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Abstract
This paper describes an automatic and efficient approach to construct unstructured tetrahedral and
hexahedral meshes for a composite domain made up of heterogeneous materials. The boundaries of
these material regions form non-manifold surfaces. In earlier papers, we developed an octree-based
isocontouring method to construct unstructured 3D meshes for a single-material (homogeneous)
domain with manifold boundary. In this paper, we introduce the notion of a material change edge
and use it to identify the interface between two or several different materials. A novel method to
calculate the minimizer point for a cell shared by more than two materials is provided, which forms
a non-manifold node on the boundary. We then mesh all the material regions simultaneously and
automatically while conforming to their boundaries directly from volumetric data. Both material
change edges and interior edges are analyzed to construct tetrahedral meshes, and interior grid points
are analyzed for proper hexahedral mesh construction. Finally, edge-contraction and smoothing
methods are used to improve the quality of tetrahedral meshes, and a combination of pillowing,
geometric flow and optimization techniques is used for hexahedral mesh quality improvement. The
shrink set of pillowing schemes is defined automatically as the boundary of each material region.
Several application results of our multi-material mesh generation method are also provided.
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1 Introduction
With finite element analysis seeing increased use in active research areas such as computational
medicine and computational biology, there is an emerging need for quality mesh generation
of the spatially realistic domains that are being studied. In Computer Tomography (CT)
imaging as in Magnetic Resonance Imaging (MRI) of the human body, the domain of focus
often possesses heterogeneous materials and/or functionally different properties. For example,
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as shown in Figure 1, the MRI brain data has been segmented into 48 sub-areas, with each
colored area demarked as possessing specific characteristic functionality. In finite element
analysis, heterogeneous materials are grouped into separate material regions with individual
physical/chemical attributes or material coefficients. For this purpose, quality meshes are
needed for each of the partitioned material regions, with meshes conforming at the material
boundaries. Such multi-material domain meshing is the focus of this paper.

In [33,32], we developed an octree-based isocontouring method to construct adaptive and
quality tetrahedral/hexahedral meshes from imaging data with meshes conforming to
boundaries defined as level sets. However these prior methods work only for a domain with a
single material and manifold boundary. In order to automatically construct 3D meshes for all
the material regions at the same time, we introduce and analyze a so-called material change
edge to relocate all non-manifold boundaries, including the boundaries of each material domain
and the interfaces between two or more materials. A novel approach is developed to calculate
non-manfold boundary nodes within boundary cells shared by more than two materials. All
the surface boundaries are meshed into triangles or quadrilaterals. Besides the material change
edge, we also analyze each interior edge for each material domain to construct tetrahedral
meshes. Each interior grid point is analyzed for hexahedral mesh construction.

Mesh adaptivity can be controlled in different ways: by a feature sensitive error function, by
regions that users are interested in, by finite element solutions, or by a user-defined error
function. The feature sensitive error function measures topology and geometry changes
between isocontours at two neighboring octree levels. Adaptive tetrahedral and hexahedral
meshes are generated by balancing the above four criteria and mesh size. Edge contraction and
geometric flows [34] are used to improve the quality of tetrahedral meshes. A combination of
pillowing, geometric flow, and optimization techniques is chosen for quality improvement of
hexahedral meshes. With shrink set defined in an automatic way, the pillowing technique
guarantees for each element in hexahedral meshes that at most one face lies on the boundary.
This provides us with considerable freedom to further improve the element aspect ratio,
especially for elements along the boundary.

We have applied our meshing method on a segmented human brain and rice dwarf virus (RDV)
data, both containing multiple materials. Quality tetrahedral and hexahedral meshes are
generated automatically with conforming boundaries, and some quantitative statistics such as
area and volume for each domain are computed. Our results provide useful information to
check the anatomy of the human brain, or to identify and understand the RDV structure.

The remainder of this paper is organized as follows: Section 2 summarizes related prior work.
Section 3 reviews the octree-based unstructured mesh generation techniques we had developed.
Section 4 discusses the detailed algorithm of mesh generation for a domain with multiple
materials. Section 5 explains how to improve the mesh quality using various techniques.
Section 6 presents some of our quality meshing results. Section 7 draws conclusions and
outlines future work.

