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Abstract

We hypothesized that cells bearing a single inherited “hit” in a tumor suppressor gene express an
altered MRNA repertoire that may identify targets for measures that could delay or even prevent
progression to carcinoma. We report here on the transcriptomes of primary breast and ovarian
epithelial cells cultured from BRCAL and BRCA2 mutation-carriers and controls. Our comparison
analyses identified multiple changes in gene expression, in both tissues for both mutations, that were
validated independently validated by real-time RT-PCR analysis. Several of the differentially
expressed genes had been previously proposed as cancer markers, including mammaglobin in breast
cancer and serum amyloid in ovarian cancer. These findings demonstrate that heterozygosity for a
mutant tumor suppressor gene can alter the expression profiles of phenotypically normal epithelial
cells in a gene-specific manner; these detectable effects of “one-hit” represent early molecular
changes in tumorigenesis that may serve as novel biomarkers of cancer risk and as targets for
chemoprevention.
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Introduction

The notion of multistep carcinogenesis posits that rate-limiting mutations accumulate in a
single cell and its progeny, marking recognizable histopathological transitions in the target
tissues (1,2). The time required for this accumulation affords the opportunity to test whether
pharmacological and/or dietary interventions can delay or prevent the transition to malignancy
(3). Early targeted intervention would be optimally performed on persons with a very high risk
of developing a specific cancer, as with those individuals who carry a germline mutation in a
gene known to impose such a risk. Rationale for such an intervention is provided by early
studies that demonstrated that cells heterozygous for a cancer-predisposing mutation could
show abnormalities in tissue cultures; “one-hit” effects in heterozygous cells were seen in
morphologically normal cultured fibroblasts and in epithelial cells derived from Familial
Adenomatous Polyposis (FAP) patients (4-6). Furthermore, we have recently reported specific
changes in protein expression in colonic epithelial cells from FAP patients (7). Support for the
significance of these early changes comes from observations of similar aberrations in
corresponding cancer cells, (7,8,9). Such changes may play arole in progression to malignancy
and therefore constitute targets for strategies to delay or prevent such progression in FAP and
in other genetic predispositions to cancer.

With this rationale in mind we have undertaken an investigation of two of the most common
predisposing genes, BRCA1 (10,11) and BRCA2 (12,13, and references therein) in two
important target tissues, breast and ovary. We note that previous reports on benign cells
associated with breast cancer already suggest the possibility of such heterozygous effects.

We have compared the transcriptomes of primary breast and ovarian epithelial cultures from
patients predisposed to cancer, bearing monoallelic BRCA1 or BRCA2 mutations, with
corresponding cultures from control individuals. We demonstrate that the morphologically
normal epithelial cells from mutation carriers exhibit abnormalities in a gene-specific and
tissue-specific manner, consistent with detectable single-hit effects. These alterations
constitute possible molecular targets for intervention on the path to cancer.

Materials and Methods

Subject accrual and biopsy specimens

All subjects were recruited with the approval of the FCCC Institutional Review Board,
irrespective of gender, race and age. Individuals with a personal history of cancer and subjects
treated previously with either chemotherapy or radiation were ineligible. Eligible cases
included unaffected at-risk women in the Fox Chase Family Risk Assessment Program who
were shown to be carriers of BRCA1 or BRCA2 mutations. In particular, six BRCA1, six
BRCA2 mutation carriers, and six healthy controls were accrued for breast specimens and an
equal number for ovary specimens. Normal breast and ovary specimens were obtained by
prophylactic oophorectomy or mastectomy or breast reduction surgery.

