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Abstract
Atherothrombotic vascular disease is the major cause of death and disability in obese and diabetic
subjects with insulin resistance. Although increased systemic risk factors in the setting of insulin
resistance contribute to this problem, it is likely exacerbated by direct effects of insulin resistance
on the arterial wall cells that participate in atherosclerosis. A critical process in the progression of
atherosclerotic lesions to those that cause clinical disease is necrotic breakdown of plaques. Plaque
necrosis, which is particularly prominent in the lesions of diabetics, is caused by the combination of
macrophage apoptosis and defective clearance, or efferocytosis, of the apoptotic macrophages. One
cause of macrophage apoptosis in advanced plaques is activation of a pro-apoptotic branch of the
endoplasmic reticulum stress pathway known as the Unfolded Protein Response (UPR).
Macrophages have a functional insulin receptor signal transduction pathway, and down regulation
of this pathway in the setting insulin resistance enhances UPR-induced apoptosis. Moreover, other
aspects of the obesity/insulin-resistance syndrome may adversely affect efferocytosis. These
processes may therefore provide an important mechanistic link among insulin resistance, plaque
necrosis, and atherothrombotic vascular disease and suggest novel therapeutic approaches to this
expanding health problem.
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The incidence of insulin resistance, metabolic syndrome, and type 2 diabetes is rising rapidly
due to the epidemic of obesity in the industrialized world.1 While a number of disease processes
are associated with insulin resistance and type 2 diabetes, the leading cause of morbidity and
mortality is cardiovascular disease.2 An important factor in accelerated heart disease in type
2 diabetes is likely to be insulin resistance and hyperinsulinemia. For example, the risk of
cardiovascular disease is increased in metabolic syndrome, which is characterized by insulin
resistance without overt hyperglycemia.3–5 Moreover, rapid weight gain during childhood
leads to hyperinsulinemia and increased coronary artery disease risk in adult life.6 Part of the
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association between insulin resistance and cardiovascular disease is likely related to associated
risk factors, including dyslipidemia (increased VLDL, reduced HDL, and possibly altered
LDL), hypertension, and a pro-thrombotic state.3 However, insulin resistance may have direct
pro-atherogenic effects at the level of the arterial wall, and an emerging concept that will be
explored in this review is that insulin resistance in lesional macrophages promotes a series of
cellular events critical for advanced plaque progression. After a brief review of atherogenesis,
we will focus on new findings related to plaque progression and the role of macrophage insulin
resistance that have appeared in the literature since the last review of this topic in this journal
in 2007.7

Principles of Atherogenesis
Plaque Initiation and Progression

Atherogenesis begins with the retention of atherogenic lipoproteins in the subendothelium of
susceptible areas of the arterial tree.8 In response to these retained lipoproteins, particularly
those that undergo atherogenic modifications such as oxidation and aggregation, a series of
biological and maladaptive inflammatory responses ensue: (a) monocytes and other
inflammatory cells enter the intima; (b) monocytes differentiate into macrophages, which then
ingest retained and modified lipoproteins and become cholesteryl ester-loaded foam cells; (c)
macrophages and other inflammatory cells contribute to a state of inflammation that fails to
properly resolve; and (d) smooth muscle cells populate the intima, leading to collagen
synthesis.9–12. At this stage, the plaques are usually asymptomatic due to outward remodeling
of the artery to preserve lumenal blood flow and a fibrous cap that protects the lesion from
disruption.13, 14 However, some of these plaques, unrelated to plaque size per se, may undergo
necrotic breakdown, thinning of the fibrous cap, a heightened state of inflammation, and an
accumulation of unesterified cholesterol.13–19. Many of the hallmarks of impaired
inflammation resolution are evident in these plaques, including continued entry and poor egress
of inflammatory cells, defective clearance of apoptotic cells, and a suppressed fibrotic
“scarring” response.12, 20 These so-called “vulnerable plaques” are at risk for plaque disruption
through fibrous cap rupture or endothelial erosion, which in turn can trigger acute thrombosis.
If the thrombosis is extensive and not quickly resolved, acute vascular occlusion and tissue
infarction occurs, leading to acute myocardial infarction, unstable angina, sudden cardiac
death, or stroke.

