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Abstract
Multimodality MR image processing and analysis aims to determine to what extent information from
various imaging modalities is redundant or complementary and how changes in various regions of
the brain, detected by various modalities, interact with each other to produce cognitive and functional
changes. Here, we presented a multimodality image processing framework to integrate unique and
complementary observations on anatomical and physiological brain changes measured by structural
and perfusion MR imaging modalities. A unique aspect to this study is that we performed a test on
mediation hypothesis that requires a model based on measurements from both MR imaging
modalities. Our findings from these integrated multi-modality analysis were congruent with
previously published results on neuropathology of AD patients and supplied a comprehensive
explanation on the integration between structural atrophy and physiological deterioration due to AD.

I. INTRODUCTION
Neurodegenerative brain diseases possess unique morphological signatures; detection of such
signs may prove useful in improving diagnosis, particularly for diseases in which there are few
other diagnostic tools. Developments in medical imaging techniques, particularly in the main
anatomical imaging modalities magnetic resonance imaging (MRI), computed tomography
(CT), and diffusion weighted MRI (DWI) and the main physiological imaging modalities
positron emission tomography (PET), functional MRI (fMRI), perfusion MRI have allowed
for in vivo imaging studies concerning the structure and function of the human brain on large
number of subjects. Until now, most studies have been pursuing the traditional uni-modality
group analysis approach, where data from a single imaging modality from groups of subjects
are compared in a standard space (e.g., voxel-based morphometry, deformation-based
morphometry) [1]. With the recent advances in acquisition methods and image processing
methodologies, a major challenge is to develop better analysis methods to use multiple imaging
modalities together for improved diagnosis and greater information concerning the changes in
the brain that are responsible for cognitive and functional changes.

Here, we present a study on multimodality MR brain imaging data set to gain more information
concerning the changes in the brain, which occur in neurodegenerative diseases. We are
specifically interested in neurodegenerative diseases associated with dementia in the elderly,
such as Alzheimers disease (AD). Neuropathology of AD includes structural gray matter (GM)
atrophy in temporal, parietal, and frontal cortices [2], [3], [4], functional changes prominently
in the parietal cortex (including the posterior cingulate gyrus and lateral parieto-temporal areas)
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[5], [6], and altered white matter (WM) fiber integrity in parietal, temporal, and frontal cortices
[7], [8], [9]. Until now, the association between AD and imaging variables have only been
investigated with pair-wised approaches (i.e., AD diagnosis versus tissue atrophy, deteriorated
brain function or WM fiber integrity). A co-analysis approach to identify brain regions where
structural and functional changes occur in concordance or in dissociation was proposed in
[10], though the proposed analysis was based on statistical significances again from pair-wised
comparisons. Limited work has been done to provide comprehensive explanation to the
interaction between structural and functional pathologies in AD.

In this work, we aimed to test the hypothesis that the cerebral hypoperfusion, by affecting the
oxygen and glucose delivery, may create optimal conditions for the progression of the
neurodegenerative process (i.e., atrophy) of AD [11], [12], [13]. In particular, we engineered
an integrated multimodality MR image processing and analysis framework to determine
whether cortical GM atrophy mediates the association between AD diagnosis and cerebral
hypoperfusion. We investigated local changes in GM thickness and cerebral perfusion,
obtained by T1-weighted structural MRI and continuous arterial spin labeling (cASL) perfusion
MRI, respectively. The main image processing challenges we addressed in this framework are
the spatial alignment of the intra-subject inter-modality MR images and the partial volume
effect correction on the perfusion data with respect to the underlying structural imaging data,
which allows us to perform the mediation test at points densely distributed on the cerebral
cortex tissue (i.e., 3D cortical surface-based data analysis). To our knowledge, this is the first
investigation on structural and functional neuropathologies in AD using an integrated
multimodality image processing framework coupled with 3D cortical surface-based data
analysis.

II. METHODS
Data Acquisition

All scans were performed on a 4 Tesla (Bruker /Siemens) MRI system with a birdcage transmit
and 8 channel receive coil.

T1-weighted images were obtained with a 3D volumetric magnetization prepared rapid
gradient echo (MPRAGE) sequence, TR/TE/TI = 2300/3/950ms, timing; 7° flip angle; 1.0 ×
1.0 × 1.0 mm3 resolution; 157 continuous sagittal slices; acquisition time of 5 min. T2-weighted
images were acquired with variable flip (VFL) angle turbo spin-echo sequence with TR/TE =
4000/30ms and with the same resolution matrix and field of view of MPRAGE.

Perfusion MR brain images were acquired based on a continuous arterial spin labeling (cASL-
MRI) sequence [14]. cASL-MRI data were acquired using single-shot echo-planar imaging
(EPI), consisted of five 5-mm-thick slices with 24% gaps, with an in-plane resolution of 3.75
× 3.75 mm2, oriented 10° up from the anteriorposterior commissural line and covered the
volume above this line. The other acquisition parameters were as follows: TR/TE = 5,200/9
ms and 1,590 ms post labeling delay.

