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Abstract
During their development and administration, protein-based drugs routinely display suboptimum
therapeutic efficacies due to their poor physicochemical and pharmacological properties. These
innate liabilities have driven the development of molecular level strategies to improve the therapeutic
behavior of protein drugs. Among, the currently developed approaches, glycoengineering is one of
the most promising due fact that it has been shown to simultaneously afford improvements over most
of the parameters necessary for optimization of protein drug in vivo efficacy (e.g., in vitro and in
vivo molecular stability, pharmacodynamic responses, and pharmacokinetic profiles) while allowing
for targeting to the desired site of action. The intent of this article is to provide an account of the
effects that glycosylation has on the therapeutic efficacy of protein drugs and to describe the current
understanding of the mechanisms by which glycosylation leads to such effects.

In recent decades there has been an accelerated drive towards the increased development of
protein based drugs due to their great economic and clinical importance. Although proteins
display multiple therapeutically favorable properties (e.g., higher target specificities,
pharmacological potencies, and frequently lower side effects) their development and
employment is often hindered as these routinely display suboptimum therapeutic efficacies
due to intrinsic limitations in their physicochemical and pharmacological properties. (1–17)
As a result, there is great interest in the development and employment of molecular level
approaches to improve the therapeutic efficacy of protein drugs by engineering their
physicochemical and pharmacological properties.(17–23) A promising approach being
currently employed involves the strategic manipulation of the protein’s surface glycosylation
patterns through glycoengineering.(13,24–29) Even though a vast amount of studies have
demonstrated that glycosylation can lead to enhanced therapeutic efficacies for protein drugs,
many aspects regarding the mechanisms by which glycosylation induces such effects remain
unclear. The intent of this article is therefore to provide an account of the current understanding
of the mechanisms by which glycosylation improves the therapeutic efficacy of protein drugs.
This is achieved by presenting a survey of the principal physicochemical and pharmacological
aspects limiting the therapeutic effectiveness of protein drugs, by addressing which of these
can be improved by glycosylation, and by discussing the currently proposed mechanisms for
such effects.

1. Intrinsic Limitations to Protein Therapeutic Efficacy
Protein drugs routinely display suboptimum therapeutic efficacies due to their inherently poor
physicochemical and pharmacological properties. While poor physicochemical properties for
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protein drugs mainly arise from low in vitro and in vivo molecular stabilities their poor
pharmacological properties are due to adverse pharmacodynamic (PD) responses and limited
pharmacokinetic (PK) profiles.(9,14–16) All of these liabilities can diminish the clinical
effectiveness of protein drugs by affecting their systemic bioavailability.

1.1 Molecular Instability
Proteins drugs generally display low in vitro molecular stabilities during their pharmaceutical
development lifecycle due to their inherently liable structural elements coupled with several
innate physical and chemical instabilities.(13) This problem is further compounded in a
pharmaceutical setting as protein drugs are routinely exposed to several destabilizing
environments during their production, purification, storage, and delivery. (4,11,30,31) For
example, the backbone and amino acid side chains of protein drugs can be subject to several
chemical instability issues (e.g., chemical hydrolysis, fragmentation, crosslinking, oxidation,
deamidation, β-elimination, and racemization) due to their potential to undergo acid-base and
redox chemistries. (9,32–34) Additionally, the secondary and tertiary structural elements of
proteins which are requisite for function can also be affected by physical instability issues;
such as, irreversible conformational changes, local and global unfolding, due to their non-
covalent nature.(4,6,30,35) Protein drugs are also prone to pH, temperature, and concentration
dependant precipitation, surface adsorption, and non-native supramolecular aggregation as a
result of their colloidal properties.(3,11,36–40) Furthermore, once administered their in vivo
molecular stability becomes a limiting issue as their structure is susceptible to extra- and intra-
cellular enzymatic degradation.(16) If left unaddressed these in vitro and in vivo molecular
instability issues can adversely impact the therapeutic efficacy of protein drugs due to the direct
dependency of pharmacological properties (PK/PD) on the amount of functionally active
protein that is administered and persistent in circulation.(4,13,16)

