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Persistence of T cells engineered with chimeric antigen 
receptors (CARs) has been a major barrier to use of 
these cells for molecularly targeted adoptive immuno-
therapy. To address this issue, we created a series of 
CARs that contain the T cell receptor-ζ (TCR-ζ) signal 
transduction domain with the CD28 and/or CD137 
(4-1BB) intracellular domains in tandem. After short-
term expansion, primary human T cells were subjected 
to lentiviral gene transfer, resulting in large numbers 
of cells with >85% CAR expression. In an immuno-
deficient mouse xenograft model of primary human 
pre-B-cell acute lymphoblastic leukemia, human T cells 
expressing anti-CD19 CARs containing CD137 exhib-
ited the greatest antileukemic efficacy and prolonged 
(>6 months) survival in vivo, and were significantly 
more effective than cells expressing CARs containing 
TCR-ζ alone or CD28-ζ signaling receptors. We uncov-
ered a previously unrecognized, antigen-independent 
effect of CARs expressing the CD137 cytoplasmic 
domain that likely contributes to the enhanced anti-
leukemic efficacy and survival in tumor bearing mice. 
Furthermore, our studies revealed significant discrep-
ancies between in vitro and in vivo surrogate mea-
sures of CAR efficacy. Together these results suggest 
that incorporation of the CD137 signaling domain in 
CARs should improve the persistence of CARs in the 
hematologic malignancies and hence maximize their 
antitumor activity.
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Introduction
With the advent of efficient gene transfer technologies, such 
as murine retroviral and HIV-derived lentiviral vectors, it has 
become feasible to confer novel antigenic specificity to T cells by 
transfer of chimeric antigen receptors (CARs) with stable, long-
term expression. This technology has been used to generate T cells 
specific for HIV and several human tumor antigens, and some of 
these engineered T cells have been tested in Phase I/II studies in 
humans demonstrating the feasibility and relative safety of this 
approach.1–3 One study has demonstrated antitumor activity in 
patients with neuroblastoma given a single CAR infusion.4

CARs combine the antigen recognition domain of antibody 
with the intracellular domain of the T cell receptor-ζ (TCR-ζ) 
chain or FcγRI protein into a single chimeric protein that are 
capable of triggering T-cell activation in a manner very similar to 
that of the endogenous TCR.5,6 Several studies demonstrate that 
the addition of costimulatory domains, particularly the intrac-
ellular domain of CD28 can significantly augment the ability 
of these receptors to stimulate cytokine secretion and enhance 
antitumor efficacy in preclinical animal models using both solid 
tumors and leukemia that lack the expression of the CD28 recep-
tor ligands CD80 and CD86.7–9 Inclusion of domains from recep-
tors such as the tumor necrosis factor receptor family members, 
CD134 (OX-40) and CD137 (4-1BB) into CARs has also been 
shown to augment CAR-mediated T-cell responses.10,11 Gene 
transfer approaches using these engineered CARs may therefore 
provide significant improvements over current adoptive immu-
notherapy strategies that must rely on the endogenous TCR spec-
ificities, for which significant issues of TCR repertoire limitation 
and impaired tumor major histocompatibility complex class I 
expression may exist.
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In this study, we have addressed the issue of limited in vivo persis-
tence of CARs by defining the relative contributions of TCR-ζ, CD137 
and CD28 signaling domains in mice engrafted with hematopoietic 
malignancies. We chose the human CD19 antigen as our initial 
target for several reasons: (i) CD19 displays a pattern of expres-
sion that is highly restricted to B cells and B-cell progenitor cells,12 
(ii) CD19 does not appear to be expressed by hematopoietic stem 
cells permitting the targeting of the B-cell lineage without affecting 
other hematopoietic lineages,13 and (iii) CD19 is widely expressed 
by malignant cells that are derived from the B-cell lineage includ-
ing most lymphomas and lymphocytic leukemias.14 After optimiz-
ing the generation of CARs with an efficient T-cell culture process, 
in vitro studies indicate that incorporation of either CD28 or 4-1BB 
signaling domains enhances activity over TCR–ζ, confirming previ-
ous studies. In contrast, compared to CARs that contain CD28, our 

in vivo studies indicate that CARs containing CD137 have superior 
antileukemic efficacy and improved persistence in a primary human 
acute lymphoblastic leukemia xenograft model. Furthermore, we 
also find that CARs expressing CD137 signaling domains can pro-
vide significant activity that appears to be antigen independent and 
may contribute to the efficacy of CARs in vivo.

