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Abstract
Conventional group analysis of functional MRI (fMRI) data usually involves spatial alignment of
anatomy across participants by registering every brain image to an anatomical reference image. Due
to the high degree of inter-subject anatomical variability, a low-resolution average anatomical model
is typically used as the target template, and/or smoothing kernels are applied to the fMRI data to
increase the overlap among subjects’ image data. However, such smoothing can make it difficult to
resolve small regions such as subregions of auditory cortex when anatomical morphology varies
among subjects. Here, we use data from an auditory fMRI study to show that using a high-dimensional
registration technique (HAMMER) results in an enhanced functional signal-to-noise ratio (fSNR)
for functional data analysis within auditory regions, with more localized activation patterns. The
technique is validated against DARTEL, a high-dimensional diffeomorphic registration, as well as
against commonly used low-dimensional normalization techniques such as the techniques provided
with SPM2 (cosine basis functions) and SPM5 (unified segmentation) software packages. We also
systematically examine how spatial resolution of the template image and spatial smoothing of the
functional data affect the results. Only the high-dimensional technique (HAMMER) appears to be
able to capitalize on the excellent anatomical resolution of a single-subject reference template, and,
as expected, smoothing increased fSNR, but at the cost of spatial resolution. In general, results
demonstrate significant improvement in fSNR using HAMMER compared to analysis after
normalization using DARTEL, or conventional normalization such as cosine basis function and
unified segmentation in SPM, with more precisely localized activation foci, at least for activation in
the region of auditory cortex.
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1. Introduction
Inter-subject variability in the spatial location of activation foci in functional neuroimaging
studies can result from variability in anatomical structure, variability in functional organization,
or both. To the extent that variability in functional localization reflects variability in anatomical
structure, it may be decreased by improving anatomical registration across subjects. The
conventional approach for functional localization is to find the correspondence among brain
volumes of all participants within the study by registering every brain image to a given template
brain. Such inter-subject registration in group studies is referred to as “spatial normalization”.
Minimizing the contribution of variable anatomical structure to variability in the spatial
location of activation foci has several advantages: First, it increases experimental power, so
that small, focal functional activations can be more easily detected. Second, it reduces the need
for smoothing in group studies, and improves spatial resolution, permitting activation foci to
be localized to specific anatomical locations with greater precision.

Several brain normalization techniques have been proposed to register anatomy across subjects.
Registration techniques vary from linear transformations of rigid-body registration that have
few parameters and match size and shape [14,9], to high degrees-of-freedom deformable
registration methods that match residual details on the cortical surface and internal brain
structures [24,10,13,35]. An overview of different normalization techniques proposed for brain
functional data analysis can be found in [18].

The accuracy of inter-subject registration using normalization methods has been assessed using
both landmark-based [1,42] and intensity-based [19] measures. Both types of studies confirm
the effectiveness of spatial normalization for reducing inter-subject anatomical variability. In
addition, the effect of inter-subject registration on the accuracy of functional group analysis
has received some attention. Gee et al. [17] evaluated three different registration techniques
(Bayesian volumetric warping proposed by him, SPM96 [5] and a 9-parameter affine
registration) using t-statistics from a functional group analysis. Ardekani et al. [3] presented a
quantitative comparison between three registration techniques (SPM’99, AFNI [9] and ART
[2]) and examined the effect of registration method on the reproducibility of the fMRI activation
maps. Both Gee and Ardekani concluded that increased accuracy in inter-subject registration
results in a significant increase in the sensitivity of activation detection. Recently, Wu et al.
[41] compared the performance of AIR [39], SPM95 [16], and their custom-developed demons-
based registration in a region-of-interest (ROI)-based functional analysis. Similarly, they
concluded that improving the normalization step in fMRI data analysis improves the reliability
of the colocalized fMRI results, but at a cost of increased complexity of registration and
computation time.

However, these published studies suffer from a number of limitations including: 1) the selected
registration techniques are relatively low-dimensional and the impact of using a high-
dimensional registration method in functional analysis has not been evaluated thoroughly; 2)
the use of low-resolution anatomical templates and spatial filtering (smoothing) in current
techniques may, in any case, compromise the effectiveness of using a high-dimensional inter-
subject registration in group analysis; and 3) the cognitive tasks investigated in previous studies
appear to activate large, distributed brain networks. To assess improvements in spatial
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resolution, it would be better to choose a task that is known to activate an anatomically
circumscribed region, so that improvements in structural anatomical registration and in
functional signal-to-noise ratio (fSNR) can be assessed concurrently. Here, we assess activity
in auditory and speech regions of the temporal cortex in response to auditory and speech stimuli.
The fSNR is defined as the ratio between the intensity of a signal associated with changes in
brain function and the variability in the data due to all sources of noise. fSNR is conceptually
very similar to t-statistics as calculated by SPM (Statistical Parametric Mapping: Wellcome
Department of Cognitive Neurology, London, UK) software, which we shall use as an index
of fSNR.

In this study, we evaluate and compare the effectiveness of several registration techniques. We
compare a high-dimensional technique known as HAMMER (Hierarchical Attribute Matching
Mechanism for Elastic Registration) [33] to DARTEL [4], a high-dimensional inverse-
consistent diffeomorphic image registration method and also to commonly used low-
dimensional normalizations, such as the normalization methods provided with SPM software
(version 2 [6]: deformable modeling using discrete cosine transform basis functions, and
version 5 [7]: unified segmentation). We evaluate: (a) the effects of the normalization
technique; (b) the effects of the normalization template; and (c) the effects of conventional
isotropic spatial smoothing of functional data, on fSNR. We assess the accuracy of the
registration in reducing macroanatomical differences among subjects both qualitatively (i.e.,
visually inspecting the average of the registered volumes resulting from the application of each
of the registration techniques) and quantitatively (i.e., comparing the average of the normalized
cross-correlation (NCC) values calculated between the normalization template image and the
warped image data for all registration methods). Cross-correlation is a simple but effective way
to assess similarity between a registered volume and a reference template. This metric is
intended to be used in images of the same modality where the relationship between the
intensities of the two images is given by a linear equation. For applications in which the
brightness of the image and the template can vary due to lighting and exposure conditions,
normalized cross-correlation is used. Moreover, we compare peak activation values (t-
statistics) resulting from statistical analysis on the group (treating the subject’s variable as a
random effect) in both smoothed and unsmoothed fMRI data that has been normalized using
different registration techniques.

