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Abstract
Quantitative isotropic diffusion MRI and voxel-based analysis of the apparent diffusion coefficient
(ADC) changes have been demonstrated to be able to accurately predict early response of brain
tumors to therapy. The ADC value changes measured during pre- and post-therapy interval are closely
correlated to treatment response. This work was demonstrated using a voxel-based analysis of ADC
change during therapy in the brains of both rats and humans, following rigidly registering pre- and
post-therapeutic ADC MRI exams. The primary goal of this paper is to extend this voxel-by-voxel
analysis to assess therapeutic response in breast cancer. Nonlinear registration (with higher degrees
of freedom) between the pre- and post-treatment exams is needed to ensure that the corresponding
voxels actually contain similar cellular partial contributions due to soft tissue deformations in the
breast and compartmental tumor changes during treatment as well. With limited data sets, we have
observed the correlation between changes of ADC values and treatment response also exists in breast
cancers. With diffusion scans acquired at three different timepoints (pre-treatment, early post-
treatment and late post-treatment), we have also shown that ADC changes across responders within
5 weeks are a function of time interval after the initiation of treatment. Comparison of the
experimental results with pathology shows that ADC changes can be used to evaluate early response
of breast cancer treatment.

1 Introduction
Breast cancer patients may elect to receive neoadjuvant chemotherapy before surgery. If the
patient elects to have surgery as soon as possible to remove the tumor following diagnosis,
neoadjuvant chemotherapy may be performed while the patient waits for the surgery. For the
patient who chooses to undergo a longer course of neoadjuvant chemotherapy before surgery,
usually several complete treatment cycles will be conducted and the surgery will remove
whatever tumor mass remains. A demonstrated benefit of such neoadjuvant chemotherapy for
responders is the achievement of tumor shrinkage, allowing breast conservation surgery for a
proportion of the patients. Unfortunately 20–25% of all breast cancer patients do not respond
to chemotherapy. It would be beneficial to identify those patients who are not responding to
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their neoadjuvant chemotherapy so that a change in treatment management may be introduced
earlier, sparing patients from potentially ineffective and toxic treatment. Some existing
methods of detecting response, e.g., clinical palpation or radiological RECIST measurements,
typically support accurate detection of response only after 8 – 10 weeks of chemotherapy.
Identifying surrogates that can predict therapeutic outcome earlier or more accurately than
current methods would be valuable to tailor treatment to individual patients.

Large clinical trials assume that the degree of response of the primary tumor to neoadjuvant
chemotherapy correlates with patient survival [1–4]. This suggests tumor response may be a
surrogate for evaluating the effect of chemotherapy and could therefore be an important
prognostic indicator of treatment outcome.

Imaging modalities can be used to track tumor changes resulting from response to a particular
chemotherapy regimen. Several imaging modalities have been used in assessing the extent of
response to primary breast cancer treatment. These modalities include mammography,
ultrasound, and anatomical magnetic resonance imaging (MRI). Unfortunately, the sensitivity
of these imaging technologies is inadequate in predicting pathological complete response
(pCR) when compared to clinical examination [5].

Given that diffusion MRI is sensitive to structure at the cellular level, it has the potential to
detect and quantify cellular changes that occur in response to successful therapeutic
intervention [6]. It has been increasingly used to predict the magnitude of response of cancer
to chemotherapy [6–9]. Diffusion MRI, combined with voxel-based analysis of the apparent
diffusion coefficient (ADC) changes during treatment has been used to predict early response
to cancer treatment. Researchers have demonstrated a fundamental correlation between ADC
changes within the tumor measured over the pre- to early post-treatment interval and the
response of various brain tumors to therapies [6–15]. This correlation has been shown both in
primary and metastatic tumors of multiple organ systems in both rats and humans. In this paper
we extend the voxel-by-voxel analysis to assess early response of breast cancer treatment and
establish that the same correlation exists in breast cancer and can be used as an early biomarker
of cell death and a potential surrogate for clinical outcome.