2 Previous Work
Octree-based Mesh Generation

The octree technique [30,24], primarily developed in the 1980s, recursively subdivides the
cubes containing the geometric model until the desired resolution is reached. Irregular cells
are formed along the geometry boundary, and tetrahedra are generated from both the irregular
cells on the boundary and the interior regular cells. Unlike Delaunay triangulation and
advancing front techniques, the octree technique does not preserve a pre-defined surface mesh.
The resulting meshes also change as the orientation of octree cells changes. In order to generate
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high quality meshes, the maximum octree level difference during recursive subdivision is
restricted to be one. Bad elements may be generated along the boundary, therefore quality
improvement is necessary after mesh generation.

The grid-based approach generates a fitted 3D grid of structured hexahedral elements on the
interior of the volume [22]. In addition to regular interior elements, hexahedral elements are
added at the boundaries to fill gaps. The grid-based method is robust, however it tends to
generate poor quality elements along the boundary. The resulting meshes are also highly
dependent upon the grid orientation, and all elements have similar sizes. A template-based
method was developed to refine quadrilateral/hexahedral meshes locally [23].

Quality Improvement
Algorithms for mesh improvement can be classified into three categories [27] [20]: local
refinement/coarsening by inserting/deleting points, local remeshing by face/edge swapping,
and mesh smoothing by relocating vertices. Laplacian smoothing generally relocates the vertex
position at the average of the nodes connecting to it. Instead of relocating vertices based on a
heuristic algorithm, an optimization technique to improve the mesh quality can be utilized. The
optimization algorithm measures the quality of the surrounding elements to a node and attempts
to optimize it. The optimization-based smoothing yields better results, but is more expensive.
Therefore, a combined Laplacian/optimization-based approach was recommended [6,8], which
uses Laplacian smoothing whenever possible and only uses optimization-based smoothing
when necessary. Furthermore, related mesh quality improvement techniques use a combination
of quadrilateral/hexahedral subdivision, anisotropic remeshing, and those based on conformal
remapping [3,4,1,2,7].

Pillowing Techniques
A “Doublet” is formed when two neighboring hexahedra share two faces, which have an angle
of at least 180 degrees. In this situation, it is practically impossible to generate a reasonable
Jacobian value by relocating vertices. The pillowing technique was developed to remove
doublets by refining quadrilateral/hexahedral meshes [17,5,26,25]. Pillowing is a sheet
insertion operation, which provides a fairly straightforward method to insert sheets into existing
meshes. The speed of the pillowing technique is largely dependent upon the time needed to
determine the shrink set. The number of newly introduced hexahedra equals the number of
quadrilaterals on the inserted sheet.

We have developed octree-based isocontouring methods to construct tetrahedral and
hexahedral meshes from gridded imaging data [33,32]. In this paper, we extend these methods
to automatic tetrahedral/hexahedral mesh generation for a domain with multiple materials. In
addition, we will also discuss how to automatically define the shrink set and use the pillowing
technique to improve the quality of hexahedral meshes.

3 A Review of the Octree-based Isocontouring Method for Mesh Generation
There are two main isocontouring methods, primal contouring (or Marching Cubes) and Dual
Contouring. The Marching Cubes algorithm (MC) [16] visits each cell in a volume and
performs local triangulation based on the sign configuration of the eight vertices. MC and its
variants have three main drawbacks: (1) the resulting mesh is uniform, (2) poor quality elements
are generated, and (3) sharp features are not preserved. By using both the position and the
normal vectors at each intersection point, the Dual Contouring method [12] generates adaptive
isosurfaces with good aspect ratio and preserves sharp features. In this section, we are going
to review the Dual Contouring method, and the octree-based algorithms we developed for 3D
mesh generation.
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3.1 Dual Contouring Method
The octree-based Dual Contouring method [12] analyzes each sign change edge, which is
defined as one edge whose two end points lie on different sides of the isocontour. For each
octree cell, if it is passed by the isocontour, then a minimizer point is calculated within this
cell by minimizing a predefined Quadratic Error Function (QEF) [9,10],

(1)

where pi and ni represent the position and unit normal vectors of the intersection point,
respectively. For example, in Figure 2, the red curve is the true curve inside an octree cell, and
the two green points are intersection points of the red curve with cell edges. The calculated
minimizer point (the red one) is actually the intersection point of the two tangent lines.