Cell culture establishment

Surgical breast specimens were placed in transport medium (serum-free Ham's F-12),
containing 100 U/ml penicillin, 100 pg/ml of streptomycin, 10 pg/ml ciprofloxacin, 10 pg/ml
gentamicin, 2.5 pg/ml of Amphotericin B and 100 U/ml of Nystatin. The tissue was finely
minced using sterile disposable scalpels and transferred to a tube containing 25 ml of 200 U/
ml solution of collagenase (Sigma) prepared in DMEM with 2 g/l of NaHCO3, supplemented
with 160 U/ml of Hyaluronidase, 0.5 pg/ml hydrocortisone, 10 pg/ml insulin, 10 ml of
Antibiotic/Antimycotic (Gibco) and 10% horse serum. The tissue was digested overnight at
37°C in a rotating water bath and then centrifuged at 2200 rpm for 10 minutes. The supernatant
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was carefully decanted to a sterile tube. The tissue was rinsed four times with transport medium,
resuspended in culture medium, and centrifuged one last time. The tissue was then plated in a
swine skin gelatin (Sigma)-coated T-25 flask. Cells were cultured for 24 hours in High Calcium
Medium and then refed with Low Calcium Medium 24 hours later. High Calcium Medium
consists of DMEM/F12 1:1 without calcium (Gibco), supplemented with 5% chelated horse
serum, 20 ng/ml EGF, 100 ng/ml cholera toxin, 10 pg/ml insulin, 0.5 pg/ml hydrocortisone,
1.05 mM calcium chloride, 100 U/ml penicillin, 100 pg/ml streptomycin, 10 pg/ml
ciprofloxacin, and 0.25 pg/ml Amphotericin B. Low Calcium Medium was the same recipe
supplemented with 0.04 mM calcium chloride (14). Cells were cultured four to six weeks until
the flask was confluent.

Oophorectomy specimens were collected under aseptic conditions and placed in transport
medium (M199:MCDB105, 1:1) supplemented with 100 U/ml penicillin, 100 pg/ml
streptomycin and 2 mM L-glutamine. The ovaries were processed to establish epithelial cell
cultures by gently scraping the ovarian surface with a rubber policeman. Cells were centrifuged
and resuspended in fresh medium (M199:MCDB105, 1:1), supplemented with 5% FBS,
penicillin, streptomycin, glutamine and 0.3 U/ml insulin, and transferred to tissue culture flasks
coated with skin gelatin; they were refed every four days and passaged once they reached
confluency.

All the breast and ovarian samples were treated with the same tissue-specific culture conditions,
including timing for passaging and harvesting. Importantly, all the samples were de-identified,
including notation on carrier or control status, and no significant difference in growth or
apoptosis among them was noted. At harvest, all cultures were in log phase.

RNA extraction and amplification

Total RNA was prepared from cultured cells by extraction in guanidinium isothiocyanate-based
buffer containing p-mercaptoethanol and acid phenol. RNA integrity was evaluated on the
Agilent 2100 Bioanalyzer. All samples showed distinct peaks corresponding to intact 28S and
18S ribosomal RNAs and therefore were included in the analysis. Amplification of total RNAs
was achieved using the one-cycle Ovation™ biotin system (NuGEN Technologies, Inc., San
Carlos, CA) as previously described (15).

Hybridization and microarray analysis

For each sample a total of 2.2 pg of ssDNA, labeled and fragmented with the NUGEN Kit, was
hybridized to Affymetrix arrays (Human U133 plus 2.0), following the manufacturer's
instructions as previously described (15). After washing and staining with biotinylated
antibody and streptavidin phycoerythrin, the arrays were scanned with the Affymetrix
GeneChip Scanner 3000 for data acquisition.

Real-time reverse transcriptase-PCR (RT-PCR) validation of microarray data

Validation of microarray findings was conducted by real-time RT-PCR, using TagMan Low
Density Arrays (LDA, microfluidic cards from Applied Biosystems). A 48-gene custom made
array (44 candidate biomarkers + 4 housekeeping genes) was designed and prepared by Applied
Biosystems. The entire panel of 48 genes was tested across breast and ovarian samples. All
samples were tested in quadruplicate to ensure accuracy and reproducibility.

Data were obtained in the form of threshold-cycle number (C,) for each candidate biomarker
identified and the housekeeping gene HPRT1 for each genotype (BRCAL, BRCA2, WT). For
each gene, the C; values were normalized to the housekeeping gene and the corresponding
AC; values obtained for each genotype. Relative quantitation was computed using the
Comparative C; method (Applied Biosystems Reference Manual, User Bulletin #2) between
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BRCAL mutants and WT primary cell RNAs. The relative quantitation is the ratio of the
normalized amounts of target for BRCA1 mutant for WT RNAs, and is computed as 2°(-ACy)
where AC; is the difference between the mean AC; values for BRCA1 mutant and the mean
AC; values for WT RNAs. We repeated the relative quantitation analyses for BRCA2 mutant
and WT RNA samples.

Statistical analysis

Data mining

We considered breast and ovarian samples for each of the three genotypes: BRCA1, BRCA2
and mutation negative or wild type (WT). There were 6 biological replicates in each
experimental condition resulting in a total of 18 samples for each target organ. For each sample,
we obtained probe-level data in the form of raw signal intensities for 54675 probe sets from
Affymetrix.CEL files. Raw data for each target organ were preprocessed separately using the
Robust Multi-chip Average (RMA) method proposed by Irizarry et al. (16,17).