The exact mechanisms of plaque disruption are not known. Cap thinning per se may be caused
by a combination of protease-mediated digestion of extracellular matrix molecules, particularly
by matrix metalloproteinases (MMPs), and decreased collagen synthesis, perhaps exacerbated
by death of the collagen-synthesizing cells in the intima.13 These processes, as well as
coagulation and thrombosis, are likely promoted by inflammatory cytokines, many of which
are secreted by lesional macrophages.13 Lesional necrosis of vulnerable plaques, which is
caused by the combination of macrophage death and defective clearance, or “efferocytosis,”
of dead macrophages,21–23 can promote plaque disruption by a number of mechanisms.15,
22, 24–27. For example, although matrix proteases are secreted by living macrophages in lesions,
they may also be released by dead and dying macrophages.28 Moreover, lesional necrosis
triggers a heightened state of inflammation, which, as mentioned above, promotes MMP
secretion, coagulation, and thrombosis.29 Finally, the necrotic core is rich in lipids and poor
in cells and extracellular matrix, and the structural properties resulting from this composition
are thought to contribute to mechanical stresses in the overlying cap, which may contribute to
cap rupture.30 Thus, macrophage death and defective clearance of the dead cells, leading to
lesional necrosis, is an important process in the formation of the vulnerable plaque, and, as
described in this review, exacerbations of these processes may help explain accelerated
atherothrombotic disease in insulin-resistant states.
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Mechanisms and Consequences of Macrophage Death and Defective Efferocytosis in
Advanced Atheromata

To understand how insulin resistance may promote advanced plaque progression in general,
and plaque necrosis in particular, it is necessary to review our latest understanding of the
mechanisms and consequences of macrophage death in advanced atheromata. A number of
hypotheses have been conceived to explain advanced lesional macrophage apoptosis, and
undoubtedly more than one mechanism is involved. Examples include growth factor
deprivation, toxic cytokines, and oxidized lipids or lipoproteins,31 but there is as yet little proof
for these ideas in vivo. Recent mechanistic data in cultured cells and correlative and genetic-
causation evidence in vivo support a role for endoplasmic reticulum (ER) stress in advanced
lesional macrophage apoptosis and its major consequence, plaque necrosis. As had been
previously demonstrated in other models of ER stress-induced apoptosis, macrophages
subjected to ER stress undergo apoptosis in a manner that is partially dependent on the CHOP
(GADD153) branch of the ER stress pathway known as the Unfolded Protein Response (UPR).
32, 33 CHOP-mediated apoptosis can be modeled in cultured macrophages by either potent
inducers of ER stress or by the combination of more subtle ER stressors and a “second hit.”
An example of an atherosclerosis-relevant inducer of the single-hit ER stress apoptosis is 7-
ketocholesterol,33, 34 the most abundant oxysterol in advanced atherosclerotic lesions.
Examples of the two-hit model include the combination of low-level ER stressors with pattern
recognition receptor (PRR) ligands, such as modified lipoproteins.35, 36 Another example of
the two-hit model is incubation of macrophages with atherogenic lipoproteins under conditions
of genetic or pharmacologic inhibition of intracellular cholesterol re-esterification.37, 38 In
this model, which is often referred to as the “FC” (free cholesterol) model and is designed to
mimic FC-loaded macrophages in advanced atheromata,39, 40 the ER stress hit is provided by
excess accumulation of unesterified cholesterol in the ER membrane, and the second hit is
activation of PRRs by the lipoproteins themselves. The contribution of the second hit to
apoptosis involves both amplification of pro-apoptotic pathways and suppression of cell-
survival pathways that are activated in ER-stressed cells.36 The tendency of macrophages to
undergo apoptosis when subjected to ER stress in combination with PRR activation may have
evolved as a host defense mechanism against intracellular organisms that require living
macrophages to survive.