We also evaluate the effect of the normalization template. Standard normalization techniques
use a low-resolution average anatomical model as the target template. In this work, we have
selected four well-known templates: (1) ICBM152 [27], a population-based template; (2)
Colin27 [20], a high-resolution anatomical reference; (3) ICBM452 Tissue Probabilistic Atlas
[21]; and finally, (4) A custom-built group template, generated using the DARTEL tool of the
SPM5 package.

It is standard in conventional whole-brain fMRI analysis to apply isotropic three-dimensional
filtering kernels of 6 – 10 mm typically to the functional data [28]. The spatial smoothing is
done for many reasons one of which is to reduce the effect of inter-subject variability in group
analysis. Although often helpful and necessary, smoothing has the undesirable effect of
reducing the spatial resolution, blurring and/or shifting activations and merging adjacent peaks
of activation. In this work, we examine whether using a high-dimensional normalization will
reduce or eliminate the need for spatial smoothing to increase anatomical overlap among
subjects, while maintaining a similar fSNR to that obtained with spatial smoothing.

This paper is further evidence that high-dimensional non-rigid registration methods are needed
for group analysis of functional activation in the auditory cortex, as previously demonstrated
by Desai et al. [11], and Kang et al. [22], which dealt with flattened 2D cortical surfaces and
furthermore, by Viceic et al. [36], which dealt with 3D volumes. Moreover, this paper explores
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the effects of the normalization template and spatial smoothing on subsequent group analysis
of functional data from an auditory imaging experiment. This experiment examined whether
functional networks supporting production of speech and perception of speech overlap (Zheng
et al. submitted). We wished specifically to determine whether a subset of regions in the
superior temporal region are particularly sensitive to a mismatch between the actual auditory
consequences of speaking and the predicted consequences based on the motor speech
command. A more complete description of the experiment can be found in Zheng et al.,
submitted. Only aspects of the experimental design relevant to the methodological question
are described here.

2. Materials and Methods
2.1. Image Acquisition

Seventeen normal healthy volunteer subjects (13 female, 4 male, ages 23 ± 3 years (mean±std),
right-handed, native English speakers) participated in this study. All subjects gave written
informed consent for their participation. The experimental protocol was cleared by the Queen’s
University Health Sciences Research Ethics Board.

MR imaging was performed on the 3.0 Tesla Siemens Trio MRI system in the Queen’s
University Centre for Neuroscience Studies, MRI Facility, Kingston, Ontario. -weighted
GE-EPI sequences were acquired with a typical field of view of 211 × 211 mm2, in plane
resolution of 3.3 × 3.3 mm2, slice thickness of 4.0 mm, TA = 1600 msec per acquired volume,
TE = 30 msec, and TR = 3000 msec. In order to present sounds and record the verbal responses
without any acoustic interference, a visual cue instructing the subject to listen or speak was
presented at the beginning of the 1400 msec silent period between successive scans: trials were
always complete by the end of this period. In addition to the functional data, a whole-brain 3D
MPRAGE T1-weighted anatomical image was acquired for each participant (voxel resolution
of 1.0 ×1.0 ×1.0 mm3, flip angle α = 9°, TR = 1760 msec, and TE = 2.6 msec).

2.2. fMRI Experimental Paradigm
The experiment was designed as a 2 × 2 factorial:

1. Whispering “TED”, with concomitant clear auditory feedback,

2. Whispering “TED”, while hearing masking Gaussian white noise,

3. Listening to the stimuli of the first condition without speaking,

4. Listening to the stimuli of the second condition without speaking,

5. A resting baseline condition was also scanned.

On each trial, the subject was told to produce “TED” if a green cross was presented at the start
of the trial, or to remain silent (listen/rest trials) if a red cross was presented.

In every set of five trials, each of the five conditions was presented once in pseudo-random
order. Thirty-six such sets of trials were presented in each of three nine-minute runs. The
auditory stimuli in listening trials (conditions 3 and 4) were yoked to those in the corresponding
production trials of conditions 1 and 2 (i.e., listening trials consisted of utterances generated
on previous production trials, or their white-noise masks).

2.3. Stimulus Generation Hardware
Two PC workstations (one for stimulus delivery and one for realtime speech signal processing)
communicated via a fast Ethernet switch. Auditory stimuli were delivered via high-fidelity
magnet compatible headphones (Nordic Neuro Lab, Norway). Verbal responses were recorded
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via a dual-channel microphone system. Participants spoke into the optical microphone and their
voices were digitized, transmitted, and saved on the second workstation. Real-time analysis of
the signal was achieved using an embedded controller (National Instruments Co., Texas) and
LabView software (National Instruments, Inc.). Processed signals were converted back to
analogue using a multifunction I/O data acquisition board (National Instruments Co., Texas)
and played back over the headphone in realtime, either intact or as a modulated noise burst.
The processing delays were negligible (imperceptible to the listeners).

Here, we concentrate on two contrasts; (1) Four sound conditions vs. rest, which should reveal
activity in auditory regions; and (2) listening to speech (condition 3) compared to rest
(condition 5), which should reveal auditory activity as well as activity in speech-sensitive
regions of the superior temporal gyrus and sulcus.

2.4. Data Preprocessing
Structural and functional image data were passed through a series of preprocessing steps before
normalization; see Figure 1. Data were motion-corrected with respect to the first volume of
the first session using the realignment tool of SPM (i.e., using a least squares approach and a
6 parameter rigid-body spatial transformation with 4th degree B-Spline interpolation).
Structural MR data were edited to remove skull and scalp using the Brain Extraction Tool
(BET) of the FSL software package (Oxford Centre for Functional MRI, Oxford University,
UK). Next, the structural images were rigidly registered to the functional time series using the
Mutual Information coregistration tool of SPM5.