We applied the variance-stabilizing and normalizing logarithmic transformation to the data
before analysis, and used the Local Pooled Error (LPE) method (18) for class comparisons.
LPE is based on pooling errors within genes, and between replicate arrays for genes whose
expression values are similar. All comparisons were two-sided. The Benjamini-Hochberg step-
up method (19) was applied to control the False Discovery Rate (FDR). Genes were defined
as differentially expressed, based on statistical significance as well as biological significance.
Genes showing an FDR of less than the desired cut-off were considered statistically significant.
We accepted an FDR cutoff of 0.20 for breast and 0.10 for ovary. These cut-offs were selected
in order to obtain similar numbers of genes. Biological significance was measured as fold
change; i.e., the ratio of the mean expression profiles between two conditions. Genes showing
more than 2-fold change in either direction (up or down regulated) were considered biologically
significant. Differentially expressed genes from each of the above filters were combined, and
a list of common genes showing statistical and biological significance was identified. These
genes were subsequently validated using RT-PCR. The analytical tools available in the R/
BioConductor package (http://www.r-project.org, http://www.bioconductor.org), bioNMF
(20) and TMev (http://mww.tm4.org) were utilized in these computations.

analysis

Pathway and association analyses were conducted to obtain additional insight into the
functional relevance of the changes observed. Up and down regulated genes for these
exploratory analyses were selected as described above, but using a more relaxed p-value cutoff
of 0.001. Gene ontology (GO) functional categories enriched in differentially expressed genes
were identified using conditional hyper-geometric tests in the GOstats package (R/
BioConductor). A p-value cut off of 0.01 was used in selecting GO terms. Furthermore, gene
networks were generated using Ingenuity Pathways Analysis version 6.5 (Ingenuity® Systems,
www.ingenuity.com). Gene Set Enrichment Analysis (GSEA) (21) was performed against the
lists of differentially expressed genes for BRCA1-WT and BRCA2-WT comparisons. Gene sets
from MSigDB (21), including positional, curated, motif and computational sets, were tested.
Default parameters were chosen, except that the maximum intensity of probes was only selected
while collapsing probe sets for a single gene.

Next we compiled and analyzed publicly available microarray gene expression data from the
following: i) a study of mammary gland side population cells (22); ii) a study of two different
human breast epithelial cell types, BPEC (breast primary epithelial cells) and HMEC (human
mammary epithelial cells), compared to their transformed counterparts (23); iii) a molecular

characterization of cancer stem cells in MMTV-Wnt1 murine breast tumors (24); iv) profiles
of hereditary breast cancer (25) and v) a set of annotated genes involved in DNA damage repair.
The data from these studies were analyzed (a description of the methods is given in
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supplementary materials). The differentially expressed genes between BRCA1, BRCA2 and
WT from our study were compared against the above mentioned gene sets using GSEA.

Results

Genome-wide transcriptome analysis of single-hit BRCA1 and BRCA2 and mutation-
negative breast and ovarian epithelial cell cultures

We are interested in the growth behavior of cells that are precursors of cancer; therefore, we
chose to study primary cells multiplying in culture. Morphologically normal primary breast
and ovarian epithelial cells were established from BRCA1 and BRCA2 mutation carriers and
mutation-negative individuals (Fig. 1). Demographic and mutation data of mutation carriers
and control individuals are shown in Table 1. The Table shows that our population is mostly
Caucasian, and that carriers and controls are well matched for age, race, parity, menopausal
status and body mass index, with the only exception being the group of BRCAL carriers
donating ovarian epithelial cells in which there is a predominance of pre-menopausal women.
This is due to the fact that carriers of highly penetrant BRCA1 mutations were advised to
undergo prophylactic oophorectomy. We conducted microarray studies of these primary
epithelial cultures in order to identify differentially expressed genes between BRCA1 mutant
and BRCA2 mutant single-hit cells and WT cells, for each target organ.

Class comparison analyses (BRCA1 vs. wild type, and BRCAZ2 vs. wild type) revealed notable
changes in gene expression, indicating that heterozygous mutations in BRCA1 and BRCA2 do
indeed affect the expression profiles of cultured primary epithelial cells from the relevant target
organs, breast and ovary.