Structural MR Image Processing
The skull, scalp, extra-cranial tissue, cerebellum, and brain stem (at the level of the
diencephalon) were removed from each image data using an automated method [15] followed
by quality check. The remaining image volume was then corrected for intensity inhomogeneity
using the non-parametric non-uniform intensity normalization (N3) technique [16]. These
processing steps were followed by the reslicing of the remaining image volumes into a standard
orientation of the International Consortium for Brain Mapping-305 (ICBM-305) average brain
by a least-squares rigid body transformation. The global differences in brain size and shape
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remained intact during the transformation into the ICBM-305 average brain space. The resliced
image volumes had isotropic voxels each having size of 1 mm × 1 mm × 1 mm. Each
individual’s cortical surface was extracted using a cortical reconstruction method using implicit
surface evolution (CRUISE) technique developed by Han et al. [17] and shown to yield an
accurate and topologically correct representation that lies at the geometric center of the cortical
GM tissue [18]. CRUISE is a data-driven method combining a robust fuzzy segmentation
method, an efficient topology correction algorithm, and a geometric deformable surface model.
Each resulting cortical surface was represented as a triangle mesh comprising of approximately
300,000 mesh nodes.

Cortical thickness at each point in the cortical GM tissue mantle was defined as the sum of the
distances from this point to the GM/WM and GM/cerebro spinal fluid (CSF) tissue boundaries
following a flow field which guarantees a one-to-one, symmetric, and continuous
correspondence between the two tissue boundaries. A flow field with these properties was
computed by solving a Laplace’s equation with cortical GM tissue mantle as its domain [19],
[20]. Cortical thickness was estimated in millimeters at 3-D image voxels on the GM tissue
mantle. Estimated cortical thickness values were mapped onto the corresponding central
cortical surface using trilinear interpolation at each mesh vertex.

Cortical spatial normalization was used to match anatomically homologous cortical features
across subjects. In particular, the central cortical surface model of each subject was spatially
normalized with respect to the geometry of a representative reference brain (i.e., the colin27
average brain [21]) using an automated surface-based cortical warping method [22]. As a result,
individual cortical morphometry measures from homologous surface locations were mapped
onto the reference surface, where statistical analyses were carried out.

Perfusion MR Image Processing
For each subject, 39 repeat labeled images and 39 repeat references images were first rigidly
re-aligned to the first labeled image and reference image, respectively. Re-aligned images were
then averaged to generate a mean labeled image volume, PWIlabeled, and a mean reference
image volume, PWIref . The mean labeled and reference images were then subtracted to obtain
the perfusion-weighted image data, PWIraw.

The perfusion signal is proportional to the arterial water signal, requiring PWIraw to be
normalized by the arterial water density. However, it is virtually impossible to reliably sample
the arterial water signal for every voxel. We substituted the signal from tissue density for the
arterial signal. The reference image of cASL-MRI is a good representation of tissue water
density for all practical purposes. The intensity normalized perfusion image was obtained by

. Normalization also addresses the intensity inhomogeneity and high
frequency artifacts from residual vascular signal.

The final processing in the native perfusion imaging space was the scaling based on the model
of perfusion to estimate the cerebral blood flow (CBF), which is given as

(1)

where λ is the brain-blood partition coefficient for water (i.e., 0.95 mL/g), R1app is the apparent
relaxation rate, and Td is the post labeling delay time. CBF is in units of mL/g per minute.
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In neurodegeneration studies, we are interested in the blood flow in cerebral GM, which is
bounded by CSF and WM tissue. CSF does not contribute to the perfusion signal, however,
variable amounts of CSF within an image voxel, especially on the GM/CSF tissue interface,
induce modulations on the perfusion signal. Moreover, perfusion on GM and WM tissue differ
in magnitude, inducing additional modulations of the perfusion signal on the GM/WM tissue
interface voxels. CBF image was corrected for GM/CSF and GM/WM partial volume effects.
Intra-subject intermodality spatial alignment was performed to bring CBF image to image
space where tissue densities were defined (i.e., structural MR image space). One of the key
challenges in inter-modality spatial alignment is the EPI-based perfusion image’s susceptibility
to nonlinear geometric distortion. We used a fluid-flow based distortion correction. In
particular, both PWIref and CBF were first mapped onto T2-weighted structural image space
using a multi-resolution affine registration algorithm based on normalized mutual information.
Co-registered PWIref image was then fluid-flow warped to T2 image [23]. Resulting fluid-flow
warping field was applied to co-registered CBF image. Finally, T2 image was rigidly aligned
to T1 image space, where the cortical geometry and thickness measure were defined. T2 to T1
rigid alignment transformation was then applied to the geometric distortion corrected CBF
image, yielding CBFcorr.