In previous work on tracking changes in ADC values over the pre- to early post-treatment
interval for brain tumors, affine registration was performed on the interval exams. A functional
diffusion map (fDM), i.e., a voxel-by-voxel scatter plot of the registered pre- vs. post-therapy
ADC values, was then constructed assuming that the voxels in the registered pre- and post-
treatment volumes contain approximately the same cells. FDM analysis has been shown to
provide a strikingly accurate early biomarker for determining therapy response in the brain
tumor patients. Affine registration works remarkably well in these brain tumors because the
tumor’s geometry changes during treatment are constrained and thus well modeled by rigid
body deformation (rotation and translation) or at most include some shearing due to the high
gradients used in diffusion echo planar imaging.

However, the scenario is completely different for breast tumors. The breast consists of soft,
deformable tissue and thus nonlinear warping is definitely needed to accomplish accurate
alignment of pre- and post-treatment volumes so that corresponding voxels in the registered
pre- and post-treatment volumes contain similar cellular partial contributions. Automatic
nonlinear registration algorithms are within reach with only modest effort if the breast in
question is cropped down to the approximate boundaries of the lesion by the user, which is
common practice in image processing.
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2 Methods
2.1 Diffusion MRI for Assessing Cancer Treatment Response

Diffusion weighted MRI allows quantitative investigation of the changes in the Brownian
motion of water [16]. Intracellular water is tightly bound and high density cellular packing in
cancers has low diffusivity. During an effective treatment cancerous cells are killed and lyse
increasing the ADC in the affected regions.

Each diffusion-weighted image series is comprised of 2 images per anatomic slice: b0 (b = 0)
which has relatively high signal-to-noise ratio (SNR) and no diffusion-weighting, and bhigh
(e.g., b = 700 or 800 s/mm2) which has heavy diffusion weighting and lower SNR. The diffusion
weighted imaging (DWI) is rotationally invariant, i.e., isotropic. That is, the diffusion weighted
images are insensitive to the directionality of water mobility by combination of DWI along
three orthogonal directions. ADC maps were calculated by simply taking the logarithm of the
ratio of images acquired at two diffusion weightings and then scaling by the inverse of the
difference in b-values (assuming low SNR pixels are properly eliminated):

(1)

where Sb0 and Sbhigh are the signal intensities recorded at b = 0 and b = bhigh s/mm2,
respectively.

A functional diffusion map (fDM) is constructed from the registered pre- and post-treatment
image volumes. It consists of a color overlay image of therapeutic-induced ADC change (post-
treatment minus pre-treatment) within the tumor (Fig. 1, right column) and the scatter plot of
corresponding pre- and post-treatment ADC values (Fig. 1, left column). The fDM provides
the ability to objectively segment the tumor into three colored regions based on the magnitude
and direction of ADC change. Red region includes voxels whose ADC values have increased
significantly during treatment, represented by “Vi”; blue region includes voxels whose ADC
values have decreased significantly, represented by “Vd”; and green region includes voxels
whose ADC values have not changed significantly compared with the null hypothesis,
represented by “V0”. The scatter plots (Fig. 1, left column) were found to correlate with
subsequent tumor response.

The voxel-by-voxel fDM approach has a significant advantage over volumetric summary
metrics (i.e., mean change in ADC values). Mean ADC change within the entire tumor during
therapy can be an early response estimator, but it has its limitations. Therapeutic response is
usually quite complex including often opposite and competing effects: some cells die causing
increased extracellular water and associated increased ADC values while some other cells
proliferate at a high rate leading to decreased extracellular water and ADC values. Averaging
the ADC changes over the entire tumor cancels out some (if not most) of these opposite effects
and thus makes mean ADC change insensitive to spatial heterogeneity of treatment response.

2.2 Nonlinear Image Registration
A prerequisite for proper fDM analysis using pre- and post-therapy breast examinations is that
the corresponding pre- and post-treatment image voxels contain similar cellular partial volume
contributions. Mutual information (MI) based image registration algorithms are employed to
align the pre- and post-treatment scans.

Tumor volumes of interest (VOI) were drawn on the high resolution anatomical image volumes
and were warped from the anatomical volumes onto the pre-treatment (pre-Tx) diffusion
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volumes denoted as the reference; a warping registration is necessary due to the susceptibility
artifacts in the diffusion, echo-planar acquisitions not present in the anatomical, spin echo
acquisitions. Subsequent registrations between the pre- and post-treatment (post-Tx) diffusion
scans are also warped to account for repositioning deformations to the breast as well as any
compartmental changes to the tumor.