While it has been known that activation of the CHOP pathway of the UPR can cause apoptosis,
the molecular mechanisms linking CHOP to death execution pathways is poorly understood.
Recent work in our laboratories has provided evidence for a calcium-dependent mechanism in
ER stress-induced macrophage apoptosis. ER stress in macrophages leads to the release of
calcium from the ER lumen into the cytosol.32 The cytosolic calcium chelator BAPTA-AM
can block ER stress-induced apoptosis in macrophages, and recent work has shown that a key
integrator of cytosolic calcium and death execution in these cells is a calcium-responsive kinase
called calcium/calmodulin-dependent protein kinase II (CaMKII).36, 41, 42 Activation of
CaMKII leads to multiple death pathways, including induction of the cell-surface death
receptor Fas; stimulation of mitochondrial calcium uptake and release of pro-apoptotic
cytochrome c from the mitochondria; activation of pro-apoptotic STAT-1; and accumulation
of reactive oxygen species through activation of NADPH oxidase.42 CHOP amplifies this
calcium-death pathway by leading to activation of IP3 receptors, which are calcium-release
channels in the ER membrane.43 The mechanism involves oxidative activation of IP3R by the
downstream CHOP transcriptional target, ER oxidase-1α (ERO1α). Net calcium release can
also be promoted through inhibition of sarco/endoplasmic reticulum calcium-dependent
ATPase (SERCA), which pumps calcium back into the ER lumen. SERCA is inhibited by
alterations in the ER membrane by certain ER stressors, such as unesterified cholesterol or
saturated fatty acids,44 and SERCA is down-regulated in the setting of insulin resistance, as
will be summarized below.
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Macrophage apoptosis by itself would not be expected to be detrimental, because apoptotic
cells are normally cleared rapidly by phagocytosis (“efferocytosis”) in a manner that prevents
post-apoptotic cellular necrosis and that promotes anti-inflammatory processes.27 Indeed,
manipulations that accelerate early lesional macrophage apoptosis decrease lesion cellularity
and plaque progression, and vice versa,23, 45 suggesting that efferocytosis is very efficient in
the early stages of atherogenesis. This principle has been applied recently to a mouse model
of type 2 diabetes and early atherosclerosis.46 However, in the later stages of atherosclerosis,
macrophage apoptosis is associated with plaque necrosis,23 and there is evidence in humans
that efferocytosis is defective in advanced plaques.47 The mechanisms of defective
efferocytosis in advanced lesions are not known, but several interesting ideas have been
advanced based on in vitro and in vivo observations. For example, oxidized lipids and proteins
exist in these plaques, and some of these molecules can competitively inhibit efferocytosis by
binding to efferocytosis receptors.48 Thus, to the extent that these oxidized molecules
accumulate as lesions progress,10 they may reach a high enough level in advanced atheromata
to take on this competitive inhibitory role. In another scenario, the efferocytosis receptor Mertk
has been shown to play a role in efferocytosis and plaque necrosis in mouse lesions,49, 50 and
inflammation-induced cleavage of this receptor by membrane sheddases51 may contribute to
defective clearance of apoptotic cells in advanced plaques. The fact that inflammation increases
as lesions progress may offer an explanation as to why this anti-efferocytic process occurs only
in advanced plaques.

The concept that ER stress-induced macrophage apoptosis in combination with defective
efferocytosis in advanced lesions promotes plaque necrosis is supported by a number of
genetic-causation studies in mice and by correlative studies in humans. In fat-fed Apoe−/− or
Ldlr−/− mice, ER stress markers are induced as lesions progress.32, 52–56 Most importantly,
genetic targeting of CHOP and STAT-1, the pro-apoptotic signaling transducer activated by
the CHOP calcium-CaMKII pathway (above), as well as prevention of cholesterol-induced ER
damage, inhibit advanced lesional macrophage apoptosis and plaque necrosis.33, 42, 52
Moreover, deletion of two “second-hit” PRRs—SRA and CD36—decreases macrophage
apoptosis and plaque necrosis in the lesions of fat-fed Apoe−/− mice.57 In humans, there are
close correlations among markers of ER stress, apoptosis, and plaque vulnerability in coronary
arteries.55 In terms of efferocytosis, studies have shown an increase in plaque necrosis that
correlates with a worsening of lesional efferocytosis in several mouse models in which
efferocytosis effectors have been targeted, including Mertk, MFG-E8, transglutaminase-2, and
complement factor C1q.49, 58 In summary, in vitro and in vivo evidence support a model in
which macrophage apoptosis in advanced lesions, induced in part by a pro-apoptotic ER stress-
calcium pathway, plus defective efferocytosis promote plaque necrosis (Figure 1). Because
plaque necrosis is strongly associated with disrupted plaques and acute lumenal thrombosis,
59 and because plaque necrosis is particularly prominent in atherosclerotic lesions from diabetic
subjects, as described in the following section, these insights should be useful in our
understanding of and therapeutic approaches to accelerated plaque progression in the setting
of insulin resistance.