Results
Efficient generation of CAR+ T cells using 
artificial bead‑based antigen-presenting cells and 
lentiviral gene transfer
Lentiviral vectors can transfer genes into activated CD4+ and 
CD8+ human T cells with high efficiency but expression of the 
vector-encoded transgene depends on the internal promoter that 
drives its transcription. Therefore, successful CAR expression and 
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Figure 1 L entiviral gene transfer combined with αCD3/αCD28 coated magnetic bead activation of T cells permits generation of large 
numbers of CD19-specific chimeric antigen receptor (CAR+) T cells. (a) A schematic diagram showing the CD19-specific CAR used in this study. 
(b) Comparison of green fluorescent protein (GFP) expression under the control of different eukaryotic promoters in primary human CD4+ and CD8+ 
T cells over time. GFP fluorescence was compared in the indicated T cell subset in cells that were stimulated with αCD3/αCD28 coated beads followed 
by lentiviral transduction at an multiplicity of infection (MOI) of 0.2 on day 1 with vector expressing enhanced GFP under the control of the promoter 
indicated. Flow cytometric detection of GFP fluorescence was calibrated using Rainbow Calibration Particles (Spherotech, Lake Forest, IL) to correct for 
day-to-day variation. (c) αCD19-specific CAR surface expression in primary human CD4+ and CD8+ T cells. Expression was examined 6 days following 
transduction with the indicated CAR-encoding lentiviral vector at a MOI of ~8. (d) In vitro expansion of CD4+ and CD8+ T cells following activation 
with αCD3/αCD28 coated magnetic beads and transduction of the indicated CAR on day 1. Data are representative of >3 independent experiments.
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gene therapies with CAR-expressing T cells rely on the ability of 
T cells to maintain adequate receptor expression over long peri-
ods of time. We tested several promoters to identify the one with 
the highest stable expression in both primary CD4+ and CD8+ T 
cells. Transduction was performed at limiting dilution to ensure 
that the cells have a single integrated vector per cell (data not 
shown). Although the cytomegalovirus (CMV) promoter exhib-
ited high levels of expression of a green fluorescent protein (GFP) 
transgene early after transduction, expression decreased to <25% 
of the initial expression after 10 days of culture (Figure 1b). The 
distribution of CMV-driven GFP expression was also quite vari-
able compared with the other promoters tested (Supplementary 
Figure S1). In contrast, the elongation factor-1α (EF-1α) promoter 
not only induced the highest level of GFP expression but also opti-
mally maintained it in both CD4 cells and CD8 cells (Figure 1b). 
These findings confirmed and extended other studies in primary 
human T cells.15 The EF-1α promoter was therefore selected for all 
future studies using CARs. By using lentiviral vectors and trans-
ductions at a multiplicity of infection of 5, the different CARs could 

be expressed with high expression in >85% primary human T cells 
(Figure 1c). Western blotting under both reducing and nonreduc-
ing conditions demonstrated that the CARs are present as both 
covalent dimers and monomers within T cells (Supplementary 
Figure S2). Using the artificial bead-based antigen-presenting cell 
system previously described by our laboratory,16 >50-fold expan-
sion of CAR+ T cells could be achieved over the course of trans-
duction and growth in ~10 days (Figure 1d).

Functional characterization of anti-CD19 
CAR‑expressing primary human T cells
To enhance the functionality of the immunoreceptor, we intro-
duce the signal transduction domains of CD28 or CD137 in the 
TCR-ζ containing CAR (Figure  1a). Similar to data reported 
by other groups,11,17 the introduction of costimulatory domains 
into CARs does not improve the antigen-specific cytotoxicity 
triggered by these receptors (Figure 2b). Lytic activity of trans-
duced T cells against K562 target cells expressing CD19 cor-
related with the transduction efficiency of the T cells (data not 
shown). CAR-triggered cytotoxicity is antigen-specific with only 
negligible lysis of wild-type K562 cells that lack expression of 
the CD19 antigen (Figure 2a). CAR+ T cells are also able to effi-
ciently kill primary pre-B acute lymphoblastic leukemia (ALL) 
cells that express physiologic levels of CD19 (Figure 2b). Of note, 
these primary ALL cells lack expression of endogenous CD80 or 
CD86 (Figure S3).

Following CAR activation with CD19+ K562 cells, CD4+ T cells 
expressing CARs produced abundant quantities of interleukin-2 
(IL-2) and interferon-γ (Figure 3) comparable to cells stimulated 
via the endogenous TCR and CD28 receptors (data not shown). T 
cells expressing CD28 and CD137 domain-containing CARs pro-
duced greater quantities of IL-2 when compared with cells express-
ing the αCD19-ζ receptor (Figure 3). The production of the type 2 
cytokines, IL-4 and IL-10, by CD4+ T cells was also stimulated by 
all of the CARs tested; however, the levels of these cytokines were 
much lower, consistent with the Th1-like phenotype of T cells gen-
erated by anti-CD3 and CD28 stimulatory beads.16 It was notable 
that the incorporation of the CD137 domain into CARs decreased 
the production of these type 2 cytokines, consistent with previ-
ous reports of the 4-1BB signaling pathway in natural T cells.18 All 
CARs stimulated interferon-γ production by CD8+ T cells. These 
findings confirm that the addition of costimulatory domains into 
CARs modulates cytokine secretion in a manner that is dependent 
on the type of costimulatory domain.7,8,17,19 However, it is less well 
appreciated that the pattern of cytokine expression is altered by 
incorporation of different signal transduction domains into the 
CARs. These differences may have important consequences for 
the functionality of T cells engineered to express CARs.