Warping is accomplished using thin plate splines where the degrees of freedom (DOF) of the
warp is related to the local mutual information density and volume of the tumor. The user only
picks the loci of 3 control points in the floating tumor volume that approximate their loci in
the reference tumor volume. The multiscale registration first implements rigid body
registration, then low DOF warping, and finally full DOF warping [17]. The details of
registration are as follows:

1. Automatically generate a distance sorted set of hexagonal close-pack control points
in the cropped reference volume based on the highest density of control points
supported by the mutual information of the dataset pairs to be registered. Let N be the
total number of control points in this pre-generated set and these control points are
sorted according to decreasing pairwise distances.

2. Choose the first 3 control points from the pre-generated point set in the reference
volume.

3. Provide 3 approximate homologous control points in the floating volume that
correspond to the positions of the first 3 control points in the reference set, again based
on the resultant cropping of the user.

4. Apply rigid body registration to roughly align the floating exam to the reference.

5. More points from the pre-generated control point set in the reference volume are
chosen for warping registration where the number of points is set in the registration
schedule. The corresponding control points in the floating exam are generated using
the resultant geometric transformation from the previous registration schedule. Since
the reference control points are distance sorted in order from most distant to nearest,
iteratively increasing the number of points not only implements an increasing DOF
warping, but also a decreasing scale space registration.

6. Repeat step 5 until all N control points have been used in the last schedule line which
yields the final solution, subject to no folding. Folding is prevented by checking the
sign of the Jacobian deformation after each optimization. If negative, the reference
and corresponding homologous control point pair closest to the loci of the most
negative Jacobian value are removed, and the optimization is repeated until no
negative Jacobian values occur in the solution. This strategy allows the algorithm to
locally decrease the DOF and control point density to follow local MI density
variations.

2.3 Determination of Thresholds
After registration is accomplished, the voxel-by-voxel fDM analysis will be applied to estimate
treatment response based on the changes in ADC values during treatment. A primary task in
fDM analysis is to set appropriate thresholds which determine how much ADC change can be
treated as significantly increased/decreased. Due to the complicated nature of noise
distribution, analytical derivation of the thresholds is impossible. Instead, we utilize a small
set of patient data as the training data to experimentally determine the appropriate thresholds
to segment the tumor areas. These thresholds are then applied to the data acquired by the
University of Hull MRI Centre for early evaluation of treatment response.
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The training set comes from an ongoing double-blinded feasibility study at the University of
Michigan investigating the role of diffusion MRI and functional diffusion maps as an early
biomarker to predict therapeutic response for breast cancer. In the imaging protocol patients
with breast cancer that have elected neoadjuvant chemotherapy prior to surgery receive 2
baseline exams (affectionately named “coffee-break” exams), typically within a 15 minute
interval where the patient is removed from the scanner and then repositioned for the second
scan; these short interval exams are used to observe the null change distribution since no
macroscopic changes have occurred to the tumor in this interval. The initiation of the first cycle
of chemotherapy (adriamyacin/cyclophosphamide) typically follows within one day of the
short interval exams. In this acquisition the high b value is 800 s/mm2. ADC maps are computed
from the interleaved b0 and b800 diffusion weighted MRI acquisitions by substituting bhigh with
b800 in Equation (1).

For each pair of registered ADC images a 128 × 128 joint density histogram (JDH) is
constructed by incrementing the count of the 2D histogram defined by the two ADC values of
the registered tumor (a demonstration is shown in Fig. 2(a)). Ideally the resulting JDH will be
symmetric about the diagonal assuming no tumor growth/recession in such a short period.
However, in practice for each experimental sample of the null distribution JDH is slightly
biased. To remove this inevitable bias, the sum of the JDH and its transpose is used to derive
the variance of the null change, now unbiased distribution. A 95% confidence interval is applied
to the null hypothesis test: If a test value is outside the interval, the test rejects the null. With
currently available 5 patients’ pre-treatment coffee-break exams, the average 95% confidence
interval for ADC changes is [−0.5; 0.5]×10−3mm2/s rounded to one decimal place. Since the
increased ADC values associated with cell death and increased diffusion in extracellular water
are our primary interest in predicting therapy response, the 97.5th percentile threshold
corresponding to an ADC change of 0.5×10−3 mm2/s is the threshold we choose for evaluating
the treatment response in the University of Hull data. In other words, if the ADC change of a
voxel is larger than 0.5 × 10−3 mm2/s, this voxel belongs to the region of significantly increased
ADC values, i.e., Vi.