Macrophage Death and Plaque Progression in Insulin Resistance
Plaque Necrosis in Human Diabetic Coronary Artery Lesions

It is now well-established that type 2 diabetes and insulin resistance are major risk factors for
atherothrombotic vascular disease.3–5 While many theories have arisen to explain this
relationship,60, 61 a common endpoint of plaque progression associated with atherothrombotic
vascular disease, as mentioned in the previous section, is plaque necrosis. In this context, a
number of independent studies have found that advanced atherosclerotic lesions in diabetic
subjects are characterized by particularly large necrotic cores when compared to similarly sized
lesions from non-diabetic individuals.62–67 For example, Burke et al.62 found that necrotic
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core size in the coronary arteries of subjects who died suddenly was positively correlated with
the presence of diabetes independently of other factors. Similar results were found when
coronary atherectomy specimens of diabetics and non-diabetics were compared.63 Nasu et al.
66 used virtual histology based on intravascular ultrasound (IVUS) data to assess coronary
arterial necrotic cores in non-diabetic and diabetic patients with stable angina and found an
approximate 50% increase in the percent area covered by necrotic cores in the diabetic group.
Almost identical findings were reported in similar studies conducted by Hong et al.65 in Korea
and Pundziute et al.66 in the Netherlands. A prospective study of subjects with coronary artery
disease in which radiofrequency data from IVUS was used to assess necrotic core size in
coronary arteries found that only diabetes and age were associated positively with necrotic core
size in logistic regression analysis.67 These collective data raise the issue as to whether the
cellular events described in the previous sections, particularly advanced lesional macrophage
apoptosis and/or defective efferocytosis, are enhanced in the setting of diabetes, leading to
increased plaque necrosis and, ultimately, accelerated atherothrombotic vascular disease.

The Effect of Insulin Resistance on Macrophage Death Pathways
In view of the role of insulin resistance in diabetic heart disease and the larger necrotic cores
in the coronary arteries of diabetic subjects, we and others have examined how insulin
resistance at the level of the macrophage affects mechanisms and consequences of macrophage
death in vitro and in vivo. Macrophages have insulin receptors, and acute exposure of the cells
to insulin in vitro results in phosphorylation of the insulin receptor, insulin receptor substrate-2
(IRS-2), and Akt, leading, among other responses, to nuclear exclusion and inactivation of
FoxO transcription factors.7, 68 Moreover, pre-treatment of macrophages in vitro with high-
dose insulin leads to down-regulation of their insulin receptors and suppression of insulin
receptor signaling, which is also observed in freshly isolated macrophages from insulin-
resistant mice, such as the hyperinsulinemic leptin-deficient ob/ob mouse.68 Thus,
macrophages show the hallmarks of “insulin resistance” at a cellular level in the setting of high
insulin concentrations.

Macrophages rendered insulin resistant through pre-incubation with insulin, genetic deletion
of the insulin receptor, or pharmacologic inhibition of insulin signaling, and macrophages
freshly isolated from hyperinsulinemic mice, show an increase in the levels of the scavenger
receptor SRA.7, 68 As mentioned in the previous section, SRA can serve as a “second-hit” PRR
in ER stress-induced macrophage apoptosis both in vitro and in advanced lesional macrophage
death and plaque necrosis in vivo. In this regard, insulin-resistant macrophages show markedly
enhanced apoptosis in vitro when exposed to ER stress conditions plus an SRA-mediated
second hit, as is the case with macrophages loaded with lipoprotein-derived unesterified
cholesterol.56, 69, 70

ER stress in macrophages triggers compensatory cell-survival pathways, notably those
activated by Akt and NF-κB, and apoptosis is temporally correlated with a down-regulation of
these pathways and can be accelerated by their inhibition.36, 71, 72 Moreover, Akt deficiency
in Apoe−/− mice was shown to enhance lesional macrophage apoptosis and inflammation and
plaque progression.73 In this context, an important observation was that phosphorylation of
Akt is suppressed in ER-stressed, insulin-resistant macrophages.69, 71 Consistent with a
decrease in Akt phosphorylation, Senokuchi et al.71 found an increase in nuclear FoxO1 in
insulin-resistant, ER-stressed macrophages, which normally translocates to the cytoplasm in
response to Akt-dependent phosphorylation.74 Moreover, macrophages genetically lacking
FoxO1, 3 and 4, were resistant to ER stress-induced apoptosis.71 However, FoxO-
overexpression experiments indicated that nuclear localization of these transcription factors
was not by itself sufficient for macrophage apoptosis but rather led to an enhancement of
apoptosis in the setting of ER stress. The apoptosis-enhancing mechanism of FoxO1 is directly
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related to the role of another compensatory cell-survival factor in ER-stressed macrophages,
namely NF-κB.71, 72, 75, 76 In ER-stressed macrophages, FoxO1 induces the expression of the
NF-κB inhibitor IκBε and thereby enhances apoptosis.71