In the uniform case, each sign change edge is shared by four cells, and one minimizer point is
calculated for each of them to construct a quadrilateral. In the adaptive case, each sign change
edge is shared by either four cells or three cells, and we obtain a hybrid mesh, including
quadrilateral and triangular elements.

3.2 Tetrahedral Mesh Generation
We have extended the Dual Contouring method to tetrahedral mesh generation [33,36]. Each
sign change edge belongs to a boundary cell, which is an octree cell passed through by the
isocontour. Interior cells only contain interior edges. In order to tetrahedralize boundary cells,
we analyze not only sign change edges but also interior edges. Only interior edges need to be
analyzed for interior cell tetrahedralization. Each sign change edge is shared by four or three
cells, and we obtain four or three minimizer points. Therefore these minimizers and the interior
end point of this sign change edge construct a pyramid or tetrahedron. For each interior edge,
we can also obtain four or three minimizers. Those minimizers and the two end points of this
interior edge construct a diamond or pyramid. A diamond or pyramid can be split into four or
two tetrahedra. Finally, the edge contraction and smoothing method is used to improve the
quality of the resulting meshes.

3.3 Hexahedral Mesh Generation
Instead of analyzing edges, we analyze each interior grid point to construct hexahedral meshes
from volumetric data [32]. In a uniform case, each grid point is shared by eight octree cells
and we can obtain eight minimizers to construct a hexahedron. There are three steps to construct
adaptive hexahedral meshes: (1) a starting octree level is selected to construct a uniform
hexahedral mesh, (2) templates are used to refine the uniform mesh adaptively without
introducing any hanging nodes, (3) an optimization method is used to improve the mesh quality.

The octree-based meshing algorithms [33,36,32] we developed are very robust, and they work
for complicated geometry and topology. However, they work only for a domain with a single
material. In the following section, we will discuss how to construct 3D meshes for a domain
with multiple materials.

4 Mesh Generation for A Domain with Multiple Materials
4.1 Problem Description

Given a geometric domain Ω consisting of N closed material regions, denoted as Ω0, Ω1, …,
and ΩN−1, it is obvious that  Ωi is the complement of Ω0 in Ω moduls the boundary of
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Ω0. Suppose Bi is the boundary of Ωi, we have Ωi ∩ Ωj = Bi ∩ Bj when i ≠ j. ∪Bi may not
always be manifold, it can also be non-manifold curves or surfaces. Figure 3 shows two
examples in 2D. There are three materials in Figure 3(a) denoted as Ω0, Ω1 and Ω2, and we
can observe that ∪Bi are manifold curves. In Figure 3(b), there are four materials, but ∪Bi
consists of non-manifold curves and a square outer boundary. Non-manifold boundaries ∪Bi
cannot be represented by isocontours because each data point in a scalar domain can only have
one function value. Therefore isocontouring methods do not work for a domain with non-
manifold boundaries.

One possible way to mesh a domain with non-manifold boundaries is to consider only one
material region at a time using the method of function modification and isocontouring [33,
36,32]. After meshes for all material regions are obtained, we merge them together. However,
there are four problems in this method:

1. During the whole process, we have to choose the same octree data structure, including
interfaces between two different materials. Otherwise the resulting meshes are not
conforming to the same boundary.

2. When we mesh each material domain, we detect all boundaries surrounding this
material. Part of the boundaries may be shared by more than two materials, for
example, the red point in Figure 3(b) is shared by four materials, Ω0, Ω1, Ω2, and
Ω3. When we process each material, we may obtain four different points to
approximate the red one. In other words, the meshes obtained may not conform to
each other around the interface shared by more than two materials.

3. It is difficult to find the corresponding points on the interface shared by two materials
if only position vectors are given.

4. Since we analyze only one material region at a time, we need to process the data N
times for a domain with N materials. This is very time consuming.

In this section, we are going to present an approach to automatically detect all boundaries and
mesh a domain with multiple materials simultaneously. Here are some definitions used in the
following algorithm description:

Boundary Cell—A boundary cell is a cell which is passed through by the boundary of a
material region.

Interior Cell—An interior cell is a cell which is not passed through by the boundary of any
material region.