2.5. Normalization Template
In this study, we consider four common templates for the normalization: (1) ICBM152, which
was generated by registering 152 normal brain images to the MNI305 template [12] using a
nine-parameter affine transformation. This template has been incorporated into several
software packages such as SPM. ICBM152 is an average volume and therefore lacks
anatomical details. The original ICBM152 template provided in SPM package has the
resolution of 2.0×2.0×2.0 mm3; however, we resampled this template to 1.0×1.0×1.0 mm3 for
comparison with the other templates. (2) Colin27 or CJH27, in which structural details are
preserved. Colin27 was created by registering 27 high-resolution scans (1.0 × 1.0 × 1.0 mm3)
of a single subject to the more spatially blurred ICBM152 average brain. (3) ICBM Tissue
Probabilistic Atlas, which is used in SPM5 segmentation-based registration. 452 subject T1-
weighted MR images were aligned with the MNI305 template, and classified into gray matter,
white matter, and cerebrospinal fluid. The 452 tissue maps were separated into their separate
components and each component was averaged across the subjects to create a probability map
for each tissue type. These maps give the prior probability of any voxel in a registered image
being of any of the tissue classes - irrespective of its intensity. (4) Finally, a custom-built group
template, generated using DARTEL tool of SPM5 package. Structural T1-weighted scans of
17 subjects within the study were segmented into different tissue types using segmentation tool
of SPM5. Intensity averages of the grey and white matter images were generated to serve as
an initial template for DARTEL registration. The initial smooth template is then iteratively
sharpened after each phase of registration.

2.6. Spatial Smoothing
Normalized fMRI data may also undergo spatial smoothing. Spatial smoothing is an averaging
process in which the intensity at a given voxel is replaced by a weighted average of the values
of voxels in the spatial neighborhood of that voxel. Smoothing is implemented as a convolution
of the imaging data with a Gaussian kernel described by a parameter of full width at half
maximum (FWHM). In fMRI studies, spatial smoothing is performed to render the data more
normally distributed and therefore, appropriate for parametric tests. Also, smoothing reduces
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the effect of residual inter-subject anatomical variability remaining after spatial normalization.
Besides suppressing the influence of anatomical variability across individual subjects, spatial
smoothing of fMRI data prior to the statistical analysis can enhance the signal-to-noise ratio
and increase sensitivity to signals of specific shapes and sizes depending on filter design [26,
32]. Smoothing also results in fewer statistically independent tests within a given volume in
functional group studies, and thus a smaller correction for multiple comparisons is required.
Moreover, smoothing is useful in reducing resampling-related artifacts after image registration
[25]. Finally, determination of thresholds for statistical inference in SPMs (if the family-wise-
error correction is used) depends on the theory of Gaussian random fields and the assumption
that the image data are good lattice representations of a smooth Gaussian field [15,40]. This
only holds when the voxel size is appreciably smaller than the smoothness, and it has been
suggested that smoothing be applied such that the effective FWHM is at least twice the size of
the voxel [40].

Spatial smoothing of fMRI data has some drawbacks as well. Undesirable effects of smoothing
include decreased effective spatial resolution, blurring and/or shifting of activations and
merging of adjacent peaks of activation. Figure 2 demonstrates an example of the undesirable
effect of spatial smoothing in merging functional activation foci from two anatomically
adjacent regions of Heschl’s gyrus (HG) and planum temporale (PT) in human auditory cortex.
The labeled regions in blue and red are extracted from HG [30] and PT [38] probabilistic maps,
respectively, which are thresholded at 40%. The most recent work of Weibull et al. [37]
investigates how the choice of spatial resolution and smoothing kernel width affects the
temporal signal-to-noise ratio in single-subject fMRI data analysis. Their conclusion is that in
studies requiring detailed localization and quantification of small activation clusters, high
resolution and limited smoothing kernel is most appropriate. However, when expecting large
volumes of activation or when the precise localization of a activation focus is less important
than simply observing it, lower resolution and smoothing may be used more generously. Mikl
et al. [28], and Reimold et al. [31], in separate works, also investigate the related artifacts of
spatial smoothing on t-maps and conclude that spatial smoothing may lead to critical,
sometimes counterintuitive artifacts in t-maps, especially in subcortical brain regions. In this
work, we evaluate the effect of such smoothing on t-statistics and functional signal-to-noise.

2.7. Inter-subject Registration
Four different registration techniques were considered for normalization of structural images
and the corresponding functional image data. All 17 subjects’ structural data were aligned using
these four registration techniques:

A. HAMMER is an elastic registration technique that utilizes an attribute vector for every
voxel of the image. The attribute vector reflects the geometric features of the
underlying anatomy at different scales. Our application of the HAMMER algorithm
proceeded in two steps: First, the brain data were segmented into gray matter, white
matter and cerebrospinal fluid using FMRIB’s Automated Segmentation Tool (FAST)
of the FSL software package. Second, HAMMER registration is applied to warp the
brain images to the 1 mm3 Colin27 template. HAMMER uses every voxel’s
information in its hierarchical multi-resolution approach, and therefore, the number
of parameters for the deformation field is equal to the number of voxels within the
volume. Consequently, HAMMER registration is not appropriate for use with an
anatomically smooth template like ICBM152 as the anatomical details that are used
as the reference to guide the registration, does not exist in the smooth template.
HAMMER’s voxel-based approach for registration preserves the local amount of
signal concentration unlike modulated voxel-based morphology analyses in which
the normalization is expected to compensate for structural differences while
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preserving the total amount of signal. A copy of the HAMMER-based normalized
fMRI dataset was smoothed with an isotropic Gaussian kernel of FWHM 8 mm.

B. Normalization in SPM2 [6] includes global linear (affine transform) and local
nonlinear (3D discrete cosine transform basis functions) transformations. The
deformation field for each subject is described by 1176 parameters. We consider two
templates for the normalization of the structural image from each fMRI subject: (i)
the default ICBM152 template with 2 mm3 spatial resolution, which was resampled
to 1 mm3 and (ii) the high-resolution single-subject 1 mm3 Colin27 template. In both
cases, a copy of the registered fMRI data was smoothed using an isotropic Gaussian
kernel (FWHM 8 mm) to compensate for the inter-subject variability remaining after
the normalization procedure, created four sets of normalized data. Condition (i) with
smoothing is a standard implementation of SPM2 image processing procedures. One
should note that SPM-based normalization includes spatial smoothing of the images
prior to registration. This smoothing is due to the fact that the templates supplied with
SPM have been smoothed by 8 mm, and that smoothness combines by Pythagoras’
rule (refer to SPM manual [34]).