Importantly, insulin resistance potentiates the ER stress response itself.77 ER stress in
macrophages leads to activation of the mitogen-activated protein kinase ERK,76 and Liang et
al.77 found that this response was blunted in insulin-resistant macrophages. Additional studies
revealed that the MEK-ERK pathway induces SERCA,77 which, as explained above, can
abrogate ER stress by replenishing ER lumenal calcium stores and can protect macrophages
from ER stress-induced apoptosis by lowering cytosolic calcium levels. Thus, the blunted
MEK-ERK-SERCA pathway in insulin-resistant macrophages exacerbates the ER stress
response and the calcium-mediated apoptosis pathway described above, and restoration of
MEK1 in these cells is protective against both ER stress and apoptosis.77

In summary, mechanistic studies using various cell culture models of insulin-sensitive and
insulin-resistant macrophages, including primary macrophages freshly harvested from ob/ob
mice, have revealed an integrated pathway of cell signaling events responsible for the increased
apoptotic response to ER stress in the setting of insulin resistance. Key among these events are
those related to the compromise of compensatory cell survival pathways and the exacerbation
of pro-apoptotic calcium signaling pathways (Figure 2).

The Effect of Macrophage Insulin Resistance on Murine Atherosclerosis
To test relevance of enhanced ER stress-induced apoptosis in insulin-resistant macrophages
in vivo, irradiated Ldlr−/− mice were transplanted with bone marrow from Insr+/+ or Insr−/−
mice.69 It should be noted that this proof-of-concept model represents the most extreme form
of “insulin resistance.” After recovery of the graft, the mice were fed a high-fat diet, and lesions
were analyzed for overall area and, most importantly, plaque morphology. Consistent with the
in vitro data, the advanced lesions of the Insr−/−→ Ldlr−/− mice fed the diet for 12 weeks had
more apoptotic cells, particularly in macrophage-rich regions of the plaque, and more plaque
necrosis than those of the Insr+/+ → Ldlr−/− control mice. Overall lesion area, the less
important endpoint for the hypothesis being tested, showed no change after 8 weeks of diet
and only a modest increase after 12 weeks. Baumgartl et al.78 used the cre-lox system to create
Apoe−/− with macrophage-targeted deficiency of insulin receptors. After 4 months on a high-
fat diet, these mice had a modest decrease in lesion area compared with control Apoe−/− mice.
Apoptotic cells and necrotic areas were not quantified. Immortalized macrophages derived
from these mice had a marked reduction in LPS-induced interleukin-6 (IL-6) secretion. The
authors also tested the effects of global and bone marrow-derived IRS-2 deficiency in fat-fed
Apoe−/− mice. In the holo-knockout model, lesion area was modestly increased, and in the
bone marrow transplant model, lesion area was modestly decreased. Plaque morphology was
not quantified. The authors interpreted these data as showing that myeloid-derived insulin
receptors suppress atherosclerosis by blunting the inflammatory response.78 Senokuchi et al.
71 also observed decreased inflammatory responses during ER stress in insulin-resistant
macrophages. In that study, reduced NF-κB responses led to both increased apoptosis, as noted
in the previous section, and decreased expression of some inflammatory genes. In summary,
a careful comparison of Han et al.69 and Baumgartl et al.78 reveal a common finding of
relatively modest effects of macrophage insulin resistance on overall lesion size, with subtle
differences between the two studies perhaps arising from differences in genetic background
(mixed vs. inbred C67Bl/6J), diets used (Western-type diet vs. the pro-inflammatory high-
cholesterol/bile salt diet), and stage of lesion development. As noted, those specific features
of atherosclerotic lesions related to the novel concept that insulin-resistant macrophages are
more susceptible to apoptosis, i.e., advanced lesional macrophage apoptosis and plaque
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necrotic area, were assessed in only one of the two studies, and the data supported that concept.
69