Material Change Edge—A material change edge is an edge whose two end points lie in
two different material regions. A material change edge must be an edge in a boundary cell.

Interior Edge—An interior edge is an edge whose two end points lie inside the same material
region. An interior edge is an edge in a boundary cell, or an interior cell.

Interior Grid Point—An interior grid point of one material is a grid point lying inside this
material region.

4.2 Non-Manifold Boundary Node Calculation
In our octree-based method, only one minimizer point is calculated for each cell, and each
octree cell has a unique index. This property provides us a lot of convenience to uniquely index
the minimizer point of octree cells without introducing any duplicates. Regarding meshing a
domain with multiple materials which forms non-manifold boundaries, the challenging
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problem is how to calculate non-manifold boundary node within a cell shared by more than
two materials.

There are two kinds of octree cells in the analysis domain: interior cells and boundary cells.
For each interior cell, we simply choose the center of the cell as the minimizer point. For each
boundary cell, we cannot separately calculate the minimizer point using Equation (1) for each
material region because different minimizers may be obtained within this cell. For example in
Figure 4(a), the red curve is the boundary which is shared by two materials Ω1 and Ω2. The
same minimizer (the red point) is obtained when we mesh each material separately. However
in Figure 4(b), there are three materials inside the octree cell, Ω1, Ω2 and Ω3, and the blue point
is shared by all three materials. Three different minimizers (the red points) are obtained for
this cell when we mesh each material separately. Therefore instead of meshing each material
separately, we include all intersection points (green points) in the quadratic error function
(QEF) and calculate one identical minimizer point within this cell no matter how many
materials are contained in it, which forms a non-manifold boundary node in the resulting mesh
and guarantees conforming meshes around boundaries.

Our meshing algorithm assumes that only one minimizer is generated in a cell. When
complicated topology appears in the finest cell, non-manifold surface may be constructed.
Schaefer et al. extended the dual contouring method to manifold surface generation [21], but
multiple minimizers were introduced within a cell. This cannot be further extended to 3D
hexahedral mesh generation. Here we prefer a heuristic subdivision method. If a cell contains
two components of the same material boundary, we recursively subdivide the cell into eight
identical sub-cells until each sub-cell contains at most one component of the same material
boundary. The subdivision method can be easily extended to hexhedral mesh generation, but
it may introduce many elements. Fortunately, complicated topology rarely happens in a cell,
for example in the segmented brain data (Figure 1) and the RDV data (Figure 14), this situation
does not exist.

4.3 2D Meshing
4.3.1 2D Triangulation—Material change edges and interior edges are analyzed to construct
triangular meshes for each material region as shown in Figure 5:

1. Material change edge: each material change edge is shared by two boundary octree
cells in a uniform case, and one minimizer point is calculated by minimizing the
quadratic error function defined in Equation (1). We can obtain two minimizer points.
The two minimizer points and each end point of the material change edge construct
a triangle. Therefore two triangles are obtained. In an adaptive case, each material
change edge is also shared by two boundary octree cells, but the two octree cells may
have different sizes. We can also get two minimizer points and construct two triangles.

2. Interior edge: each interior edge is shared by two octree cells. If the octree cell is a
boundary cell, then we use Equation (1) to calculate a minimizer point. Otherwise we
choose the center of this cell to represent the minimizer point. This interior edge and
one minimizer point construct a triangle, therefore two triangles are obtained. In a
uniform case, the two octree cells have the same size, while in an adaptive case, the
two octree cells may have different sizes. However, we use the same method to
construct triangles.

4.3.2 2D Quadrilateral Meshing—Instead of analyzing edges such as material change
edges and interior edges, we analyze each interior grid point to construct a quadrilateral mesh.
In a uniform case, as each interior grid point is shared by four octree cells, we can calculate
four minimizer points to construct a quadrilateral. Six templates defined in [32] are used to
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refine the mesh locally. As shown in Figure 6(a, b), some part of the domain is refined using
templates. The mesh quality improvement will be discussed later.