The effects of costimulatory domains on  
CAR-driven T cell proliferation
The generation of a robust and sustained antitumor immune 
response requires not only triggering of cytotoxicity and cytokine 
production but also stimulation of T cell proliferation. To assess 
the relative contribution of different costimulatory domains to 
proliferative signals delivered by CARs, we engineered primary 
human T cells to express CARs in conjunction with GFP to permit 
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Figure 2 CD 19-specific CAR+ T cells demonstrate antigen-specific 
killing of CD19+ tumor cells. (a) CAR+ T cell cytotoxic activity towards 
K562 cells that are engineered to express human CD19 (K19) or tar-
get antigen negative wild-type K562 cells (K wild type). Following >10 
days expansion, CAR+ T cells (Effector cells) were mixed with the K562 
cells (Target cells) at the indicated ratios. Results represent the mean 
percent of target cell lysis as described in materials. Results are repre-
sentative of three-independent experiments. (b) Cytotoxic activity of T 
cells expressing either the aCD19-BB-ζ or the aCD19-Δζ control recep-
tor towards primary human ALL target cells using the same method 
described in (a). Error bars represent the standard error of the mean 
for three replicates.
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evaluation of both CAR+ and CAR− T cells in the same culture. 
Following T-cell restimulation with CD19+ K562 (K562-CD19 
cells), T cells expressing the αCD19-28-ζ receptor exhibited pro-
liferation comparable to that obtained with full stimulation of the 
endogenous TCR complex with K562 cells loaded with anti-CD3 
and CD28 antibodies, a condition shown previously to support 
long-term expansion of primary human T cells (KT32-BBL)20 
(Figure  4a[v]). The αCD19-28-BB-ζ triple receptor also stimu-
lated CD19 driven proliferation (Figure  4a[iv]), but to a lesser 
extent than that observed with the αCD19-28-ζ double costimu-
latory receptor. No significant proliferation was observed when 
these same T cells were stimulated with wild-type K562 cells lack-
ing the CD19 antigen (K562 wild type). As previously shown by 
other investigators,17,19,21,22 T cells expressing the αCD19-ζ recep-
tor showed little proliferation on exposure to the surrogate CD19 
antigen (Figure 4a[ii]), demonstrating the dependence of CAR-
driven proliferation on costimulatory signals.

Unexpectedly, T cells containing the αCD19-BB-ζ double 
costimulatory domain CAR had significantly increased prolifera-
tive capacity during in vitro expansion independently of recep-
tor ligation with the surrogate CD19 antigen (Figure  4a[iii],b). 

This  increased proliferation was observed in both CD4+ and 
CD8+ T cells (data not shown), and it was associated with a pro-
longed blast phase after the initial stimulation and transduction, 
as revealed by a longer maintenance of an elevated mean cel-
lular volume (Figure  4c), a parameter that correlates well with 
log phase proliferation of T cells.16 These findings suggest that 
incorporation of the CD137 intracellular domain mediates anti-
gen-independent activity that is similar to that provided by the 
natural 4-1BB receptor in T cells following ligation.23 As a result 
of the enhanced proliferation observed following the initial acti-
vation of T cells via αCD3/αCD28-coated beads used to enhance 
T-cell transduction24,25 (Figure 4b), CAR+ T cells expressing the 
αCD19-BB-ζ receptor had relatively low CAR-driven proliferation 
(Figure 4a[iii]).

Evaluating antitumor responses of CAR+ human 
primary T cells in vivo
Other than the antigen-independent proliferation of the 4-1BB 
containing CAR, the above in vitro findings, in aggregate, suggested 
that the αCD19-28-ζ CAR would be the most effective receptor for 
generating a sustained antileukemic T cell response  in vivo. We 
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evaluated the in vivo efficacy of αCD19 CARs using an in vivo 
model of ALL (Figure 5a) in which primary human pre-B ALL cells 
are engrafted into immunodeficient mice. In this model system, 
intravenous injection of primary ALL cells leads to development 
of progressive leukemia with significant involvement of the bone 
marrow, spleen and blood including leptomeningeal involvement 
(Figure 5b,c) that eventually leads to the death of the animal.26,27 
Primary human T cells also readily engraft within these animals, 
and engraftment of mock-transduced human CD4+ and CD8+ T 
cells in leukemia-bearing animals has little or no impact on the 
development of leukemia (Figure 5d,e). As little as 5 × 106 CAR+ 
T cells can significantly delay leukemia in most mice injected with 
ALL 2 weeks prior (Figure 5d,e, P = 0.008) compared with mock-
transduced T cells. A dose-dependent affect is also apparent with 
as little as 5 × 105 CAR+ cells showing an effect on development 
of leukemia (Figure  5d). All of the CARs demonstrated potent 
antileukemic activity when 2 × 106 CAR+ T cells were injected 