Our laboratories have been working with another model of advanced lesional apoptosis and
plaque necrosis in mice that may relate to the findings above. During certain types of ER stress,
macrophages respond with activation of a compensatory cell-survival pathway in which the
MAP kinase p38α enhances phosphorylation/activation of Akt, a potent survival signal in these
cells (see previous section).79 In essence, this ER stress-activated pathway delays or suppresses
apoptosis, but eventually the survival pathway gets overwhelmed, and apoptosis ensues. As
predicted by this concept, we found that gene-targeting of macrophage p38α partially impedes
Akt activation and promotes ER stress-induced apoptosis both in vitro and in advanced plaques
in fat-fed Ldlr−/− mice. Because insulin resistance also partially impedes Akt signaling, we
reasoned that the two pathways might be additive. Indeed, treatment of macrophages from Insr
−/−;Ldlr−/− mice with an ER stressor plus a p38 inhibitor enhanced apoptosis to a very high
level, i.e., above the high level already seen when these macrophages are subjected to ER stress
alone79 (see previous section). These findings further demonstrate the importance of defective
Akt signaling, a critical component of intact insulin receptor signaling, in ER stress-induced
macrophage apoptosis and raise caution about the use of p38 inhibitors, currently under
development as anti-inflammatory agents in a number of diseases including type 2 diabetes,
80 in insulin-resistance subjects.

Two models of global insulin resistance have also shown an effect on plaque necrosis. A recent
study examining Western diet-fed ob/ob;Ldlr−/− mice, which have obesity and insulin resistant
secondary to leptin deficiency, showed an increase in necrotic core size compared to similarly
fed Ldlr−/− mice.81 As explained below, the mechanism not only involves increased
susceptibility to apoptosis but also defective efferocytosis in the macrophages of these mice.
Hsueh and colleagues82 compared 3 mo/old and 12 mo/old Ldlr−/− mice fed a high-fat diet
for 3 months. The older mice developed worse insulin resistance and worse atherosclerosis
than the younger mice, and the lesions in the older mice appeared to be associated with a marked
increase in plaque necrosis. The insulin-resistant older mice had a blunted anti-oxidant
response that might be caused by a defective DJ-1—Nrf2 anti-oxidant pathway,83 and a higher
lesional expression of the NADPH oxidase subunit, p47. Atherosclerosis and plaque
morphology were improved by treating the mice with the NADPH oxidase inhibitor and anti-
oxidant, apocynin. One implication of these findings is that aging, a major risk factor for
cardiovascular disease in humans,84 may interact with insulin resistance to promote plaque
necrosis, and in this regard it is interesting to note that aging is associated with both enhanced
ER stress and defective efferocytosis.85, 86 Second, a critical downstream pro-apoptotic
effector of ER stress and ER calcium release is activation of NADPH oxidase, and, given the
pathways described in Figure 2, this response may be further enhanced in the setting of insulin
resistance. Although vitamin E has not been shown to be effective in decreasing cardiovascular
risk in humans,87 more targeted anti-oxidants, such as NADPH oxidase inhibitors, in the
specific setting of insulin resistance and possibly aging, may be more mechanistically justified
and have more promise.

How Insulin Resistance Might Affect Efferocytosis
The increase in plaque necrosis in diabetic lesions raises the important issue as to whether
efferocytosis is defective in these lesions and, if so, how this is mechanistically linked to insulin
resistance. For example, defective phosphatidylinositol 3-kinase signaling in the setting of
insulin resistance could, in theory, lead to a defect in efferocytosis in general and a specific
defect in Mertk-mediated efferocytosis in particular.88, 89 Using an in situ assay that quantifies
the percentage of apoptotic cells that have been engulfed by phagocytic macrophages vs. not
associated with phagocytes,49 Li et al.81 found that the aortic root lesions of Western diet-fed
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ob/ob;Ldlr−/− mice had evidence of defective efferocytosis and, as predicted, increased plaque
necrosis compared with lesions of Western diet-fed Ldlr−/− mice. In vitro studies showed that
primary macrophages isolated from ob/ob mice have a defect in efferocytosis that was
associated with defective PI3 kinase activity, but those from Insr−/− mice do not. Further
studies revealed that the key defect in ob/ob macrophages was an increase in the saturated fatty
acid:unsaturated fatty acid ratio in the macrophage membranes, perhaps through “stiffening”
the plasma membrane to the point where phagocytosis is compromised.90 The efferocytosis
defect on ob/ob macrophage could be corrected by treating the cells with the omega-3
polyunsaturated fatty acid eicosapentanoic acid (EPA), and similar results were found when
macrophages were harvested from EPA-fed ob/ob mice. Most importantly, lesional
efferocytosis was improved in ob/ob;Ldlr−/− mice by EPA feeding, which interestingly has
also been associated with protection from heart disease in humans.91 The precise mechanism
of how saturated fatty acid impair efferocytosis and how EPA improves it is still under
investigation, as are other possible links between insulin resistance and clearance of apoptotic
cells. Nonetheless, we can begin to imagine an integrated model in which direct effects of
insulin resistance on advanced lesional macrophage apoptosis, combined with defective
efferocytosis caused by systemic fatty acid defects in the setting of insulin resistance, can at
least partially explain the large neurotic cores and accelerated thrombotic vascular disease in
diabetics (Figure 2).