C. SPM5’s normalization [7], referred to as “unified segmentation”, includes a
probabilistic framework, which integrates image registration, tissue classification,
and bias correction within the same generative model. The number of deformation
parameters is in the order of 103; however, the exact number depends on the image
field of view (FOV) (John Ashburner, communication on SPM forum, March 24,
2009). The unified segmentation technique requires tissue probability maps as the
priors and for the current evaluation, ICBM452 tissue probability maps were used.
Because we could not define tissue probability maps for the single-subject template,
we could not use the Colin27 template as the target for normalization with SPM5. A
copy of the registered fMRI data was smoothed using an isotropic Gaussian kernel
with FWHM 8 mm.

D. DARTEL (Diffeomorphic Anatomical Registration Through Exponential Lie
Algebra) has been proposed by Ashburner [4] as an alternative method of
normalization in the SPM package. DARTEL is an algorithm for diffeomorphic image
registration, which utilizes large deformations in an inverse consistent framework.
DARTEL’s deformations are parameterized by a time-invariant velocity field. Similar
to the unified segmentation method, DARTEL also requires tissue classification of
the brain images. Intensity averages of the grey and white matter images were
generated to serve as an initial template for DARTEL registration. The template is
iteratively updated after each step of the registration. DARTEL encodes the spatial
transforms using roughly around 6 × 103 parameters per subject (John Ashburner,
communication on SPM forum, March 24, 2009). DARTEL was primarily designed
for voxel-based morphometry (VBM) studies, which is well-suited to its
diffeomorphic nature. Similar to other conditions, a copy of the registered fMRI data
was smoothed using an isotropic Gaussian kernel with FWHM 8 mm.

Overall, we will be evaluating 10 different conditions, which are presented in Table 1.

2.8. Assessment of Registration Accuracy
The accuracy of the inter-subject registration techniques and their impact on the localization
of activation patterns, the influence of the normalization template, and the effect of smoothing
in functional group analysis were assessed for all four selected registration techniques. Average
(n = 17) brain images were generated from the warped structural data for all four registration
conditions. Normalized cross-correlation was used as the measure of similarity between the
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template volume and the warped volume data. Moreover, statistical analysis of fMRI was
conducted using Analysis of Variance (ANOVA).

2.8.1. Average Volume—Mean volumes were generated by averaging all 17 registered T1-
weighted structural volumes for four different registration conditions. Figure 3 shows the cross-
sections derived from the mean volumes obtained with each registration condition. Figure 4
provides a closer look at a region of interest around Heschl’s gyrus, the approximate location
of primary auditory cortex, for comparison. It can be observed that HAMMER improves the
delineation of sulci and gyri and consequently, the spatial homogeneity between individual
subject brains and the reference template (Colin27). This was confirmed using normalized
cross-correlation measure as shown in Section 3.

2.8.2. Similarity Measure: Normalized Cross-Correlation—NCC is computed by first
normalizing each image to have zero mean and unit variance, and then multiplying each voxel
of one volume by the corresponding voxel in the other volume, and summing the products (Eq.
1).

(1)

where S and T refer to the intensity values in the subject and template volumes, respectively.

NCC values were computed for the entire brain volume of every subject considering different
registration techniques. In addition to the entire volume, we created rectangular cuboidal
regions of interest around auditory cortex, extending into the superior temporal sulcus, in both
hemispheres. These ROIs were defined using the following coordinate ranges: (Left: x = −66:
−20, y = −50: +15, z = −15: +20, Right: x = +20: +66, y = −50: +15, z = −15: +20 with respect
to the ICBM152 coordinate frame).

2.8.3. Statistical analysis of fMRI—Statistical analysis of fMRI data was accomplished
with SPM5. Deformation parameters resulting from registration of each structural image to the
desired template were used to warp the corresponding fMRI data. The warped fMRI data were
resampled to 3.0×3.0×3.0 mm3 after normalization for all methods of registration prior to
conducting single-subject and second-level group analysis. Next, fMRI data were entered into
a fixed-effects general linear model for each subject using an event-related analysis procedure.
The hemodynamic response function was selected as the basis function. Contrast images were
created for each subject and these were entered into a second-level group analysis, treating the
subject’s factor as a random effect [15]. One-sample t-tests were calculated for contrasts of
‘listening to speech vs. rest’ and ‘four sound conditions vs. rest’ for each of the 10 different
processing methods mentioned in Section 2.7, enabling us to examine the effects of three
factors:

1. Registration method: HAMMER, nonlinear warping using cosine basis functions
(SPM2), unified segmentation (SPM5), diffeomorphic registration (DARTEL).

2. Template: Colin27, ICBM152.

3. Spatial smoothing: with or without 8 mm isotropic Gaussian spatial smoothing.

2.8.4. Euclidean Distance Error—The Euclidean distances between the highest activation
peak obtained from the group analysis and the ‘listening vs. rest’ contrast and the closest
activation peak in each individual from single-subject analysis of the same contrast were
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calculated for all 10 different processing methods [29,23,8] as depicted in Figure 5. A smaller
discrepancy between the group and individual peaks indicates better inter-subject alignment
among all subjects after registration.

2.8.5. Analysis of Variance: Normalization vs. Smoothing—A 3×2 repeated-
measures ANOVA was conducted on the Euclidean distance error data. The factors were (1)
registration method (four levels: HAMMER, cosine basis functions (SPM2), unified
segmentation (SPM5), DARTEL), and (2) smoothing (two levels: with and without
smoothing).