2 weeks after establishing leukemia in the mice (Figure 5f). The 
treatment effect was significant for the αCD19-ζ CAR (P < 0.05) 
and for CARs that expressed costimulatory domains (P < 0.01). 
The αCD19-28-BB-ζ triple CAR was the most potent of the CARs 
tested; however, this difference was not significant (Figure 5f). We 
confirmed this result in another experiment using a more aggres-
sive ALL (patient 96). This experiment used 10 mice per group, 
and was powered to detect smaller treatment effects than the 
experiment shown in Figure 5f. Again, the αCD19-28-BB-ζ triple 
CAR was the most potent of the CARs tested, however, the triple 
CAR could not be demonstrated to be superior to the αCD19-
BB-ζ CAR (data not shown).

In vitro observations suggested that the CD28 intracellular 
domain should permit CAR+ T cell proliferation in vivo when 
transduced with CARs that contain this domain. We therefore 
compared the in vivo efficacy of T cells expressing the αCD19-ζ, 
αCD19-28-ζ, and αCD19-BB-ζ CARs by injecting 10 million bulk 
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T cells (adjusted to 50% CAR+ T cells in order to follow the fate 
of CAR+ versus CAR− cells) 3 weeks after establishment of leu-
kemia in nonobese diabetic–severe combined immunodeficiency 
(NOD-SCID)-γ−/− mice. The T cells were engineered to express 
GFP as well as the CAR by using a vector that encodes these two 
genes separated by the 2A ribosomal skipping sequence to allow 
monitoring of CAR+ T cells. All CAR+ T cells retain significant 
antileukemic efficacy compared with mock-transduced T cells 
when limiting numbers of T cells necessary for engraftment are 
transferred (Figure 5f); however, studies using higher numbers 
of CAR+ T cells reveal significant differences in the engraftment 
and persistence of the CAR+ T cells bearing different costimu-
latory domains (Figure  6a–d). The total T cell counts were 
highest in mice after injection with αCD19-BB-ζ CAR+ T cells 
(Figure 6a), and the T cells were comprised of CD4+ and CD8+ 
CAR+ T cells (Figure 6b). After injection into leukemic animals, 
the proportion of αCD19-BB-ζ CAR+ T cells was significantly 
higher than αCD19-ζ CARs+ T cells (P < 0.01), whereas it was 
notable that the proportion of αCD19-28-ζ CAR+ T cells were not 
higher than the αCD19-ζ only CARs. Interestingly, the enhanced 

engraftment and/or persistence of the αCD19-BB-ζ CAR+ CD4 
and CD8 T cells was CD19 antigen independent, because it was 
also observed in animals that were not injected with ALL cells 
(Figure 6c, P < 0.05).

It is notable that the T cells expressing the αCD19-28-ζ recep-
tor also did not exhibit greater antitumor efficacy compared with 
T cells expressing αCD19-ζ only (Figures 5f and 6d). It is pos-
sible that this could relate to low level expression of CD86 on the 
pre-B ALL cells (Supplementary Figure S3). In contrast, αCD19-
BB-ζ expressing T cells demonstrated a significant enhancement 
in antileukemic efficacy compared with T cells expressing either 
the αCD19-ζ or αCD19-28-ζ receptors. Median leukemia-free 
survival was increased by 7 weeks (Figure 6d, P = 0.009). Based 
on an approximate doubling time of 2.7 days for pre-B ALL cells 
(derived by fitting the leukemic blast counts in untreated animals 
to an exponential growth model), this 7-week delay in onset of 
leukemia corresponds to a reduction in leukemia burden of >105-
fold following T cell injection when compared with the burden 
present in animals receiving either the αCD19-ζ or αCD19-28-ζ 
modified T cells.
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Figure 6 T he 4-1BB costimulatory domain enhances CAR+ T cell survival and antileukemic efficacy in vivo. (a) Absolute peripheral blood CD4+ 
and CD8+ T cell counts 4 weeks following T cell injection in NOD-SCID-γ−/− mice. 8 × 106 T cells engineered to express the indicated CAR by a bicis-
tronic lentiviral vector that encodes the CAR linked to eGFP were injected 3 weeks after injection of 2 × 106 leukemic cells. T cells were normalized 
to 45–50% input GFP+ T cells by mixing with mock-transduced cells prior to injection, and confirmed by flow cytometry (data not shown). Results 
represent the mean and SEM of the absolute number of cells per ml of whole blood (measured by TruCount assay) in at least 4 mice/group. (b) The 
mean and SEM of the % of CAR+GFP+CD4+ and CD8+ T cells in the same samples shown in a. The overall F-test in a one-way ANOVA comparing the 
mean across groups was significant (P < 0.01). The asterisk indicates results that are significantly different from the other two groups by a post hoc 
pairwise comparison of the means (Scheffe F-test at P = 0.05). (c) Enhanced antigen-independent survival of 4-1BB CARs. The mean and SEM of the 
% of CAR+GFP+ CD4+ and CD8+ T cells in animals injected with T cells is shown at the same time as in a, but in nonleukemic NOD-SCID-γ−/− mice. 
The overall F-test in a one-way ANOVA comparing the mean across groups was significant (P < 0.01). The asterisk indicates results that are significantly 
different from the other two groups by a post hoc pairwise comparison of means (Scheffe F-test at P = 0.05). (d) Leukemia-free survival over time 
in animals described in a and b. Animals were assessed for leukemia at 1-week intervals. Survival curves for the indicated CAR+ T cell groups were 
compared using the log-rank test. The αCD19-BB-ζ group shows a significantly increased median survival (log-rank test, P = 0.009) compared to 
either the αCD19-ζ or αCD19-28-ζ groups.
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The above experiments suggested that the CD137 signaling 
domain confers an antigen-independent effect to enhance the 
survival and/or proliferation of CAR T+ cells in vivo, and the 
results are consistent with the in vitro effects shown in Figure 4b. 
To further characterize this effect, a long-term competitive engraft-
ment experiment was carried out as shown in Figure  7a and 
described in detail in the Supplementary Materials and Methods 
and Supplementary Table S1. After establishing leukemia in the 
mice, a 1:1 mixture of T cells expressing either the αCD19-ζ or 