1.2 Adverse Pharmacodynamic and Pharmacokinetic Profiles
Achieving optimum therapeutic efficacy is dependant on maintaining a proper balance between
drug exposure and effect. Therefore, the PK and PD parameters for therapeutics are often tuned
through the drug design lifecycle in a manner assuring that desired in vivo responses are
achieved. PK refers to the time dependency of drug action (dose/metabolic profiles) and is
influenced by drug absorption, distribution, and excretion as well as initial response times and
duration of effects. PK parameters usually determined for protein drugs include circulatory
half-lifes, volumes of distribution, clearance rates, and total bioavailability. PD examines the
potency of drugs (dose/response profiles) through the study of in vitro activities. For protein
based drugs PD parameters usually determined are enzymatic rates and receptor binding
affinities. Protein based drugs usually display limited PK profiles and sharp PD responses as
a result of their poor physicochemical and pharmacological properties.(15) Limited PK profiles
are mainly evidenced by adverse local adsorption and systemic distribution patterns for
subcutaneously (SC) administered protein drugs as result of variable protein hydropathy
(hydrophilic/hydrophobic surface balance) and by fast excretion rates (e.g., short circulation
half-lifes) for intravenously (IV) administered ones due to rapid elimination from the body
through proteolytic, renal, hepatic, and receptor mediated clearance mechanisms.(15,16)

All protein drugs are susceptible to some level of clearance through non-specific proteolytic
degradation due to the ubiquitous nature and systemic distribution of proteases. Therefore,
protein catabolism is not limited to the gastrointestinal, renal, and hepatic tissues but can also
occur in the blood and at other tissues. (16) Such non-specific cleavage events negatively affect
efficacy through inactivation of the protein drug.(13) For smaller sized protein drugs clearance
occurs mainly at the kidneys with renal clearance occurring through three main routes.(16,
41) The first route, glomerular filtration, is controlled primarily by the kidney’s size
permeaselectivity with the urine/blood filterability being greatly reduced for proteins with
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molecular weights and hydrodynamic radius greater that 50 kDa and 60 A.(42–44) Proteins
exceeding this molecular weight limit are eliminated by other pathways; mainly proteolytic
degradation, hepatic uptake, and immune clearance. The second factor affecting kidney
permeaselectivity is the protein surface charge. Filtration of highly charged proteins (both
anionic and cationic) is retarded by the presence of negatively and positively charged proximal
and distal elements within the renal glomerular basement membrane and epithelium.(16,43)
The second route of renal elimination; which applies mainly to small linear peptides, occurs
through hydrolysis by brush border enzymes located on the luminal membrane followed by
reabsorption. A third and less frequent route involves peritubular extraction from
postglomerular capillaries followed by intracellular degradation. For larger sized proteins
clearance occurs mainly at the liver through both specific and non-specific hepatic uptake
mechanisms.(16) Specific clearance occurs through receptor-mediated (e.g. asialoglycoprotein
and low density lipoprotein receptors) endocytosis at the hepatocytes. This process is
interestingly regulated by the glycosylation state of proteins (discussed further on).
Alternatively, non-specific hepatic clearance of proteins can also occur through phagocytosis
in the reticuloendothelial system. Additional non-hepatic receptor mediated specific
elimination mechanisms can occur whereas the protein drug is removed by endocytosis after
binding to its therapeutic target receptor. This process is influenced by the protein drug potency
with stronger receptor binders being removed from the systemic circulation faster.