3. Results and Discussion
NCC scores were computed for the entire brain volume as well as the specified ROIs as defined
in Section 2.8.2 for each of 17 subjects considering five different registration conditions. NCC
results are shown in the form of mean±std in Table 2. One-way ANOVA analysis on whole-
brain NCC scores (five levels: HAMMER, SPM2c, SPM2i, SPM5, and DARTEL), p < 0.05,
was performed using SPSS software (Statistical Package for the Social Sciences). Results
showed a significant main effect of the normalization method; HAMMER and DAR-TEL
slightly outperformed SPM2 and unified segmentation-based normalizations (i.e., less than 3%
improvement). There was no significant difference in performance between SPM5-based
normalization and SPM2-based normalization using the Colin27 template (SPM2c). In fact,
SPM2c performed worse than other methods. Pairwise comparisons using Sidak-correction
between SPM2c and SPM2i revealed no significant difference in performance. Therefore, it
can be concluded that using a high-resolution template such as Colin27 does not improve
registration accuracy for SPM2-based registration. A second ANOVA was performed on NCC
scores for the left and right ROIs with two factors: normalization method (five levels) and
hemisphere (Left/Right), p < 0.05. There was a significant main effect of hemisphere (i.e., a
greater correlation (higher NCC score) for the right hemisphere compared to left hemisphere).
There was also a significant main effect of the normalization method. Pairwise comparisons
using Sidak-correction showed that HAMMER significantly outperformed other techniques
(i.e., over 11% improvement) and SPM2 with the Colin27 template yielded the lowest NCC
scores among all methods. DARTEL slightly outperformed the other SPM-based normalization
methods; however, unlike the full volume case, DARTEL did not match up HAMMER’s
performance at ROI level. Such difference in performance is due to the diffeomorphic nature
of DARTEL registration, in which the method is given enough freedom to estimate quite large
deformations. Such freedom of deformation may result in unrealistic shrinkage/expansion of
some structures in the brain image volume. Consequently, diffeomorphic normalization can
not capture small deformations required for matching areas with small residual anatomical
details such as the selected ROI in this study. There was no significant difference in
performance between SPM2 using the ICBM152 template and SPM5 using the probabilistic
tissue maps. Comparing SPM2c and SPM2i results, it was reconfirmed that SPM2-based
normalization cannot take advantage of the high-resolution template. There was also a
significant interaction between the two factors; NCC scores were higher for the right
hemisphere than the left hemisphere for SPM2c, SPM2i, SPM5, and DARTEL but not for
HAMMER, which yielded no difference between the two hemispheres (Figure 6).

Figure 7 illustrates the region of activation produced in the contrast of ‘four sound conditions
vs. rest’, across five registration conditions. Activation resulting from the HAMMER-based
normalization is more intense (lighter color) and more tightly localized over auditory cortex,
compared to other techniques. The increase in t-values comparing smoothed vs. unsmoothed
data for HAMMER-based, SPM2c-based (using Colin27), SPM2i-based (using ICBM152),
unified segmentation-based, and finally, DARTEL-based normalized data are 1.5%, 22.6%,
13.5%, 85.7% and 20.3%, respectively. This implies that smoothing unnecessarily expands the
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region of activation for the condition using HAMMER since there is no significant increase in
t-values for smoothed vs. unsmoothed HAMMER-normalized data; however, for analyses
conducted on SPM2, DAR-TEL, and specifically unified segmentation normalized data,
smoothing substantially improved fSNR.

The statistical analysis of fMRI data was performed in MATLAB® using SPM functions.
Analysis of the ‘four sound conditions vs. rest’ contrast revealed significant activation in the
superior temporal region bilaterally using False Discovery Rate (FDR) correction for multiple
comparisons, p < 0.05. Highest activation peaks (i.e., t-value + 3D coordinates in MNI space)
for two contrasts of ‘four sound conditions vs. rest’ and ‘listening vs. rest’ observed in each
hemisphere in the group analyses (in which the subject was treated as a random effect) are
listed in Table 3.

The following can be observed from the data presented in Table 3: (1) Group analysis of
HAMMER-normalized data, with or without smoothing, yields higher t-values in both
hemispheres compared to normalized data using other techniques. Considering NCC
comparison results (i.e., higher NCC scores for higher-d registration), one can conclude that
increased fSNR is due to increased overlap across subjects; (2) Analysis conducted using SPM2
and Colin27 as the template, without smoothing, yields higher t-values compared to the
ICBM152 template without smoothing; however, the opposite is true if data are smoothed; (3)
Smoothed fMRI data yields higher t-values compared to unsmoothed data (except for one case;
HAMMER, listening vs. rest, Right Hemisphere); however, the smoothing-related increase in
t-values is more substantial for SPM2-, SPM5-, and DARTEL-based normalizations. One
should note that one application of spatial smoothing kernels in functional group analysis, as
mentioned in Section 2.6, is to render the data more normally distributed and therefore, suitable
for parametric tests. To check the validity of the normality condition for the non-smoothed
normalized data, we checked the effective smoothing of our data using SPM software tools -
even without any smoothing applied, our data has an average effective smoothness of 6 mm in
all directions, which is approximately twice the voxel size (3 mm3). We judge this to be
sufficient to render the data appropriate for parametric tests.

Average Euclidean Distances (A.E.D.) between the highest activation peak obtained from
group analysis and the ‘listening vs. rest’ contrast and the closest activation peak observed in
individual analyses for the same contrast are shown in Table 4. ANOVA on Euclidean distances
with the two factors: normalization method (four levels) and smoothing (two levels) revealed
a significant main effect of smoothing (F(1, 16) = 17.52, p < 0.05). Smoothing yielded
significantly higher distance values than no smoothing. We also observed a significant main
effect of normalization method (F(4, 64) = 7.16, p < 0.05), which we followed up using Sidak-
corrected pairwise comparisons (see Figure 8); HAMMER registration yielded significantly
smaller distances between group location estimates and peaks in individuals compared to
SPM2i, SPM2c, unified segmentation, and DARTEL. There was no significant difference
between SPM2c, SPM2i and SPM5; however, DARTEL yielded significantly higher distances
compared to the rest. Further, there was no significant difference between smoothed and un-
smoothed data when normalized using HAMMER or SPM2c registration. On the other hand,
smoothing yielded higher distance values when the normalization method is either SPM2i,
SPM5’s unified segmentation, or DARTEL. One may conclude that using a high-resolution
template for normalization (such as in HAMMER and SPM2c-based normalization) results in
more accurate alignment of the functional activation foci and therefore suppresses the impact
of spatial smoothing which is applied for increasing overlap among subject data; however,
validation of such conclusion requires further investigation by adding an extra factor for
template type within the statistical analysis. Finally, there was no significant interaction
between normalization method and smoothing.
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Based on NCC scores, t-values, and analysis of Euclidean distances, it can be concluded that
higher t-test values resulting from HAMMER registration are due to an increased activation
overlap among all subjects. The use of the high-resolution template with the low-dimensional
SPM normalization procedure neither increased the activation peak value nor improved the
localization of activation foci. Clearly, the SPM2 normalization technique cannot take
advantage of the spatial detail in a high-resolution template to allow matching of
morphologically variable regions. Spatial smoothing of fMRI data prior to group analysis does
increase the magnitude of peak activation in most cases. However, such smoothing degrades
spatial resolution, so that activation foci cannot be localized as precisely.