αCD19-BB-ζ CAR was injected 3 weeks later. Mice were injected 
with CAR T cells at 1, 5, and 20 × 106 cells per mouse; and the 
mice were bled and/or killed at intervals between 5 weeks and 6 
months after establishment of leukemia. There was a consistent 
enrichment for αCD19-BB-ζ in the spleens of the mice (Figure 7b, 
P = 0.0001) and other organs (data not shown). The enrichment 
was independent of the level of engraftment in that the bias of the 
log αCD19-BB-ζ to αCD19-ζ was consistent throughout a 3log10 
range of engraftment (Figure 7b).
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A robust, dose-dependent antileukemic treatment effect was 
observed in the mice given the mixture of T cells expressing the 
αCD19-ζ or αCD19-BB-ζ CARs (Figure 7c). Peripheral blood 
analyzed between 35 and 70 days after establishment of leuke-
mia showed that the mice treated at the 5 and 20 × 106 dose levels 
controlled the leukemia, whereas there was only partial control 
in the mice given 1 × 106 CAR T cells. However, even animals 
given the low dose of CARs had a significant treatment effects on 
days 57 and 70, comparing blast counts in mice engrafted with 
the CAR+ T cell mixture to mice engrafted with equivalent num-
ber of mock-transduced T cells (P < 0.01). Long-term engraft-
ment of the CAR+ T cells was observed in the animals with 
controlled leukemia, as 3 of 7 mice examined >6 months after T 
cell transfer were still engrafted in the spleen (Supplementary 
Table S2) and other organs (data not shown). There was no evi-
dence of a change in the ratio of αCD19-ζ to αCD19-BB-ζ over 
time, or as a function of T cell dose (Supplementary Table S2). 
Finally, animal 245 (Supplementary Table S2) was necropsied 
on day 198, and found to be free of leukemia and to harbor 
CAR+ T cells in the spleen that had constitutive surface expres-
sion of the single-chain variable fragment at readily detectable 
levels (Figure 7d).

Together, these results demonstrate that the αCD19-BB-ζ 
modified T cells persisted longer and had more vigorous anti-
leukemic effects than CAR+ T cells that expressed CD28 signal-
ing domains. In addition, although T cells expressing CARs that 
contain the TCR-ζ only or the CD28 costimulatory domain along 
with TCR-ζ are capable of killing ALL cells in vitro, their survival 
is significantly shorter than that of T cells with CARs expressing 
the CD137 signaling domain. Finally, there was no evidence for 
transformation of the CAR+ T cells that expressed the CD137 sig-
naling domains over the course of the 6 month experiment shown 
in Figure 7 and Supplementary Table S2.

Discussion
Artificial chimeric immunoreceptors offer the possibility of repro-
gramming T cells for efficient targeting of tumors in an human 
leukocyte antigen-independent fashion. However, although initial 
clinical studies demonstrate feasibility with the retargeted T cells, 
poor in vivo persistence and low expression of the transgene have 
been documented, and these limitations have reduced potential 
clinical activity.2,3,28 To address these issues, our studies have used 
a robust preclinical model, and we demonstrate that a single infu-
sion of as few as 2 million engineered T cells could control and 
in some cases, eliminate preestablished disseminated leukemia. 
Surprisingly, expression of the CD137 signaling domain rather 
than the CD28 domain was most correlated with reprogramming 
T cells for persistence in vivo.