Breast Epithelial Cells

Table 2 summarizes selected gene expression fold-changes on a linear scale in breast cells
versus controls. The secretoglobin family of genes (SCGB2A1, SCGB2A2 and SCGB1D?2), of
unknown function, is highly up-regulated in BRCA1 mutant breast cells. The genes have been
recently described as novel serum markers of breast cancer with significant prognostic value
(26,27); approximately 80% of all breast cancers overexpress this complex (26). In BRCAl
cells, we observed 3-fold up-regulation of mammaglobin (SCGB2A2, FDR:0.06, P value:
4x10710) and 12-fold increase of lipophilin B and C (SCGB1D2 and SCGB2A, FDR:0.06, P
value:2x10°8 and FDR:0.16, P value:0.0002, respectively). We also detected in BRCA1 cells
a 3-fold up-regulation of the chitinase 3-like 1 gene (FDR:0.06, P value:1.2x107), that has
proliferative effects on stromal fibroblasts and chemotactic effects on endothelial cells. It can
promote angiogenesis, and high serum levels of this protein have been found in patients with
glioblastoma (28). IGFBP5 was 10-fold up-regulated in BRCAZ2 breast cells (FDR: 0.04, P
value:1.9x10°7). It is involved in the stimulation of growth and binding to extracellular matrix,
independently of IGF, and is highly overexpressed in breast cancer tissues (29).

Several cell-to-cell interactions and cell-to-matrix adhesion genes were found to be
downregulated in breast cells, including those that code for tensin 4 (TNS4, fold change: 0.26,
FDR:0.06, P value:2.2x10"7 in BRCA1 and fold change: 0.5, FDR:0.03, P value:3.7x109),
mucin 16 (MUC16, fold change: 027, FDR:0.08, P value:3x10- in BRCAL1 and fold change:
024, FDR:0.03, P value:2x107® in BRCA1) (in both BRCA1 and BRCA?2) and for keratin 14
(KRT14, fold change: 0.5, FDR:0.12, P value:0.0001 in BRCAL and fold change: 0.5, FDR:
0.03, P value:2.2x10710 in BRCA?2) (in BRCA?2). Lack of tensin 4 expression has been reported
in prostate and breast cancers (30), suggesting that the down-regulation of tensin expression
is a functional marker of cell transformation. Also, loss of keratins, which are necessary for
proper structure and function of desmosomes, can cause an increase in cell flexibility and
deformability, and may enable a tumor cell to detach from its epithelial layer, and metastasize.
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Finally, mucin 1 (MUC1 or CA15-3), known to be over-expressed in breast cancer (31), is
down-regulated in ‘single-hit” BRCAL cells (fold change: 0.5, FDR:0.99, P value:0.02).
Overrepresentation of even one glycoprotein may affect cell surface protein distribution, with
effects on other membrane proteins, such as the downregulation of genes encoding mucin 16
and mucin 1 that we have detected in mutant breast cells. A box plot representation of the top
differentially expressed genes for breast epithelial cells is shown in Fig. 2A.

Ovarian epithelial cells

Table 3 summarizes expression changes for selected genes in ovarian epithelial cultures. For
example, 5-fold down-regulation of the cyclin B1/cdc2 complex (CDC2, FDR:0.04, P value:
7x107), a key regulator controlling the Go,M checkpoint, was observed in BRCA1 mutant
ovarian cells. Multiple genes implicated in the mitotic spindle checkpoint, such as nucleolar
and spindle-associated protein 1 (NUSAP-1, fold change: 0.08, FDR:0.02, P value:9x107 in
BRCAL) were down-regulated. NUSAP-1 plays a crucial role in spindle microtubule
organization, whereas CENP-A, which is down-regulated in BRCA2 mutants of breast cells
(fold change: 0.5, FDR:0.03, P value:9x1075), is essential for centromere structure, function
and kinetochore assembly. Since BRCA1 and BRCAZ2, in addition to their role in DNA repair,
are also involved in checkpoint pathways, we suggest that inappropriate expression of these
proteins could induce abnormal kinetochore function and chromosome mis-segregation, a
potential cause of aneuploidy and a critical contributor to oncogenesis. Among up-regulated
genes in BRCAL heterozygous ovarian epithelial cells is SAA2, an acute phase component of
the innate immune system (fold change: 6.4, FDR:0.02, P value:2x1077), a candidate marker
of epithelial ovarian cancer (32,33 and references therein). Among the differentially expressed
genes in BRCA2 mutant ovarian epithelial cells, matrix metalloproteinase 3 (MMP3) was
upregulated 9- to 12-fold (FDR:0.1, P value:2x10°7); the same tendency has been reported for
MMP1 and MMP2 in ovarian cancers (34,35). Our data also show upregulation of COX1
(cyclooxygenase 1, PTGS1, fold change: 6.6, FDR:0.1, P value:8x10-%) in BRCA2 ovarian
epithelial cells, a finding that is consistent with the reported up-regulation of COX1, but not
COX2, in ovarian cancer (36,37). A box plot representation of the top differentially expressed
genes for ovarian epithelial cells is shown in Fig. 2B.