4. General Discussion
In this work, we compared the effect of a high-dimensional elastic registration technique
(i.e., HAMMER) to other normalization methods on group-level statistics in an auditory fMRI
experiment. The accuracy of the registration techniques was assessed using normalized cross-
correlation. Moreover, the functional contrast-to-noise estimates, and measures of distance
between estimates of the location of peak activation for the group and estimates for each
individual, were also assessed and compared between different methods. Importantly, the
functional peak assessment is derived from data (i.e., fMRI data) that is independently acquired
from the structural data involved in the registration. Therefore, besides NCC-based
comparison, the functional peak assessment provides an independent converging evidence for
the overall pattern of results. We took higher normalization coefficients, higher t-values, and
smaller group-individual differences to be consistent with a greater anatomical homogeneity
(overlap) among experimental participants.

HAMMER outperformed SPM2, unified segmentation in SPM5, and DAR-TEL normalization
techniques according to all three aforementioned measures. A better match across subjects in
brain morphology resulted in better functional signal-to-noise (higher t-statistics) and more
focal regions of activation that were also more precisely located with respect to Heschl’s gyrus.
DAR-TEL’s deformation-based registration makes it a suitable choice for voxel-based
morphometry analysis; however, in applications such as normalization of fMRI data for group
analysis where the focus of the study is more localized to a specific region-of-interest,
DARTEL-based registration does not have the freedom of small deformation to match
macroanatomy in small subregions of the brain. This may reduce the sensitivity to signal change
in that particular region. The effect of using a high-resolution template (Colin27) for
normalization was also examined. The use of the high-resolution template with the low-
dimensional SPM2 normalization procedure neither increased the t-statistics nor improved the
registration of activation foci across subjects; we conclude that the SPM2 normalization
technique cannot take advantage of the spatial detail in a high-resolution template to improve
alignment of morphological details across individuals. Spatial smoothing was effective at
increasing t-statistics and functional signal-to-noise. However, (1) such smoothing decreases
spatial resolution so that activation foci cannot be localized as precisely, and (2) the effect of
smoothing in terms of yielding higher t-values is more significant for SPM-based analyses.

Inter-individual variability in the location of activation foci has at least three components -
variability in sulcal/gyral morphology; variability in the extent and topography of
microanatomically defined regions with respect to gross morphology, and functional
variability. To the extent that brains in a common reference space differ in sulcal and gyral
morphology, activation foci can be expected to be at different spatial coordinates. It is this
component of functional variability that we can overcome, in part, with high-dimensional
anatomical registration. However, brains also differ in microanatomical structure, which is
correlated with gross morphology although not entirely. Thus, patches of tissue which may be
microanatomically and functionally homologous across individuals may have somewhat
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different relationship with sulcal and gyral morphology. This anatomical variability cannot be
eliminated with high-dimensional normalization, nor can variability in location due to the
recruitment of different perceptual/cognitive processes (and thus, anatomically and
functionally different cortical regions) across individuals. However, high-dimensional
registration techniques like HAMMER do provide a tool for assessing whether variability in
the location and extent of activation foci among individuals is due primarily to sulcal and gyral
morphological variation among individuals, since it can be used to eliminate this component.
Residual inter-subject variability can then be attributed either to anatomical variability at a
microscopic scale (i.e., variability in the location and extent of cytoarchitectonically or
chemoarchitectonically or hodologically defined areas) or to variability in function due to a
different processing network being recruited. Using high-dimensional registration techniques
will permit the analysis and removal of much of the anatomical component from current
estimates of functional variability thereby providing a more precise identification of regions
related to elemental cognitive functions.

Acknowledgments
The authors would like to thank Drs. J. Ashburner, D. Shen, X. Wu, and G. Ridgeway for their help. This work is
supported by the Canadian Institutes of Health Research (CIHR) through an operating grant to I.S.J., the Natural
Sciences and Engineering Research Council of Canada (NSERC) discovery grant to I.S.J. and P.A., Ontario Graduate
Scholarship (OGS) to A.M.T. and an early research award to I.S.J.

References
1. Ardekani B, Guckemus S, Bachman A, Hoptman M, Wojtaszek M, Nierenberg J. Quantitative

comparison of algorithms for inter-subject registration of 3D volumetric brain MRI scans. Journal of
Neuroscience Methods 2005;142:67–76. [PubMed: 15652618]

2. Ardekani, BA. An improved method for intersubject registration in 3D volumetric brain MRI. Sydney,
Australia. World Congress on Medical Physics and Biomedical Engineering; 2003. Abstract 452

3. Ardekani BA, Bachman AH, Strother S, Fujibayashi Y, Yonekura Y. Impact of inter-subject image
registration on group analysis of fMRI data. International Congress Series, Elsevier 2004;1265:49–
59.

4. Ashburner J. A fast diffeomorphic image registration algorithm. NeuroImage 2007;38:95–113.
[PubMed: 17761438]

5. Ashburner J, Friston K. Fully three-dimensional nonlinear spatial normalization: A new approach.
NeuroImage 1996;3:S111.