Conclusions and Future Directions
This review focused on one key feature of type 2 diabetes, insulin resistance; one type of
lesional cell, the macrophage; and one overall context of atherosclerosis, advanced plaque
progression. Even within this focused area of research, more work is needed to further define
mechanisms whereby insulin resistance affects specific signaling pathways involved in the
panoply of atherosclerosis-relevant macrophage activities, including, interaction with
lipoproteins and intracellular metabolism of lipoprotein-derived lipids; inflammation and the
resolution thereof; stress responses, including oxidative, heat shock, and ER stress; secretion
of proteases, pro-coagulant molecules, and other factors involved in plaque progression;
phagocytosis, efferocytosis, and antigen presentation; apoptosis-cell survival balance; and
interaction with other cells and extracellular matrix. Moreover, it is likely that insulin resistance
affects these processes differently in different subsets of macrophages and in other types of
myeloid cells, notably dendritic cells, mast cells, and neutrophils. A limitation of our in vivo
studies has been the lack of a mouse model that fully recapitulates features of human plaque
disruption and athero-thrombosis,92 and so further developments to improve mouse models of
diabetic atherothrombotic vascular disease is an important goal. Nonetheless, it is becoming
clear that key morphologic features of such plaques are worsened by ER stress33 and insulin
resistance in macrophages.69

Beyond the specific areas of plaque macrophages, insulin resistance, and advanced plaque
progression, other areas of focus may offer additional clues as to why heart disease is enhanced
in type 2 diabetes.61 For example, decreased insulin signaling in endothelial cells, through
impaired Akt signaling, is also likely to have important pro-atherogenic consequences through
decreased eNOS activity and increased expression of inflammatory genes and VCAM-1.73 In
the liver, hyperinsulinemia and insulin signaling may increase VLDL secretion while having
the opposite effects on LDL receptor expression.93 The other major feature of type 2 diabetes,
hyperglycemia, may promote plaque instability by enhancing the inflammatory response in
macrophages through effects on plasma triglyceride-rich lipoproteins and free fatty acids.94

Hyperglycemia may also cause endothelial cell abnormalities, including oxidative stress and
RAGE-induced inflammation, that promote the earlier stages of atherogenesis.95, 96
Interestingly, there are recent data suggesting that hyperglycemia may exert some of its pro-
atherogenic effects in endothelial cells through FoxO1 and also through the induction of ER
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stress.97, 98 These hyperglycemia-endothelial cell studies, together with the insulin resistance-
macrophage studies described in this review, raise the interesting possibility that
hyperglycemia may affect mostly the earlier stages of atherogenesis, while insulin resistance
has its greatest effect on promoting advanced plaque progression. In this context, a recent
analysis of the Veterans Affairs Diabetes Trial found that intensive glucose lowering reduced
cardiovascular events in diabetics with a coronary artery calcium store < 100 (multivariable
hazard ratio [HR] = 0.08, p=0.03), but not in those with a calcium score >100 (HR = 0.74,
p=0.21).99 Smooth muscle cells, a key cell type in the generation of the “protective” fibrous
cap in advanced lesions, and platelets, the final effector of acute vascular occlusion, may be
affected by insulin resistance, hyperglycemia, or fatty acid abnormalities, which provide
additional opportunities for investigation.61 Continued progress in these areas will provide a
more complete understanding of how multiple features of diabetes promotes heart disease.