Real-time reverse transcriptase-PCR (RT-PCR) validation of microarray data

A validation study on select genes for breast and ovary was performed with total RNA using
quantitative, real-time RT-PCR on low-density arrays (LDA). We selected 44 candidate
biomarker genes and 4 housekeeping genes, and the entire panel of 48 genes was tested by the
Comparative Cq; method across all breast and ovarian samples in quadruplicate using a custom-
made array, to ensure accuracy and reproducibility. The real-time RT-PCR validation results
and the comparisons with the original Affymetrix data are shown in Tables 2 and 3, for breast
and ovary, respectively. There was a good correlation (Spearman's p) between microarray and
LDA data for fold changes of candidate biomarkers in breast and ovarian cultures heterozygous
for BRCAL (0.94 in each case). For candidate biomarkers originally identified in breast and
ovarian cultures for one genotype (BRCAL or BRCA2), there was also a moderate to good
correlation between microarray and LDA data for the other genotype (BRCA2 or BRCAL). This
is described in more detail in the Supplemental Section and the results are presented in
Supplemental Table S1.

Functional Mining of Microarray Data

In order to define the biological underpinnings of the observed gene expression differences,
we conducted additional mining of the microarray data using gene ontology, pathway and
association analyses. Gene ontology analysis revealed overrepresentation of several biological
processes in BRCAL and BRCA2 mutant cells (Fig. 3) (see supplementary information). Next,
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using differentially expressed genes as input to Ingenuity pathway analysis software, we
generated networks and overlaid pathways onto genes to understand their interactions and
functional importance. In the case of breast BRCA1 cells, two gene networks had many down-
regulated genes involved in G2/M DNA damage checkpoint regulation, DNA damage
response, p38 MAPK signaling and tight junction signaling. Genes such as ATR, PMS1 and
MCMBG that are involved in BRCA1-related DNA damage response were up-regulated in
BRCAL heterozygous cells (Fig. 4A). Similarly, in breast BRCA2 cells, one significant network
was identified that contained genes involved in G1/S checkpoint regulation and ephrin receptor
signaling (Fig. 4B). In BRCAL ovarian cells, two significant networks, involved in cell cycle
control (G2/M DNA damage checkpoint regulation) and pyrimidine metabolism, and in
glucocorticoid receptor signaling, contained down-regulated genes (Fig. 4C). We did not find
any significant networks for genes differentially expressed in ovarian BRCA2 heterozygous
cells.

In order to identify unifying biological themes central to mutant breast and ovarian cells in
comparison to WT cells, we used GSEA for the detection of complex relationships among co-
regulated genes. GSEA is an analytical methodology that allows the evaluation of lists of
differentially expressed genes of interest against known biological modules, such as gene sets
specific to pathways, processes and profiles, of previous profiling experiments (21). To
determine whether any specific pathway or profile is enriched in the four different gene lists,
we tested 1,892 curated gene sets obtained through MsigDB which is a constituent database
of gene sets available through GSEA. Table S3 shows the gene sets from MsigDb that are
enriched in breast and ovarian samples. Fig. 5A is a heatmap of differentially expressed genes
in both breast and ovary showing various gene sets that were identified to be enriched. We did
not find any significant enrichment for canonical pathways. However, we found a variety of
gene sets that are listed in Table S3. Among these, we found two stem cell-related gene sets.

Since the gene expression profiles in BRCAL and BRCA2 mutant cells have similarities to those
of stem and progenitor cells, we tested the four gene lists from this study against a cohort of
gene sets obtained from various studies including breast stem cells from both human and mouse
and DNA repair genes (22-24). Breast BRCAL and BRCA2 cells show significant enrichment
with the differentially expressed gene sets of transformed human mammary epithelial cells
(HMEC) vs. control HMEC cells and breast primary epithelial cells (BPEC) vs. control BPEC
population (Fig. 5B). We observed that down-regulated genes from breast BRCA1
heterozygous cells show significant association with transformed HMEC and BPEC cells
suggesting that BRCAL ‘single-hit’ cells and transformed breast primary cells share acommon
fingerprint.