6. Ashburner J, Friston K. Nonlinear spatial normalization using basis functions. Human Brain Mapping
1999;7:254–266. [PubMed: 10408769]

7. Ashburner J, Friston K. Unified segmentation. NeuroImage 2005;26 (3):839–851. [PubMed:
15955494]

8. Bakker A, Kirwan C, Miller M, Stark C. Pattern separation in the human hippocampal CA3 and dentate
gyrus. Science 2008;319 (5870):1640–1642. [PubMed: 18356518]

9. Cox R. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages.
Computers and Biomedical Research 1996;29 (3):162–173. [PubMed: 8812068]

10. Davatzikos C. Spatial normalization of 3D brain images using deformable models. Journal of
Computed Assisted Tomography 1996;20:656–665.

11. Desai R, Liebenthal E, Possing E, Waldron E, Binder J. Volumetric vs. surface-based alignment for
localization of auditory cortex. NeuroImage 2005;26 (4):1019–1029. [PubMed: 15893476]

12. Evans, AC.; Collins, DL. A 305-member MRI-based stereotactic atlas for CBF activation studies.
Proceedings of the 40th Annual Meeting of the Society for Nuclear Medicine; 1993.

13. Fischl B, Sereno M, Tootell R, Dale A. High-resolution inter-subject averaging and a coordinate
system for the cortical surface. Human Brain Mapping 1999;8:272–284. [PubMed: 10619420]

14. Fox P, Perlmutter S, Raichle M. A stereotactic method of anatomical localization for positron emission
tomography. Journal of Computed Assisted Tomography 1985;9:141–153.

Tahmasebi et al. Page 12

Neuroimage. Author manuscript; available in PMC 2010 January 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



15. Friston K, Holmes A, Poline JB, Grasby P, Williams S, Frackowiak R, Turner R. Analysis of fMRI
time-series revisited. NeuroImage 1995;2 (1):45–53. [PubMed: 9343589]

16. Friston K, Holmes A, Worsley K, Poline J, Frith C, Frackowiak R. Statistical Parametric Maps in
functional imaging: A general linear approach. Human Brain Mapping 1995;2:189–210.

17. Gee J, Alsop D, Aguirre G. Effect of spatial normalization on analysis of functional data. SPIE Medical
Imaging 1997: Image Processing 1997:550–560.

18. Gholipour A, Kehtarnavaz N, Briggs R, Devous M, Gopinath K. Brain functional localization: A
survey of image registration techniques. IEEE Transaction on Medical Imaging 2007;26 (4):427–
451.

19. Hellier P, Barillot C, Corouge I, Gibaud B, Le Goualher G, Collins D, Evans A, Malandain G, Ayache
N, Christensen G, Johnson H. Retrospective evaluation of intersubject brain registration. IEEE
Transaction on Medical Imaging 2003;22 (9):1120–1130.

20. Holmes C, Hoge R, Collins L, Woods R, Toga A, Evans A. Enhancement of MR images using
registration for signal averaging. Journal of Computed Assisted Tomography 1998;22 (2):324–333.

21. ICBM452. 2009. Available from http://www.loni.ucla.edu/ICBM/ICBM_Probabilistic.html
22. Kang X, Bertrand O, Alho K, Yund E, Herron T, Woods D. Local landmark-based mapping of human

auditory cortex. NeuroImage 2004;22 (4):1657–1670. [PubMed: 15275922]
23. Kirwan C, Jones C, Miller M, Stark C. High-resolution fMRI investigation of the medial temporal

lobe. Human Brain Mapping 2006;28 (10):959–966. [PubMed: 17133381]
24. Klein, A.; Andersson, J.; Ardekani, BA.; Ashburner, J.; Avants, B.; Chiang, M-C.; Christensen, GE.;

Collins, DL.; Gee, J.; Hellier, P.; Song, JH.; Jenkinson, M.; Lepage, C.; Rueckert, D.; Thompson,
P.; Vercauteren, T.; Woods, RP.; Mann, JJ.; Parsey, RV. Evaluation of 14 nonlinear deformation
algorithms applied to human brain MRI registration. NeuroImage. 2009. In Press. Corrected Proof.
URL
http://www.sciencedirect.com/science/article/
B6WNP-4VC7DX1-1/2/8d9dffe89b9981c86fcebf256c21cd04

25. Maas L, Renshaw P. Post-registration spatial filtering to reduce noise in functional MRI data sets.
Magnetic Resonance Imaging 1999;17 (9):13711382.

26. Maisog J, Chmielowska J. An efficient method for correcting the edge artifact due to smoothing.
Human Brain Mapping 1998;6 (3):128–136. [PubMed: 9673668]

27. Mazziotta J, Toga A, Evans A, Fox P, Lancaster J, Zilles K, Woods R, Paus T, Pike GSB, Holmes
C, Collins L, Thompson P, MacDonald D, Iacoboni M, Schormann T, Amunts K, Palomero-
Gallagher N, Geyer S, Parsons L, Narr K, Goualher NKGL, Boomsma D, Cannon T, Kawashima R,
Mazoyer B. A probabilistic atlas and reference system for the human brain: International Consortium
for Brain Mapping (ICBM). Philosophical Transactions of the Royal Society B: Biological Sciences
2001;356 (1412):1293–1322.

28. Mikl M, Marecek R, Hluštik P, Pavlicováe M, Drastich A, Chlebus P, Brázdil M, Krupa P. Effects
of spatial smoothing on fMRI group inferences. Magnetic Resonance Imaging 2008;26 (4):490–503.
[PubMed: 18060720]

29. Miller M, Beg M, Ceritoglu C, Stark C. Increasing the power of functional maps of the medial temporal
lobe by using large deformation diffeomorphic metric mapping. Proceedings of National Academy
of Sciences 2005;102 (27):9685–9690.