4.4 3D Meshing
4.4.1 Tetrahedral Meshing—We analyze each edge in the analysis domain, which contains
multiple material regions. The edge can be a material change edge or an interior edge. In a 3D
uniform case, each edge is shared by four cells. We obtain a total of four minimizers, which
construct a quadrilateral. The quadrilateral and the two end points of the edge construct two
pyramids as shown in Figure 7(a), and each pyramid can be divided into two tetrahedra. In the
3D adaptive case, each edge is shared by four or three octree cells. Therefore we can obtain
four or three minimizers, which construct a quadrilateral or a triangle. The quadrilateral/triangle
and the two end points of the edge construct a diamond or a pyramid as shown in Figure 7(a,
b). Finally we split it into tetrahedra.

We have applied our approach to an example with three materials. In Figure 8, a wireframe of
the domain is shown in (a), (b) shows the constructed triangular mesh for the surface, and (c)
shows one cross-section of the tetrahedral mesh for all three material regions. Note the presence
of conforming boundaries.

4.4.2 Hexahedral Meshing—For hexahedral mesh generation, we first choose a starting
octree level and analyze each interior grid point in the uniform case. In 3D, each grid point is
shared by eight octree cells, so we can obtain eight minimizer points to construct a hexahedron.
An error function is calculated for each octree cell and is compared with a pre-defined threshold
to decide the configuration of the minimizer point for this cell. All configurations can be
converted into five basic cases defined in [32,23], which are used as templates to refine the
uniform mesh adaptively without introducing any hanging nodes. The templates satisfy one
criterion: in all templates, the refinement around any minimizer points/edges/faces with the
same configuration is the same. This criterion guarantees that no hanging nodes are introduced
during the process of mesh refinement. Figure 9(a) shows quadrilateral meshes constructed for
a domain with three materials. Figure 9(c) shows one cross-section of the hexahedral mesh.

4.5 Mesh Adaptivity
The mesh adaptivity is controlled flexibly by different techniques:

1. A feature sensitive function defined in [33] is based on a trilinear function fi(x, y, z)
within an octree cell,

(2)

where

(3)

flmn (where l, m, n = 0 or 1) is the function value at a grid point of the octree cell. The
feature sensitive error function measures the isocontour difference between two
neighboring octree levels, Level i and Level (i + 1).
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2. Regions that users are interested in: According to various application requirements,
location can be included in the error function to control the mesh adaptivity.

3. Finite element solutions: Finite element solutions can be used to efficiently and
dynamically control the mesh adaptivity.

4. User-defined error function: Our algorithm is very flexible, and a user-defined error
function can be substituted into the code for the mesh adaptivity control.

5 Quality Improvement
Mesh quality is a very important factor influencing the convergence and stability of finite
element solvers. In the meshes generated from the above algorithm, most elements have good
aspect ratio, especially the interior elements, but some elements around the boundaries may
have poor aspect ratio, therefore the mesh quality needs to be improved.

5.1 Tetrahedral Mesh
First we choose three quality metrics to measure the quality of tetrahedral meshes, then use
edge-contraction and geometric flow smoothing to improve it. The three quality measures are:
(1) edge-ratio, which is defined as the ratio of the longest edge length to the shortest edge length

in a tetrahedron; (2) Joe-Liu parameter , where |V| denotes the volume, and ei j
denotes the edge vectors representing the 6 edges [15]; (3) Minimum volume bound.

Edge-contraction—We detect the element with the worst edge-ratio, and use the edge-
contract method to remove it until the worst edge-ratio arrives at a predefined threshold, e.g.,
8.5. A special case is shown in Figure 10. When one vertex P is embedded in a triangle Ttri or
a tetrahedron Ttet, this vertex and each edge of Ttri construct a triangle in 2D, or this vertex and
each face of Ttet construct a tetrahedron in 3D. If we contract any edge of Ttri or Ttet before
removing the vertex P, then we will generate two duplicated and useless elements. This special
case needs to be detected, and duplicated vertices/elements and useless vertices need to be
removed after edge-contraction.

Geometric flow smoothing—There are two kinds of vertices in 3D meshes, boundary
vertices and interior vertices. For each boundary vertex, we use geometric flow to denoise the
surface and improve the aspect ratio. For each interior vertex, we use the weighted averaging
method to improve the aspect ratio, e.g., volume-weighted averaging. During the smoothing
process, the Joe-Liu parameter and minimum volume bound are chosen as the quality metrics.