Finally, we compared our breast BRCA1 dataset to three datasets of Hedenfalk et al. on sporadic
breast cancers as well as breast cancers in families with BRCA1 and BRCA2 mutations (25).
The GSEA comparison revealed that our breast epithelial BRCAL dataset is most similar to
the BRCA1 tumors with matching hits corresponding to the following genes: KRT8, TGFBL,
S100A2, S100P, EPHA2, TRIM29, OSBP2, FLNB and MUCL. Fig. 5B shows genes from
BRCA1 and BRCA2 mutant and sporadic tumors associated with breast BRCAL heterozygous
cells. These genes have already been implicated in breast cancer. For instance, decreased levels
of KRT8 in cytoplasm are detected in breast cancer cells (38). TGFBL1 is highly expressed in
sporadic breast tumors or tumors from BRCA1 and BRCAZ kindreds, whereas in heterozygous
BRCAL breast cells it is downregulated. Calcium binding proteins A2 and P are downregulated
across all tissues. Aberrant expression of S100A2 has been implicated in breast cancer. In all
genes that are common to three tumor types (BRCA1, BRCA2 and sporadic) and heterozygous
BRCAL cells, expression of TGFBL1 is observed to be different. This finding confirms our
hypothesis of the earliest significant molecular changes in “one-hit” cells and their relationship
with transformed breast cells.
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Discussion

Our study demonstrates that mMRNA expression profiles are altered in morphologically normal
breast and ovarian epithelial cells heterozygous for mutation in BRCA1 or BRCA2, and include
functionally critical genes. Remarkably, these single-hit cells bear significant transcriptomic
changes that share features of the profiles of the corresponding cancer cells. It is well known
that BRCA1- and BRCA2-mutant breast cancers exhibit distinct expression profiles (25), and
the same is true for ovarian cancer (39). In the case of our single-hit breast and ovarian epithelial
cell cultures, gene expression differences related to a given genotype clearly emerge when
supervised methods are used (Tables 2 and 3), and they are reflected in separate clusters (Fig.
3). On the other hand, genome-wide unsupervised analyses using hierarchical clustering and
non-negative matrix factorization revealed clusters that differentiate tissue of origin but not
genotype (see supplemental material, Fig. S2).

Although these specific molecular changes are yet to be placed in the context of cancer initiation
and progression, it should be noted that both BRCA proteins have clear functional links to
transcription. Indeed, both are mediators of the cellular response to DNA damage that includes
a transcriptional component (40,41). Of course, damage does occur in normal cells as a
consequence of physiological DNA replication processes, although it is repaired with high
efficiency (42), and BRCA1 and BRCAZ2 are part of a protein complex with RNA polymerase
Il and the CBP and p300 histone acetyltransferases that is involved in chromatin remodeling
and transcription (43). Because of these links to transcription (44), alterations in the levels of
BRCAL and BRCAZ2 proteins in single-hit cells might be expected to lead to multiple gene
expression differences.

Intriguingly, some of the gene expression profiles enriched in breast BRCA1 one-hit cells are
similar to those detected in stem and progenitor cells (Fig. 5A). This does not appear to be true
for one-hit BRCA2 breast epithelial cells. Indeed, recent findings from the Wicha laboratory
indicate that the BRCAL gene is involved in regulating stemness and differentiation of breast
progenitor cells (45). Also, more recently, human mammary epithelial cells from BRCA1-
mutation carriers were found to form progenitor cell colonies on semisolid medium with higher
plating efficiency as compared to mammary epithelial cells from reduction mammoplasty
controls (46).

In general, we found more expression changes in BRCAL vs. WT cells than with BRCA2 vs.
WT cells (Table 2), which may reflect the fact that BRCAZ is primarily involved in double-
strand break repair, whereas BRCAL may also bridge double-strand break repair and signal
transduction pathways. Thus, BRCAL may act both as a sensor of DNA damage and as a repair
factor, whereas BRCA2 is thought to be involved primarily in actual repair. Even small
alterations in levels of the sensor (BRCA1) may have phenotypic consequences in terms of
differentially expressed genes. This is reminiscent of animal models with hypomorphic alleles
of the mismatch repair protein MSH2 (part of the damage sensor) that are proficient for
mismatch repair per se but defective for activation of the cellular DNA damage response
47).