Previous in vitro studies have characterized the incorpora-
tion of CD137 domains into CARs.10,11,29 Our results represent the 
first in vivo characterization of these CARs and uncover several 
important advantages of CARs that express CD137 that were not 
revealed by the previous in vitro studies. We demonstrated that 
CARs expressing the CD137 signaling domain could survive for 
at least 6 months in mice bearing tumor xenografts. This may 
have significant implications for immunosurveillance, as well as 
for tumor eradication. For example, in a mouse prostate cancer 

xenograft model, survival of CAR+ T cells for at least a week was 
required for tumor eradication.30

Long-term survival of the CARs did not require administra-
tion of exogenous cytokines, and these results significantly extend 
the duration of survival of human T cells expressing CARs shown 
in previous studies.17,31 To our knowledge, this is the first report 
demonstrating elimination of primary leukemia xenografts in a 
preclinical model using CAR+ T cells. Furthermore, complete 
eradication was achieved in some animals in the absence of fur-
ther in vivo therapy, including prior chemotherapy or subsequent 
cytokine support.

The long-term control of well-established tumors by immu-
notherapy has rarely been reported. Most preclinical models in a 
therapeutic setting have tested tumors that have been implanted 
for a week or less before initiation of therapy.32 After establish-
ing leukemia 2–3 weeks before T cell transfer, we found that 
many animals had long-term control of leukemia for at least 6 
months. The efficacy of targeted, adoptive immunotherapy in 
this xenograft model of primary human ALL compares favor-
ably to our prior experience testing the antileukemic efficacy 
of single cytotoxic (ref. 27 and data not shown) or targeted 
agents,26 where we have observed extension of survival but not 
cure of disease. Additionally, we have not previously observed 
the ability to control xenografted ALL for a period of as long as 
6 months.

It is likely that several mechanisms account for the enhanced 
efficiency of the redirected T cells observed in the present report. 
First, previous studies have generally used T cells after a culture 
for a month or longer.2,3,28 In the present work we have used an 
efficient bead-based artificial antigen-presenting cell, which 
shortens the culture to ~10 days, and permits the use of the T 
cells early at a time when we have shown previously that the aver-
age telomere length of the cultured T cells is actually longer than 
at the start of culture.33 We attribute this to the previous demon-
stration that the anti-CD28 driven culture system induces telom-
erase activity.34 Furthermore, the addition of anti-CD28 antibody 
to culture conditions promotes transduction of central memory 
T cells.35 CD28 bead-based cell expansion has the capacity to 
routinely generate >1010 CAR+ T cells in ~10 days using Food 
and Drug Administration compliant manufacturing procedures 
already in use for clinical trials in humans.36

Second, previous studies have generally used murine retrovi-
ruses or electroporation to introduce the chimeric receptor.2,3,28 We 
have used lentiviral gene transfer which permits highly efficient 
engineering of T cells with >85% successful gene transfer.24,36 As 
shown in our study, CAR expression was maintained for at least 
6 months in vivo with no evidence of silencing using the EF-1α 
promoter. In comparison, murine retroviral vectors have been 
shown to exhibit significant silencing of gene expression over 
time, despite the incorporation of elements such as chromatin-
insulator sequences.

Similar to other groups who have evaluated CARs incorporat-
ing costimulatory domains,9,10,17,37–41 we confirmed that the addi-
tion of the CD28 intracellular domain into CARs enhances the 
in  vitro proliferation and cytokine production of T cells stimu-
lated through these receptors. Interestingly, the αCD19-BB-ζ CAR 
appears to antagonize the production of the type 2 cytokines, IL-4 
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and IL-10, but it remains unclear whether this was due to direct 
signaling or to selective outgrowth of Th1-like cells.

In other studies using CAR+ T cells and trans costimula-
tion of CD28 and CD137 through genetic expression of CD80 
and 4-1BBL, redirected T cells were also found to have potent 
antitumor effects.31 The significantly enhanced antileukemic 
activity in vivo is associated with the improved persistence of 
the CAR+ T cells. Our results suggest that enhanced survival 
and/or proliferation of CAR+ T cells contribute to the increased 
antitumor effects.

CD137 plays an important role in T cell proliferation and 
survival, particularly for T cells within the memory T cell pool.42 
CD137 mediates its effects on T cell survival and proliferation 
through activation of the AKT/mammalian target of rapamycin 
pathway43 and the upregulation of the antiapoptotic genes, Bcl-xL 
and BFL-1.44

Surprisingly, the αCD19-28-ζ modified T cells failed to show 
a significant improvement in antileukemic efficacy using our pri-
mary pre-B ALL model compared with the αCD19-ζ modified T 
cells. In addition, we were unable to demonstrate superior thera-
peutic efficacy of αCD19-28-BB-ζ over αCD19-BB-ζ. Low level 
expression of CD86 on the ALL cells may in part account for this. 
Most other reports, including a recent study by our laboratory 
using a mesothelin-directed CAR find that CD28 domain-con-
taining CARs show enhanced antitumor efficacy.45 In that study 
we found that CARs containing either 4-1BB or CD28 endomains 
were equivalently active at controlling large tumors, that the com-
bination of CD28 and 4-1BB cytosolic domains resulted in the 
best persistence of CAR T cells in the tumor bearing mice and 
that 4-1BB endodomains tended to keep CAR T cells in a central 
memory state. Together, these studies suggest that the optimal sig-
nals required by CARs may be dependent on the particular tumor 
being targeted and/or the nature of the particular single-chain 
variable fragment antibody.