Assuming that at each voxel the CBFcorr is a weighted combination of perfusion from GM and
WM (i.e., CBFGM and CBFWM, respectively), and the weighting coefficients are directly
proportional to the corresponding tissue density (i.e, βi for i = GM, WM), and the relationship
between GM and WM perfusion is spatially constant (i.e, CBFGM = κ × CBFWM), then the
partial volume correction on the rmCBFcorr is given by

(2)

Finally, for integrated multimodality data analysis, we generated cortical surface mapping of
CBFPVE by integrating the CBFPVE values over a curvilinear line bounded by the GM tissue
thickness at every surface mesh node.

Integrated Multimodality MR Image Analysis
A surface-based intrinsic isotropic diffusion was used to increase the signal-to-noise ratio
before performing surface-based statistical analysis. In particular, the estimated value (cortical
thickness or CBFPVE) at each mesh node was replaced by the convolution of the measure map
of interest with a Gaussian kernel centered at this mesh node. The Gaussian kernel domain was
defined on each cortical surface over a geodesic neighborhood of radius 10 mm. The size of
the smoothing kernel matched the size of the effect we sought while accounting for residual
errors in the surface warping. For each subject brain, smoothed measure values at each surface
mesh node were transferred onto the anatomically homologous location on the reference brain
surface according to the surface correspondence established by the spatial normalization.

A mediation model was tested to assess the associations among hypoperfusion, cortical
thinning, and AD diagnosis following the multiple regression approach described by [24]. First,
AD diagnosis (i.e., the dependent variable, Y) was regressed on CBFPVE (i.e., the independent
variable, X): Y ~ β0+β1X+ε1. Then, the cortical thickness (i.e., the mediator, M) was regressed
on CBFPVE: M ~ α0+α1X+ε2. Finally, AD diagnosis was regressed on both the cortical thickness
and CBFPVE: Y ~ γ0 + γ1X + γ2M + ε3. To establish that cortical thinning mediates cerebral
hypoperfusion in its relationship with AD diagnosis, hypoperfusion should be associated with
cortical thinning (i.e., significant non-zero α1 regression coefficient) and there should be a
significant reduction in the effect of CBFPVE on the AD diagnosis in the final regression model.
We used Sobel’s significance test [24] based on a z-score defined as
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(3)

where sα1 and sγ2 are the standard errors on α1 and γ2 estimates. Z-score reflects the effect size.
Statistical computations were carried out using the statistical package R
(http://www.r-project.org/) and corrected for multiple comparisons, using false discovery rate
(FDR) [25] at p<0.05.

III. RESULTS
Subject groups included healthy elderly (n=10), aged 50–71 years, and Alzheimer’s disease
patients (n=10), aged 51–69 years. Subjects were recruited from the Memory and Aging Center
of the University of California, San Francisco. All subjects were diagnosed based upon
information obtained from an extensive clinical history and physical examination. The MR
images were used to rule out other major neuropathologies such as tumors, strokes, or
inflammation but not to diagnose dementia. AD patients were diagnosed according to the
criteria of the National Institute of Neurological and Communicative Disorders and Stroke-
Alzheimers Disease and Related Disorders Association (NINCDS/ADRDA). All subjects or
their guardians gave written informed consent before participating in the study, which was
approved by the Committees of Human Research at the University of California at San
Francisco.

For each subject, the structural MR image and perfusion MR images were processed following
the framework described in the previous section. We then performed hypothesis testing to
assess mediation effect of cortical thinning on the association between cerebral hypoperfusion
and AD diagnosis. The key results from the multiple regression analyses listed in the methods
section are shown in Fig. 1. α1 map established the significant positive association between
the cerebral hypoperfusion and cortical thinning in the parietotemporal and frontal cortices.
β1 and γ1 significance maps together illustrated the reduction in the effect of cerebral
hypoperfusion on the AD diagnosis once the cortical thinning was entered to the model.

Sobel’s significance test results in terms of z-scores is shown in Fig. 2. The mediator effect of
cortical thinning on the association between cerebral hypoperfusion and AD diagnosis is
observed bilaterally in the inferior parietotemporal, superior frontal, and praecuneus cortices.

IV. CONCLUSIONS AND FUTURE WORKS
The ultimate goal of multi-modality MR image processing and analysis is to determine to what
extent information from the various imaging modalities is redundant or complementary and
how changes in various regions of the brain, detected by various modalities, interact with each
other to produce cognitive and functional changes. Here, we presented a multimodality image
processing framework to integrate unique and complementary observations on anatomical and
physiological brain changes measured by different MR imaging modalities. A unique aspect
to this study is that we performed a test on mediation hypothesis that requires a model based
on measurements from two different MR imaging modalities (i.e., structural and perfusion
MRIs). Our findings from these integrated multi-modality analysis were congruent with
previously published results on neuropathology of AD patients.

Future studies should incorporate other MR modalities, such as diffusion weighted MRI (DWI),
magnetic resonance spectroscopic imaging (MRSI). We advocate that each imaging modality
provides unique and yet complementary information, contributing to better hypotheses and
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models regarding the neural systems involved in cognitive function, leading to improved
diagnostic certainty.
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Fig. 1.
Mediation model: mappings of significant interactions.
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Fig. 2.
Sobel’s significance test: z-score reflecting the effect size of the mediation model.
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