The ultimate goal of these studies is to complement our current efforts at identifying and
treating systemic risk factors that promote cardiovascular disease in diabetics. Despite the
relative success of this strategy, risk is still very high,100, and the tremendous scale of this
epidemic is such that overall risk will still be high even if compliance is improved and the
experimental modalities prove useful. Further understanding of the specific mechanisms of
increased vascular disease in diabetics, particularly at the molecular level in arterial wall cells,
may be a promising approach for further eradication in the future—and one that should be
additive or even synergistic with reduction of lipid and other systemic risk factors. One
approach is to increase insulin sensitivity in diabetic macrophages, such has been demonstrated
recently using a PPARγ activator in vivo68 and 1,25(OH)2 vitamin D in vitro.101 Another
approach is to develop agents to prevent ER stress or downstream pro-apoptotic processes in
macrophages by pharmacologic means, e.g., through the use of chemical chaperones102 or
inhibitors of the calcium-mediated pro-apoptotic pathway.103, 104 Moreover, in view of the
importance of defective efferocytosis in the generation of plaque necrosis and the ob/ob
efferocytosis study described above, experimental therapeutic modalities designed to enhance
efferocytosis58, 105 may be particularly useful in diabetics. Delivery of such drugs to plaques
might be facilitated by specific vehicles targeted to plaques,106 while clinical assessment in
phase 2 and phase 3 studies could be assisted by imaging techniques such as carotid MRI, that
have the capacity to measure important plaque features such as necrotic core area and cap
thickness.107 Studies in these areas occurring in parallel with ongoing efforts at systemic risk
reduction offer the best chance to curb the growing epidemic of diabetes-associated
atherothrombotic vascular disease.
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MMP matrix metalloproteinase

ER endoplasmic reticulum

CHOP CEBP-homologous protein

GADD growth arrest and DNA damage

PRR pattern recognition receptor

FC free cholesterol

TLR toll-like receptor

SAR type A scavenger receptor

BAPTA-AM acetoxymethyl ester of 1,2-bis(O-aminophenoxy)ethane-N,N,N′,N′-
tetraacetic acid

CaMKII calcium/calmodulin-dependent protein kinase II

STAT signal transducer and activator of transcription

IP3 inositol 1,4,5-triphosphate

ERO1α ER oxidase-1α

SERCA sarco/endoplasmic reticulum calcium-dependent ATPase

Mertk c-mer tyrosine kinase

Apoe apolipoprotein E

Ldlr LDL receptor

MFG-E8 milk fat globule epidermal growth factor 8

IVUS intravascular ultrasound

IRS-2 insulin receptor substrate-2

ERK extracellular signal-regulated kinases

MEK MAPK/ERK kinase

Insr insulin receptor

EPA eicosapentanoic acid

eNOS endothelial nitric oxide synthase

VCAM vascular cells adhesion molecule

PPAR peroxisome proliferator-activated receptor
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Figure 1.
A CHOP-calcium pathway of ER stress-induced apoptosis in macrophages. A diverse array of
ER stress-provoking events, many of which exist in advanced atheromata, trigger the UPR and
lead to induction of the downstream effector CHOP. CHOP induces ERO1α, which in turn
oxidatively activates IP3R calcium release channels in the ER. IP3R-mediated calcium release
begins a pro-apoptotic cascade involving activation of CaMKII by cytosolic calcium and
subsequent downstream apoptotic processes, as listed in the figure and as described in the text.
In addition, the resulting low level of calcium in the ER lumen likely causes dysfunction of
calcium-dependent protein chaperones, which amplifies UPR activation. The central concept
is that pro-apoptotic CHOP functions, at least in part, by promoting calcium-induced death as
part of a positive feedback cycle (see inset).
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Figure 2.
Cellular-molecular mechanisms by which macrophage insulin resistance promotes ER stress-
induced macrophage apoptosis and advanced plaque progression. At least three pro-apoptotic
processes are enhanced in ER stressed macrophages: (1) ER stress normally activates a
compensatory MEK-ERK-SERCA pathway to lower cytoplasmic calcium and replenish ER
lumenal stores. This pathway is blocked in the setting of insulin resistance, leading to enhanced
activation of calcium-mediated apoptotic pathways (increased cytosolic calcium) and further
UPR-CHOP activation (decreased ER lumenal calcium); (2) pattern recognition receptors like
scavenger receptors are up-regulated in insulin-resistant macrophages, and, when activated,
are synergistic with ER stress in inducing apoptosis (“2nd hit” concept); (3) Increased nuclear
FoxO in insulin-resistant macrophages induces IκBε, thereby suppressing a compensatory NF-
κB cell-survival pathway. In addition to these pro-apoptotic processes, increased levels of
saturated fatty acids in the setting obesity compromise the ability of macrophages to engulf
apoptotic cells. Apoptotic cells that are not efficiently cleared become secondarily necrotic
and, over time, accumulate into necrotic cores in advanced plaques. These necrotic cores, which
are particularly large in diabetic atheromata, are thought to contribute to plaque disruption. See
text for details.
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