30. Penhune V, Zatorre R, MacDonald J, Evans A. Interhemispheric anatomical differences in human
primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance
scans. Cerebral Cortex 1996;6 (5):661–672. [PubMed: 8921202]

31. Reimold M, Slifstein M, Heinz A, Mueller-Schauenburg W, Bares R. Effect of spatial smoothing on
t-maps: arguments for going back from t-maps to masked contrast images. Journal of Cerebral Blood
Flow and Metabolism 2006;26:751–759. [PubMed: 16208316]

32. Scouten A, Papademetris X, Constable R. Spatial resolution, signal-to-noise ratio, and smoothing in
multi-subject functional MRI studies. NeuroImage 2006;30 (3):787–793. [PubMed: 16343951]

33. Shen D, Davatzikos C. HAMMER: Hierarchical Attribute Matching Mechanism for Elastic
Registration. IEEE Transaction on Medical Imaging 2002;22 (11):1421–1439.

34. SPM. 2009. manual available from http://www.fil.ion.ucl.ac.uk/spm/doc/manual.pdf

Tahmasebi et al. Page 13

Neuroimage. Author manuscript; available in PMC 2010 January 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.loni.ucla.edu/ICBM/ICBM_Probabilistic.html
http://www.sciencedirect.com/science/article/B6WNP-4VC7DX1-1/2/8d9dffe89b9981c86fcebf256c21cd04
http://www.sciencedirect.com/science/article/B6WNP-4VC7DX1-1/2/8d9dffe89b9981c86fcebf256c21cd04
http://www.fil.ion.ucl.ac.uk/spm/doc/manual.pdf


35. Thompson P, Woods R, Mega M, Toga A. Mathematical/computational challenges in creating
deformable and probabilistic atlases of the human brain. Human Brain Mapping 2000;9:81–92.
[PubMed: 10680765]

36. Viceic D, Campos R, Fornari E, Spierer L, Meuli R, Clarke S, Thiran J. Local landmark-based
registration for fMRI group studies of nonprimary auditory cortex. NeuroImage 2008;44 (1):145–
153. [PubMed: 18760369]

37. Weibull A, Gustavsson H, Mattsson S, Svensson J. Investigation of spatial resolution, partial volume
effects and smoothing in functional MRI using artificial 3D time series. NeuroImage 2008;41 (2):
346–353. [PubMed: 18400520]

38. Westbury C, Zatorre R, Evans A. Quantifying variability in the planum temporale: a probability map.
Cerebral Cortex 1999;9 (4):392–405. [PubMed: 10426418]

39. Woods R, Grafton S, Watson J, Sicotte N, Mazziotta J. Automated image registration: II. intersubject
validation of linear and nonlinear models. Journal of Computed Assisted Tomography 1997;22:153–
165.

40. Worsley K, Friston K. Analysis of fMRI time-series revisited-again. NeuroImage 1995;2 (3):173–
181. [PubMed: 9343600]

41. Wu M, Carmichael O, Lopez-Garcia P, Carter C, Aizenstein H. Quantitative comparison of AIR,
SPM, and the fully deformable model for atlas-based segmentation of functional and structural MR
images. Human Brain Mapping 2006;27 (9):747–754. [PubMed: 16463385]

42. Yassa M, Stark C. A quantitative evaluation of cross-participant registration techniques for MRI
studies of the medial temporal lobe. NeuroImage 2009;44:319–327. [PubMed: 18929669]

Tahmasebi et al. Page 14

Neuroimage. Author manuscript; available in PMC 2010 January 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Preprocessing: The SPM package was used for fMRI data realignment (motion correction),
and structural-to-functional coregistration. Skull-stripping and volume trimming were
performed using FSL’s BET.
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Figure 2.
Overlapping functional activation map shown for the anatomically neighboring regions of
Heschl’s gyrus (HG) and planum temporale (PT). Right: The labeled regions in blue and red
are extracted from HG and PT probabilistic maps, respectively, which are thresholded at 40%.
Left: The colormap depicts the activation map resulting from statistical group analysis of an
auditory functional task using spatially smoothed fMRI data.
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Figure 3.
From top to bottom: axial (z = +4), sagittal (x = +50), and coronal (y = −16) sections of (from
left to right) Colin27 template, inter-subject average volumes computed for HAMMER-based
registration, and SPM2-based normalization using Colin27 as template (SPM2c), SPM2-based
normalization using ICBM152 template (SPM2i), unified segmentation-based normalization
using ICBM452 tissue probability maps, and DARTEL normalization using the custom-built
template. Coordinates are in ICBM152 frame.
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Figure 4.
Zoomed window over Heschl’s gyrus region on average brain volumes generated using five
different registration conditions; HAMMER, SPM2 using two templates: ICBM152 (upper
row) and Colin27 (lower row), SPM5 unified segmentation, and DARTEL.
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Figure 5.
Euclidean distances between the highest activation peak obtained from the group analysis and
the ‘listening vs. rest’ contrast and the closest activation peak in each individual from single-
subject analysis for the same contrast were calculated for all 10 different processing conditions.
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Figure 6.
Significance test of NCC score differences between left and right hemispheres (R - L) among
five types of normalization. (*) indicates a significant difference in NCC score between left
and right hemispheres.
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Figure 7.
Comparing activation maps (axial view) corresponding to an auditory-related fMRI task for
conditions given in Table 1. The colormap depicts the activation maps resulting from group
analysis of 17 subjects for the contrast of ‘four sound conditions vs. rest’.
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Figure 8.
Average Euclidean distance MANOVA results from the ‘listening vs. rest’ contrast for five
normalization methods with and without smoothing. (*) indicates the significant difference
between smoothed and unsmoothed data.
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Table 1

10 different conditions considered for evaluating the effects of the normalization method, the template resolution
and the spatial smoothing on the functional group analysis.

Condition Normalization Template Smoothing

HMR w. s. HAMMER Colin27 ✓

HMR w/o s. HAMMER Colin27 ×

SPM2c w. s. cosine basis functions Colin27 ✓

SPM2c w/o s. cosine basis functions Colin27 ×

SPM2i w. s. cosine basis functions ICBM152 ✓

SPM2i w/o s. cosine basis functions ICBM152 ×

SPM5 w. s. unified segmentation ICBM452 tissue maps ✓

SPM5 w/o s. unified segmentation ICBM452 tissue maps ×

DARTEL w. s. diffeomorphic custom-built ✓

DARTEL w/o s. diffeomorphic custom-built ×
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