2.4 FDM Analysis on the University of Hull Data [18]
We evaluate the diffusion weighted MRI combined with functional diffusion mapping analysis
as an imaging response biomarker using the clinical data provided by the University of Hull
clinical trial [18]. Together 27 patients with biopsy-proven breast cancer were scanned prior
to and after the first, second and fourth (final scheduled) cycle of neoadjuvant chemotherapy
to allow monitoring tumor changes by using diffusion weighted MRI. Treatment cycles
consisted of epirubicin (90 mg/m2) and cyclophosphamide (600 mg/m2) administered at 3 week
intervals. Patients were scanned either on a 3.0 or 1.5T scanner (GE Healthcare, Milwaukee,
WI, USA) in combination with dedicated bilateral breast coils. Different field strengths do not
affect the study results as ADC values, in principle, are not dependant on B0 field strength.

Diffusion weighted MRI was acquired axially with a water-only excitation, singleshot, dual
spin-echo EPI sequence with the following parameters: TR, 4000 ms, fractional TE, 74 ms (3.0
T) or 98 ms (1.5 T); FOV, 340 × 340 mm; matrix, 128 × 128; slice, 5 mm; gap, 1 mm; 10
averages; b values, 0 and 700 s/mm2, applied in all three orthogonal directions. DWI scans
were acquired in 2 min 40 s at both field strengths. A dual spinecho EPI sequence was utilized
since this sequence reduces eddy currents and, therefore, image distortions with the addition
of an extra refocusing pulse after the conventional refocusing pulse.

Not all 27 data sets were used to study the correlation between ADC changes and treatment
response. Some diffusion scans only include partial tumor scans and are treated as inadequate
for assessing the treatment efficacy and therefore excluded from this study. Eventually we have
14 complete data sets.
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To test the capability of ADC changes in assessing early treatment response, the joint
distribution histogram of registered pre-treatment and post-treatment ADC values was
investigated. An example of JDH is shown in Fig. 2(b). This distribution represents the
treatment effect distribution and clearly reveals that ADC values have increased in several
ways: first the mean has moved upwards, and secondly there is a larger portion of voxels above
the 97.5th percentile line derived from the null distribution based on the training data sets. The
corresponding scatter plot is shown in Fig. 3. Here red indicates the presence of voxels whose
ADC changes (post-treatment minus pre-treatment) are greater than the 97.5th percentile of the
null distribution (i.e. regions of cell kill and limited noise, “Vi”); green indicates voxels whose
changes are within the 2.5th – 97.5th percentiles (regions of no significant change, “V0”); and
blue indicates changes that are below the 2.5th percentile of the null (regions of continued tumor
growth and limited noise, “Vd”). The voxels in the “red” region (Vi) count for 12.25% of the
entire tumor volume in Fig 2(b). Note that while 2.5% of these voxels are expected noise and
distributed as spatially uncorrelated, single voxels, the treatment effect increment above 2.5%
is typically seen as spatially correlated, i.e., connected voxels. We repeated this functional
diffusion mapping analysis on each of the data set in this study and percentage_Vi (the
percentage of the Vi volume over the entire tumor volume) was calculated. We subtracted 2.5%
from percentage_Vi to remove the effect of the noise inherent in the null distribution so that
percentage_Vi reflects the actual percentage of voxels with increased ADC values.

3 Experimental Results
The pathological outcome was used to remove 4 non-responding patients from the regression
fit to the response of neoadjuvant therapy. The chemotherapeutic agent for the first two cycles
of neoadjuvant therapy was exactly the same and consistent response was expected during this
time period. The first post-therapy data acquisition took place within 2–12 days after the
initiation of the first cycle of treatment. The second post-therapy data acquisition took place
within 11–19 days after the initiation of the second cycle of treatment and within 32–39 days
after the initiation of the first treatment cycle. Note that the post-treatment scans were acquired
within different numbers of days after the initiation of therapy. To study the role of ADC
changes between pre- and post-therapy examinations as an early indicator of treatment
effectiveness, we focus on the relationship between ADC changes and time intervals after the
initiation of treatment. In our study post-treatment scans include the diffusion scans obtained
after both the first and the second cycle of treatment.