An additional important finding from this study is that some of the molecular changes detected
correspond to candidate biomarkers described previously for breast and ovarian cancer, such
as mammaglobin and serum amyloid protein for breast and ovarian cancer, respectively (Tables
2 and 3). Furthermore, GSEA analysis reveals that the dataset of breast epithelial BRCA1 one-
hit cells shows similarities to that of hereditary breast carcinomas associated with BRCA1
mutations (Fig. 5B).

In conclusion, the findings from this study are largely consistent with what is known about the
pathophysiology of BRCA1 and BRCA2 and sporadic cancers. However, there are genes with
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abnormal patterns of expression that seem unrelated. Both their number and their unrelatedness
are unexplainable based on what is known about BRCA1 and BRCA2 cancers, but they may be
early changes associated indirectly with cancer initiation (7,8). For example, heterozygosity
may trigger a phenomenon such as induction of expression of siRNAs, each of which might
affect the expression of multiple genes

In principle, therefore, the genetic approach used in this study may serve as a model for the
identification of biomarkers for epithelial malignancies in general, and for the use of such
markers as targets for chemoprevention measures that would decrease the probability of a
second “hit” or greatly reduce its occurrence.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Primary cultures of normal breast (A-C) and ovarian (D-F) epithelial cells from control
individuals (A, D), BRCAL1 mutation carriers (B, E) and BRCA2 mutation carriers (C, F). For
each tissue of origin, cellular morphology is similar, irrespective of genotype.
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Figure 2. Gene expression differences in BRCA1 and BRCA2 heterozygous epithelial cells

Box plots are shown for the top differentially expressed genes for breast BRCA1 and ovary.

Values are normalized expression values (intensity produced by RMA analysis).
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Breast Ovary

BRCAI A BRCAT A BRCA2A BRCA2A BRCAT A BRCA1 A BRCA2A BRCA2A

Figure 3. Gene expression patterns between BRCA1, BRCA2 heterozygous and WT cells for breast
and ovary

Each panel shows gene expression patterns represented as a heat map. Red and green deltas
represent mutated and WT phenotype respectively. Rows are genes with their expression
represented in yellow-blue color scale. Yellow and blue represent high to low respectively.
The blocks marked with numbers to left side of each panel represent the enriched biological
processes. The Gene Ontology (GO) biological processes enriched for ‘up’ (Yellow') and
‘down’ (‘Blue’) genes (numbers 1-9) are listed in Table S2.
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Figure 4. Ingenuity Pathway Analysis showing functional networks in one-hit cells
Selected significant canonical pathways are shown in relation to genes that are differentially
expressed for: A, breast BRCAL; B, breast BRCA2; and C, ovarian BRCA1 heterozygous cells.
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Figure 5. Association heat maps showing union of gene sets enriched for both BRCA1 and
BRCAZ2 in breast and ovary heterozygous cells

Each row represents a gene whereas columns are gene sets enriched. Blue color indicates that
the genes are down-regulated and red color indicates up-regulation. A, Association heatmap
of genes in common between the indicated datasets (listed in Table S3) and primary breast
BRCA1 and BRCA2 mutant cells. B, Association heatmap of genes in common between
transformed human mammary epithelial cells (HMECs) and primary breast BRCA1 and
BRCAZ2 heterozygous cells. In this figure HMEC refers to genes differentially expressed
between HMEC-transformed (HMLER) vs. parental HMEC cells. Blue color indicates the
down-regulation and red color indicates up-regulation. Breast. BRCA1 column indicates genes
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differentially expressed in BRCAL heterozygous cells from breast. SP.NSP indicates
differentially expressed genes between mouse mammary side population and non-side
population cells (22). TG.NTG column indicate genes differentially expressed between mouse
cancer stem cells and non cancerous stem cells (24). Columns in blue box (BRCAL1.MCF,
BRCA2.MCF and SPO.MCEF) are differentially expressed gene sets from Hedenfalk et.al.
Genes in red box indicate the genes common to Hedenfalk and Breast. BRCAL.
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Table 2

