, Jansen et al.
(2002) observed strong correlations in expression for protein pairs
in permanent protein complexes, but very weak overall relationship
when all the interacting protein pairs are considered. Similar weak
correspondence between gene expression and PPIs was also reported
in Bhardwaj and Lu (2005) for yeast.

The comparison of the yeast regulatory network with inferred
co-expression networks would suggest, however, that they could
somehow be related. Thus, an edge by edge network comparison
seems certainly to indicate that high values of gene expression
correlation coefficients correlate to some extent with the existence
of gene regulations among the corresponding genes. This correlation
would, however, rapidly fall as the values of the pairwise correlation
coefficient decrease.

From a structural point of view, topologies such as the mean
clustering coefficient (C) and the largest component vertex number
lco provide suggesting information about the relationship between
REG and co-expression networks. The findings are the following.
When both networks are similar in size, C is much larger, and lco
much smaller, in our yeast co-expression network than in the yeast
regulatory network. These topological features, together with the
presumable connection between both networks when only highly
‘reliable’ co-expression edges are present, suggest that a number of
co-expression edges could represent no direct gene regulations. The
reason would be that genes that are not directly connected in the
regulatory network could indirectly be connected through a small
regulatory pathway. This indirect gene regulation could be rephrased
in the co-expression network in the existence of a co-expression edge
between the genes.

There are, however, caveats in interpreting our observations.
First, note that, when constructing a co-expression network, only
the degree of linear correlatedness of the gene expression values
is considered. No reason exists, however, for thinking that non-
linear correlations are not significant, which means that they should
possibly be considered in the analysis. Secondly, two genes can
get correlated simply by chance. Indeed, the distribution of the

values of the correlation coefficient r (after Fisher’s transformation)
produced by chance have been proved to be Gaussian (Anderson,
2003). As a result, some co-expression edges might be established
by simple chance, meaning that they do not represent any biological
correlation. The latter is more and more probable as smaller the
correlation value between the pair of genes is. Thirdly, the fact
that microarray gene expression values result from averaging the
gene expression values over a large number of cells could also
distort the whole co-expression analysis. Fourthly, the networks
that we compare to are known to be incomplete and may include
false edges or interactions, which may affect our results. It should,
however, be noted that this is a limitation of all methods that
utilize or analyze existing networks. Lastly, we only considered
co-expression networks based on pairwise correlations. Such co-
expression networks involve few statistical assumptions and are
therefore widely used in analysis of gene expression data. It would,
however, be interesting to use gene expression networks constructed
by other methods, such as mutual information-based or Gaussian
graphical model-based methods. Mutual information constructions,
however, often depend, especially when dealing with very high
dimensional gene expression data, on the way of discretizing the
continuous gene data or on the particular parametric assumption
one makes on the distribution functions used (Qiu et al., 2009).
Similarly, sparse Gaussian graphical models developed in recent
years to analyze gene expression data in high dimensional settings
(Li and Gui, 2006; Mainshausen and Buhlmann, 2006; Schafer
and Strimmer, 2005a, b) still heavily depend on the procedures
used and the tuning parameters chosen. In contrast, co-expression
networks are based on unambiguous procedures which only need
the estimation of pairwise correlations.
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