Our studies are the first to reveal antigen-independent effects 
of the αCD19-BB-ζ receptor on T cells. This receptor, although 
capable of triggering cytotoxicity in an antigen-dependent fash-
ion, also significantly prolonged the initial blast-phase of T cell 
activation. There are several possible mechanisms by which the 
CARs could deliver antigen-independent signals. CARs, like 
some natural receptors, may deliver tonic ligand-independent 
signals. Impairment of the regulatory mechanisms that normally 
extinguish receptor signaling such as the SHP-1 and PTPH1 
phosphatase that dephosphorylate the TCR-ζ immunoreceptor 
tyrosine–based activation motifs might be impaired, leading to 
the antigen-independent effects observed in this study. Although 
CARs appear to exist predominantly as homodimers, these artifi-
cially-constructed receptors might also spontaneously aggregate 
into oligomers, especially at the high levels of expression possible 
with the EF-1α promoter.

The enhanced growth effects of the αCD19-BB-ζ receptor are 
consistent with the antigen-independent growth effects that are 
observed in T cells stimulated through the natural CD137 receptor 
by agonist monoclonal antibody.23,46 Normally, CD137 expression 
is tightly regulated on T cells with expression limited to a window 
of a few days following T cell activation or following IL-15 treat-
ment.47 The 4-1BB/4-1BBL interaction has been proposed as one 

mechanism by which IL-15 mediates its effect on memory T cells 
under limiting CD137 expression.42 The antigen-independent sig-
nals derived from the CD137 domain within the CAR may be crit-
ical to the antileukemic effects observed in our study, analogous to 
the continued presence of a 4-1BB agonist antibody, and ectopic 
trans expression of 4-1BBL, both of which have been shown to 
promote antitumor effects in vivo.48 Although previously unre-
ported, these antigen-independent effects of CARs have impor-
tant implications for the clinical use of these receptors.

Materials And Methods
Construction of lentiviral vectors with different eukaryotic promoters 
and CARs. Lentiviral vectors that encode a mouse CD8-human CD28 chi-
meric protein and enhanced GFP (eGFP) separated by the encephalomyo-
carditis virus internal ribosomal entry sequence under the transcriptional 
control of either the CMV IE gene, EF-1α, ubiquitin C, or phosphoglycer-
okinase (PGK) promoter were generated by replacing the CMV promoter 
within the third generation self-inactivating lentiviral vector plasmid, 
pRRL-SIN-CMV-eGFP-WPRE (Cell Genesys, San Francisco, CA).49 The 
EF-1α promoter (derived from pTracer-CMV2; Invitrogen, Carlsbad, CA), 
the ubiquitin C promoter (derived from pHUG-1 lentiviral vector, a kind 
gift of Eric Brown, University of Pennsylvania) and the PGK promoter 
(derived from pRRLsin.sppt.PGK.GFP.pre, Cell Genesys) were all cloned 
into pRRL-SIN-CMV-eGFP-WPRE using PCR and standard molecular 
biology techniques.

Figure1a shows schematic diagrams of the CARs used in this study. 
All CARs contain an single-chain variable fragment that recognizes the 
human CD19 antigen. The cDNA for the CARs that contain a truncated 
form of the TCR-ζ intracellular domain (αCD19-Δζ), a full-length TCR-ζ 
domain (αCD19-ζ) or a TCR-ζ domain in cis with the intracellular domain 
of the 4-1BB receptor (αCD19-BB-ζ) were generated at St Jude’s Childrens 
Research Hospital.11 These complete CAR sequences were amplified 
directly from the provided plasmids by PCR. Constructs containing the 
CD28 transmembrane and intracellular domain alone (αCD19-28-ζ) or in 
combination with the 4-1BB intracellular domain (αCD19-28-BB-ζ) were 
generated by the procedure of splicing by overlap extension (Supplementary 
Table S3). A plasmid encoding a mCD28-huCD28 chimeric protein50 and 
the above constructs were used as templates for PCR. The resulting PCR 
fragments containing the complete CARs were then cloned into pELPS 3′ 
of the promoter using standard molecular biology techniques. pELPS is a 
derivative of the third-generation lentiviral vector pRRL-SIN-CMV-eGFP-
WPRE in which the CMV promoter was replaced with the EF-1α promoter 
as described above and the central polypurine tract of HIV was inserted 
5′ of the promoter. CAR-expressing lentiviral vectors in which the CAR 
sequences were preceded in frame by an eGFP sequence followed by the 
2A ribosomal skipping sequence from FMDV were also generated. These 
vectors permit dual expression of GFP and the CARs from a single RNA 
transcript. All constructs were verified by sequencing.