Page 22

Comparison between microarray and low density array (LDA) data for the candidate breast biomarkers; fold

changes are shown for BRCAL vs. WT and for BRCA2 vs. WT comparisons

A. BRCAL vs. WT comparison

Gene Symbol ~ Gene Name Affymetrix LDA  Taq Man Assay
SCGB1D2 Secretoglobin, family 1D, member 2 12 52 Hs00255208_m1
SCGB2A1 Secretoglobin, family 2A, member 1 12 2.68  Hs00267180_ml
SCGB2A2 Secretoglobin, family 2A, member 2 3 3.8 Hs00267190_m1
CHI3L1 Chitinase 3-like 1 3 2.24  Hs00609691_m1l
MCM6 minichromosome maintenance complex component 6 2.8 1.37  Hs00195504_m1
MUC1 Mucin 1, cell surface associated 0.5 0.25  Hs00159357_m1l
LGALS1 Lectin, galactoside-binding, soluble, 1 0.5 0.33  Hs00169327_m1l
KLK10 Kallikrein-related peptidase 10 0.5 0.15 Hs00173611_ml
ANXA8 Annexin A8 0.4 0.14  Hs00179940_m1l
TNS4 Tensin 4 0.3 0.08  Hs00262662_m1
MUC16 Mucin 16, cell surface associated 0.3 0.17  Hs00226715 _ml
GJB2 Gap junction protein, beta 2, 26kDa 0.2 0.12  Hs00269615_s1

B. BRCA2 vs. WT comparison

Gene Symbol  Gene Name Affymetrix LDA  Tag Man Assay
IGFBP5 Insulin-like growth factor binding protein 5 10 10.99 Hs00181213_ml
SPP1 Secreted phosphoprotein 1(Osteopontin) 3 2.3 Hs00167093_m1
RRM2 Ribonucleotide reductase M2 polypeptide 0.58 0.39  Hs00357247_g1

TNS4 Tensin 4 0.5 0.45  Hs00262662_m1
TNFSF13 Tumor necrosis factor superfamily, member 13 0.5 0.56  Hs00601664_gl

SEN Stratifin 0.5 0.34  Hs00356613 _m1l
KRT14 Keratin 14 0.5 0.07  Hs00559328_m1
CENPA Centromere protein A 0.5 0.57  Hs00156455_m1
BIRC5 Baculoviral IAP repeat-containing 5 0.5 0.43  Hs00153353_m1
MUC16 Mucin 16, cell surface associated 0.25 0.2 Hs00226715_m1
PAX8 Paired box gene 8 0.2 0.61  Hs00247586_m1l
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Table 3

Page 23

Comparison between microarray and low density array (LDA) data for the candidate ovarian biomarkers; fold

changes are shown for the BRCA1 vs. WT comparison and BRCA2 vs. WT comparisons

A. BRCAL vs. WT comparison

Gene Symbol ~ Gene Name Affymetrix LDA  Tag Man Assay
SORBS1 Sorbin and SH3 domain containing 1 7 1.78  Hs00908953 _m1l
SAA2 Serum amyloid A2 5 9.18  Hs00763479_sl

SAA1;SAA2 Serum amyloid Al and A2 5 17.47  Hs00761940 sl

CD24 CD24 5 49.89 Hs00273561_s1

MFI12 Antigen p97 35 7.47  Hs00195551_m1l
SPON1 Spondin 1 25 8.22  Hs00391824_m1
THBS1 Thrombospondin 1 2 3.96  Hs00170236_m1
GAS6 Growth arrest-specific 6 2 591  Hs00181323_m1l
CSPG4 Chondroitin sulfate proteoglycan 4 0.3 0.6 Hs00426981_m1
CCNB1 Cyclin B1 0.2 0.55  Hs00259126_m1
TOP2A Topoisomerase (DNA) Il alpha 0.1 0.07  Hs00172214 m1l
NUSAP1 Nucleolar and spindle associated protein 1 0.1 0.22  Hs00251213_m1
CDC2 Cell division cycle 2, G1to S and G2 to M 0.1 0.09  Hs00364293_m1l
B. BRCA2 vs. WT comparison

Gene Symbol  Gene Name Affymetrix LDA  Tag Man Assay
MMP3 Matrix metallopeptidase 3 12.14 6.37  Hs00233962_m1
PTGS1 Prostaglandin-endoperoxide synthase 1 6.60 6.56  Hs00326564_s1

MMP1 Matrix metallopeptidase 1 2.05 2416  Hs00233958_m1
KRT18 Keratin 18 0.35 0.18  Hs01920599_gH
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