Percentage_Vi as a function of the number of days after treatment for responders is shown in
Fig. 4. Responders are indicated by “×” while non-responders by “o”. For most responder cases,
their percentage_Vi is above zero, which means that there are voxels in the tumor whose ADC
values have increased significantly during treatment.

To investigate the correlation of ADC changes and interval lengths after the initiation of
treatment, linear regression was performed and the regression line (red line) with p-value 0.03
was shown in Fig. 4. We clearly observe that these five-week-post-treatment exams exhibit a
larger effect size in ADC change compared to their one-week-post-treatment counterparts.
After some duration we would expect the treatment effect on diffusion level to off or even drop
back to the null effect after most cancer cells have been killed.

A blue line was drawn to connect the two time points for each patient. Please note that the post-
first-treatment scans for cases 07 and 10 were obtained only 5 days after the initiation of
treatment and it is highly likely that it is too soon to see any cellular change in the tumor.
However, it was 33 days after the initiation of therapy that post-second-treatment exams were
taken and the interval was long enough for the treatment to take effect. Therefore, these two
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cases exhibit large increases in the ADC values in the post-second-treatment exams compared
to their pre-treatment scans.

Logistic regression analysis was performed to further examine the correlation of ADC changes
during treatment with clinical outcomes. A logistic regression fit with p = 0.009 at five weeks
post-treatment demonstrated that the probability of a responsive treatment is strongly
associated with increased ADC values. We observed 1 false positive and 1 false negative for
a sensitivity of 90% and a specificity of 75%. On the other hand, logistic regression at one
week post-treatment showed no capability of separating responders from non-responders.

4 Conclusion
We have extended voxel-by-voxel functional diffusion mapping analysis to assess early
response to breast cancer treatment. The thresholds of significant ADC changes were derived
from short interval exams and were used to evaluate treatment efficacy based on ADC changes
during treatment. With limited data sets, experimental results have shown that ADC changes
have the potential to be used to assess treatment effectiveness and are likely an increasing
function of the temporal interval after the initiation of treatment within an as yet unknown time
limit. Clearly the ratio of therapeutic effect size to noise at one week post-therapy is small; at
5 weeks post-therapy the opposite appears to be true. Logistic regression analysis has further
revealed that ADC changes at five weeks post-therapy are highly correlated with treatment
response.
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Fig. 1.
Functional diffusion maps for responsive and non-responsive breast treatment. Top and bottom
rows respectively show from left to right the treatment effect, and fDM treatment overlay on
one anatomical slice. Patient on the top was found to be ER+ while the bottom patient was ER
−.
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Fig. 2.
Joint distribution histograms. (a) JDH of a pair of pre-treatment coffee-break exams. The green
line represents the linear regression of the JDH, which is the diagonal line in this case. The
magenta lines represent the 97.5th and 2.5th percentile, respectively; i.e., the area between the
magenta lines is 95% confidence interval for the null distribution. (b) JDH of a pair of pre- and
post-treatment exams. The green line represents the diagonal line and the magenta lines
represent the 97.5th and 2.5th percentile lines of the null distribution, respectively. Note that
the magenta lines in (a) and (b) are of different intercepts. The magenta lines in (a) are the
97.5th and 2.5th percentile for this specific coffee-break exam pair. The magenta lines in (b)
are the average 97.5th and 2.5th percentile for the 5 pairs of coffee-break exams in the training
data sets.
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Fig. 3.
fDM analysis in assessing treatment response based on registered diffusion scans obtained
shortly after and before the initiation of neoadjuvant therapy for a patient.
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Fig. 4.
Percentage_Vi versus number of days after the initiation of treatment. The red line represents
linear regression of all (percentage_Vi, number of days after treatment) pairs. A blue line
connects the two different time points for each patient. The (0, 0) point is plotted with a ”+”;
Ideally after a zero length time interval there should be no measured response to therapy.
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