Mouse xenograft studies. Xenograft studies were performed as previ-
ously described.26,27 Briefly, 6–12 week old mice NOD-SCID-γc

−/− or 
NOD-SCID-β2

−/− mice were obtained from JAX (Bar Harbor, ME) or 
bred in-house under an approved IACUC protocol and maintained 
under pathogen-free conditions. Animals were injected with 5 × 105 to 
2 × 106 viable human ALL cells via the tail vein in a volume of 0.3 ml. 
T cells were injected into animals 9–21 days following ALL injection as 
indicated via the tail vein. Animals were closely monitored for signs of 
graft-versus-host disease as evidenced by >10% weight loss, loss of fur, 
and/or diarrhea. Peripheral blood was obtained by retro-orbital bleed-
ing, and ALL and T cell engraftment were determined by flow cytometry 
using BD TruCount tubes as described in the manufacturer’s instruc-
tions. CD19, CD3, CD4, and/or CD8 expression was detected by staining 
with fluorescently-conjugated monoclonal antibodies. CAR+ T cells were 
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identified by GFP expression using lentiviral vectors in which the CAR 
was linked to eGFP-2A as described above.

Detection of integrated CAR-expressing vectors by quantitative PCR. 
DNA was extracted from either cultured T cells or 1 mm3 of spleen tis-
sue using a QiAmp or PureGene kit (Qiagen, Valencia, CA), respectively, 
according to the manufacturer. Quantitative real-time PCR was performed 
on 500 ng of tissue-derived DNA with four replicates for each DNA sam-
ple using the ABI 2X Taqman Universal Master Mix with AmpErase UNG 
(Applied Biosystems, Foster City, CA). The αCD19-ζ specific primers and 
probe were designed to amplify the junction region between the CD8 
transmembrane region and the ζ signaling chain:

CD19 Zeta F primer:  5′-TCC TTC TCC TGT CAC TGG TTA TCA A-3′
CD19 Zeta R primer:  5′-G GTT CTG GCC CTG CTG GTA-3′
CD19 Zeta MGB probe:  5′-FAM CTT TAC TGC AGA GTG AAG T-3′

and the αCD19-BB-ζ specific primers and probe were designed to amplify 
the junction region between the 4-1BB and ζ signaling chains:

CD19 4-1BB F primer:  5′-TGC CGA TTT CCA GAA GAA GAA GAA G-3′
CD19 4-1BB R primer:  5′-GCG CTC CTG CTG AAC TTC-3′
CD19 4-1BB MGB probe:  5′-VIC ACT CTC AGT TCA CAT CCT C-3′

PCR with real-time fluorescence detection was performed on a 384 
well HT7900 real-time PCR thermocycler (Applied Biosystems). The 
numbers of copies for each vector, expressed as copies/500 ng DNA, was 
determined by comparison of the measured cycle threshold for each 
well to the cycle threshold of a standard curve prepared by dilution of 
a receptor-encoding plasmid in 500 ng pooled genomic DNA (Bioline 
USA, Taunton, MA) per well. Water added to 500 ng genomic DNA was 
used as the negative control, which was run in 2–3 wells per plate. Each 
sample was also evaluated in duplicate following the spiking of 20 copies 
of plasmid DNA for each CAR receptor into 500 ng of sample to evaluate 
for the presence of a PCR inhibitor. The assay was qualified to a limit of 
quantitation of five copies per 500 ng genomic DNA, which correlates to 
five copies in ~75,000 cells; the precision of values below five copies per 
well was not evaluated. Variation between runs during assay qualification 
was minimal and operator independent, with a coefficient of variation 
among two operators and four runs ranging from 5.31 to 1.47, an R2 value 
of >0.995 and a slope ranging from −3.05 to −3.65. Known spike controls 
ranging from 5 × 103 to 1 × 106 copies per well were also included in 
validation runs and were typically within 90% of the expected value.

Statistical analysis. Statistical analyses were performed as indicated using 
STATA version 10 (StataCorp, College Station, TX). In analysis where 
multiple groups were compared, a one-way analysis of variance was per-
formed with a threshold F-test P value of 0.05 prior to performance of 
post hoc analysis by the Scheffe F-test. Absolute peripheral blood T cell 
counts, ALL blast counts and αCD19-ζ:αCD19-BB-ζ copy number ratios 
were log-transformed prior to analysis. Survival curves were compared 
using the log-rank test.

Supplementary Material
Figure S1.  Fluorescence of T cells expressing GFP under the control 
of different eukaryotic promoters.
Figure S2.  Western blot analysis of CAR expression in primary T cells 
demonstrates presence of monomers and dimers.
Figure S3.  Primary patient 240 ALL cells show negligible surface 
expression of ligands for CD28 and CD137.
Table S1.  Treatment Groups for Figure 7.
Table S2.  In vivo comparison of αCD19-BB-ζ and αCD19-ζ persistence 
in spleen from day 35 to day 198 post injection.
Table S3.  Primer sequences used for construction of the different 
CARs using the splicing by overlap extension technique.
Materials and Methods.
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