Geometric flow or geometric partial differential equations (PDEs) have been intensively used
in surface and image processing [28,29]. Here we choose surface diffusion flow to smooth the
surface mesh because it preserves volume. A discretization scheme for the Laplace-Beltrami
operator over triangular meshes is given in [29] and so we do not go to detail here.

The main aim of edge-contraction is to improve the element with the worst edge-ratio for each
iteration. However, the edge-contraction method cannot remove slivers, therefore we should
couple it with the smoothing scheme. Geometric flow smoothing tends to improve the mesh
globally. We repeat running the two steps until a threshold or an optimized state is reached.

Figure 8 shows the difference of the mesh before and after the quality improvement. Figure 8
(b) shows the original mesh, and Figure 8(d) shows the improved mesh. It is obvious that after
quality improvement, the surface mesh is more regular and has better aspect ratio. Figure 13
shows some statistics of quality metrics for the Brodmann brain atlas (Figure 1) and the
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segmented RDV data (Figure 14). The worst Joe-Liu parameter of the resulting meshes is above
10−2.

5.2 Hexahedral Mesh
Knupp et al. defined the Jacobian matrix of a vertex using its three edge vectors [13,14], here
we choose the usual definition of the Jacobian matrix in the Finite Element Method [19,11].
Given a hexahedron with eight vertices as shown in Figure 11, there is a basis function φi in
terms of ξ, η and ζ corresponding to each of them in the parametric domain. The eight basis
functions are:

(4)

For any point inside this parametric hexahedral element, its coordinates can be calculated as
x = Σxiφi, y = Σyiφi, and z = Σziφi. The Jacobian matrix is constructed as follows:

(5)

The determinant of the Jacobian matrix is called the Jacobian. An element is said to be
inverted if its Jacobians ≤ 0 somewhere in the element. We use the Frobenius norm as a matrix
norm, |J| = (tr(JTJ)1/2). The condition number of the Jacobian matrix is defined as κ(J) = |J| |

J−1|, where . Therefore, the three quality metrics for a vertex x in a hexahedral are

defined as Jacobian(x) = det(J), , and  [18]. A
combination of pillowing, geometric flow [34] and optimization techniques is used to improve
the quality of hexahedral meshes.

Pillowing technique—The pillowing technique [17,5,26,25] was developed to remove
“doublets” as shown in Figure 12(a-c), which are formed when two neighboring hexahedra
share two faces. The two faces have an angle of ≥ 180 degrees, and generally they only appear
along the boundaries between two materials. There is another similar situation in our meshes
as shown in Figure 12(d-f). Two faces of a hexahedron lie on the boundary but they are shared
by two other different elements. Since the meshes have to conform to the boundary, it is
practically impossible to generate reasonable Jacobian values by relocating vertices. Here we
use the pillowing technique to remove these two situations. As shown in Figure 12, first we
identify the boundary for each material region, if there is a “doublet” or an element with two
faces on the boundary, then we create a parallel layer/sheet and connect corresponding vertices
to construct hexahedra between the inserted sheet and the identified boundary. The number of
newly generated hexahedra is equal to the number of quadrilaterals on the boundary for each
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material region. For the boundary shared by two material regions, one or two parallel sheets
may be inserted. Finally we use geometric flow to improve the mesh quality.

The speed of the pillowing technique is largely decided by the time needed to figure out the
shrink set, therefore the main challenge now is how to automatically and efficiently find out
where to insert sheets. In our octree data structure, each grid point belongs to one material
region. Material change edge is analyzed to construct and detect boundaries, which are shared
by two different materials. For example, the two end points of a material change edge are in
two material regions, Ω1 and Ω2. Therefore the constructed boundary is shared by these two
materials. In this way, the boundary for each material region is detected, and is defined as the
shrink set automatically.

Geometric flow—First boundary vertices and interior vertices are distinguished. For each
boundary vertex, there are two kinds of movement: one is along the normal direction to remove
noise on the boundary, the other is on the tangent plane to improve the aspect ratio of the mesh.
The surface diffusion flow is selected to calculate the movement along the normal direction
because the surface diffusion flow preserves volume. A discretized Laplace-Beltrami operator
is computed numerically [34]. For each interior vertex, we choose the volume-weighted
averaging method to relocate it.

Optimization method—After applying pillowing and geometric flow techniques on the
meshes, we use the optimization method to further improve the mesh quality. For example, we
choose the Jacobian equation as our object function, and use the conjugate gradient method to
improve the worst Jacobian value of the mesh. The condition number and the Oddy number
are also improved at the same time.

We have applied our quality improvement techniques on some hexahedral meshes. Figure 9
(c) shows one cross-section of the original mesh, and Figure 9(d) shows the improved mesh.
It is obvious that the hexahedral mesh is improved and each element has at most one face lying
on the boundary. Figure 13 shows some statistics of quality metrics for the Brodmann brain
atlas (Figure 1) and the segmented RDV data (Figure 14). All the elements in the resulting
meshes have positive Jacobian, and the worst condition number of the Jacobian matrix is above
300.

6 Results
In this section, we present applications of our meshing approach to two datasets: the Brodmann
brain atlas and a segmented rice dwarf virus (RDV) volumetric data.

Brodmann brain atlas
The Brodmann brain atlas is a segmented volume map with 48 different areas or materials, and
each area controls a different functionality
(http://www.sph.sc.edu/comd/rorden/mricro.html). We apply our meshing algorithms on the
atlas to construct meshes for all material regions, and provide some statistics, such as the surface
area and the volume of each region. The results are shown in Figure 1, and three areas are
selected to show details of the constructed meshes, including the peristriate area (Area 19,
surface area 144.1 cm2 and volume 96.9 cm3), the occipitotemporal area (Area 37, surface area
128.9 cm2 and volume 88.7 cm3) and the angular area (Area 39, surface area 47.0 cm2 and
volume 41.4 cm3). The total volume of the brain is 1373.3 cm3 (the normal volume of a human
brain is 1300-1500 cm3). Some statistics of quality metrics are shown in Figure 13.
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Rice dwarf virus
Another main application of our algorithms is on segmented biomolecular data, for example,
the cryo-electron microscopy data (cryo-EM) of a rice dwarf virus (RDV) with a resolution of
6.8 Å. In Figure 14, (a) shows the segmentation result [31], and each color represents four 1/3
unique trimers. Each trimer is further segmented into three P8 monomers as shown in (b-e),
and each monomer has surface area 6112.0 Å2 and volume 59158.9 Å3. Different kinds of
meshes are constructed for a trimer which has three materials. Our method provides a
convenient approach to visualize the inner structure of RDV. Figure 13 shows some statistics
of quality metrics.

Although currently we do not have application results on actual finite element analyses, our
technique has attracted interests of researchers on material property analysis and novel material
design of crystalline microstructures. We will test our resulting meshes in finite element
analysis collaborating with our collaborators.

7 Conclusions and Future Work
We have developed an automatic and efficient 3D meshing approach to construct adaptive and
quality tetrahedral or hexahedral meshes for a volumetric domain with multiple materials
without introducing any gaps, in particular, for regions shared by more than two materials. All
the boundaries between materials are detected, and non-manifold boundary nodes are
calculated using a novel approach. All material regions are meshed with conforming
boundaries simultaneously. Edge-contraction and geometric flow schemes are used to improve
the quality of tetrahedral meshes, while a combination of pillowing, geometric flow and
optimization techniques is employed for the quality improvement of hexahedral meshes. We
also provide an automatic way to define the shrink set for the pillowing technique.

Our meshing techniques work for complicated geometry and topology, which makes them
useful for finite element analysis. As part of the future work, we will study how to validate
surface accuracy and geometry topology after mesh generation from segmented imaging data.
In addition, modifications and adjustments are often needed for applications with specific
requirements. For example, mesh adaptivity may be controlled by physical properties of the
meshed domain, such as its temperature field, which may be obtained from experimental
imaging data. Experimental imaging data sets can be very large and inconsistent from scan to
scan, so it may be necessary to employ statistical approaches and/or data mining to refine and
converge the meshes to construct analysis-suitable models.
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Fig. 1.
Mesh generation for the segmented Brodmann brain atlas with 48 areas or materials. In (b)-
(e), only three areas (Areas 19, 37, and 39) are shown. (a) - smooth shading of the constructed
brain model, each color represents one material; (b) - a triangular mesh; (c) - a quadrilateral
mesh; (d) - one cross-section of a hexahedral mesh; (e) - one cross-section of a tetrahedral
mesh. Red windows show details.
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Fig. 2.
A minimizer point (the red one) is calculated within an octree cell as the intersection point of
two tangent lines. The two green points are intersection points of the red curve with cell edges.
pi and ni are the position and unit normal vector at a green point, respectively.
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Fig. 3.
A domain with multiple materials. (a) - (∪)Bi consists of manifold curves; (b) - (∪)Bi consists
of non-manifold curves and a square outer boundary.
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Fig. 4.
Minimizer point calculation within a boundary octree cell. The red curves are boundaries
between materials, green points are intersection points of red curves with cell edges, and red
points are calculated minimizers. (a) - the boundary is shared by two materials, and the same
minimizer is obtained when we mesh each material separately; (b) - the octree cell contains
three materials, and the blue point is shared by all the three materials. Three different
minimizers are obtained within this cell when we mesh each material separately.
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Fig. 5.
2D triangulation for a domain with multiple materials. (a) - there are three materials, and (∪)
Bi constructs manifold curves; (b) - there are four materials, and (∪)Bi constructs non-manifold
curves and a square outer boundary.
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Fig. 6.
2D quadrilateral meshing for a domain with multiple materials. (a) - there are three materials,
and (∪)Bi constructs manifold curves; (b) - there are four materials, and (∪)Bi constructs non-
manifold curves and a manifold outer boundary.
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Fig. 7.
Material change edges and interior edges are analyzed in 3D tetrahedralization. (a) - the red
edge is shared by four cells, and two pyramids are constructed; (b) - the red edge is shared by
three cells, and two tetrahedra are constructed. The green points are minimizer points.
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Fig. 8.
Tetrahedral mesh generation for a domain with three materials. (a) - a wireframe visualization;
(b) -the constructed triangular surface mesh; (c) - one cross-section of the constructed
tetrahedral mesh; (d) - the surface mesh is improved by using edge-contraction and geometric
flow (100 steps with step length 0.01).
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Fig. 9.
Hexahedral mesh construction for a domain with three materials. (a) - surface quadrilateral
mesh; (b) - surface mesh after quality improvement with geometric flow (100 steps with step
length 0.01); (c) - one cross-section of the original hexahedral mesh; (d) - one cross-section of
the improved hexahedral mesh.
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Fig. 10.
A special case for edge-contraction. In (a), a point P is embedded in a triangle P0P1P2. P and
each edge of the triangle P0P1P2 construct a triangle. In (b), a point P is embedded in a
tetrahedron P0P1P2P3. P and each face of the tetrahedron P0P1P2P3 construct a tetrahedron.
When we contract any edge of triangle P0P1P2 or tetrahedron P0P1P2P3, duplicated and useless
elements are generated.
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Fig. 11.
A hexahedron [p1p2…p8] is mapped into a trilinear parametric volume in terms of ξ, η, and
ζ. The eight basis functions in Equation (4) correspond to the eight vertices of the hexahedron.
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Fig. 12.
The pillowing technique. (a-c) show a “doublet” and (d-f) show an element whose two faces
lie on the boundary, but the two faces are shared by two other elements. (a, d) - the original
mesh, the red layer is the boundary shared by two materials; (b, e) - a parallel layer (the blue
one) is created for the material with an element whose two faces lie on the boundary. Two
layers are created in (b), but only one layer is created in (e); (c, f) - geometric flow is used to
smooth the resulting mesh. The red layer is still on the boundary.
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Fig. 13.
The histogram of Joe-Liu parameter (left) of tet meshes, and the condition number (right) of
hexahedral meshes for the human brain and the RDV data. It is obvious that the mesh quality,
especially the worst parameter, is improved
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Fig. 14.
Mesh generation for the segmented rice dwarf virus (RDV) data. (a) - smooth shading of the
segmented RDV model [31], each color represents four 1/3 trimers; (b) - a triangular mesh of
one trimer consisting of three monomers; (c) - a quadrilateral mesh of one trimer; (d) - one
cross-section of a hexahedral mesh; (e) - one cross-section of a tetrahedral mesh.
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