As a result of the innate susceptibility of proteins to all of these clearance mechanisms, protein
drugs generally display limited plasma persistence lifetimes.(15) Higher protein concentrations
and increased dosing frequencies are therefore often employed to achieve favorable therapeutic
responses. Ironically, such frequent treatment regimes coupled with the high target specificities
and potencies of protein drugs can lead to inappropriately sharp dose/response profiles. This
can lead to overstimulation of the targeted pathway and in many instances trigger
autoregulatory feedback inhibition mechanisms that can be therapeutically counterproductive
in the long run by leading to loss of in vivo efficacy.(45,46) To counteract these innate
limitations it has become routine practice to integrate molecular level technologies to engineer
the physicochemical and pharmacological properties of protein drugs (second-generation
biopharmaceuticals) in the early stages of their development lifecycle.(47) Established
technologies that have been shown to significantly improve the efficacy of protein drugs by
increasing their molecular stabilities and plasma persistence times and by decreasing their PD
responses through various mechanisms include: targeted mutations, generation of fusion
proteins and conjugates, glycosylation engineering, and pegylation.(17–19,21–24,48) Of these,
engineered glycosylation is one of the most promising due fact that it has been shown to
simultaneously afford improvements over most of the molecular parameters necessary for
optimization of therapeutic efficacy while allowing for targeting to the desired site of action.
(13,24–29)

2. Protein Glycosylation
A substantial fraction of the currently approved protein pharmaceuticals need to be properly
glycosylated to exhibit optimum therapeutic efficacy (Table I). This is due to the fact that
glycosylation can influence a variety of physiological processes at both the cellular (e.g.
intracellular targeting) and protein levels (e.g. protein-protein binding, protein molecular
stability).(24,49,50) Glycosylation refers to the covalent attachment of carbohydrate based
molecules (glycans) to the protein surface. Glycosylation is the most prevalent and structurally
complex of the chemical modifications that occur naturally in proteins.(51–56) In this context
glycosylation can display structural heterogeneity with respect to both the site of glycan
attachment (macro-heterogeneity) and with respect to the glycan’s structure (micro-
heterogeneity). Additionally, since all of the potential glycosylation sites are not occupied
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simultaneously this can lead to the formation of glycoforms with differences in the number of
attached glycans.

In humans the most prevalent glycosylation sites occur at asparagine residues (N-linked
glycosylation through the Asn-X-Thr/Ser consensus sequence) and at serine or threonine
residues (O-linked glycosylation).(57,58) Further structural complexity occurs due to
variability in the glycan’s monosaccharide sequence order, branching pattern, and length.
Nonetheless, certain glycan core structures have been identified with these being formed by
the enzymatic bridging and remodeling of the following monosaccharides: fucose (Fuc),
galactose (Gal), mannose (Man), N-acetylglucosamine (GlcNAc), N-acetylgalactosamine
(GalNAc), and N-acetylneuraminic acid (sialic acid).(55,59) In humans three principal N-
linked core glycan structures are formed with these being classified according to their
monosaccharide content and structure: high mannose type (Man2-6Man3GlcNAc2), mixed type
(GlcNAc2Man3GlcNAc2), and hybrid type (Man3GlcNAcMan3GlcNAc2).(59) For O-linked
glycans four principal core structures have been identified: core 1 (GalGalNAc), core 2
(GalGlcNAcGalNAc), core 3 (GlcNAcGalNAc), and core 4 (GlcNAc2GalNAc). The terminal
ends of these glycan core structures are often further functionalized (e.g., phosphates, sulfates,
carboxylic acids) with chemically charged glycans (e.g., sialic acid) in human glycoproteins,
leading to even greater structural diversity. These functionalized terminal glycans can alter the
protein’s surface charge and isoelectric point (pI) which have been related to the increased
circulatory lifetimes for glycoproteins.(23) Such structural diversity poses certain problems
for glycoprotein based drugs as it has been found that variations in the expression system (Table
I) or changes to the manufacturing process can lead to changes in glycosylation patterns.(60)
Accordingly, alternative methods of glycoprotein production are being explored to design
protein drugs with homogeneous structurally defined glycosylation patterns through genetic,
enzymatic, and chemo enzymatic methods.(48,61–75) The reader is referred to the following
recent reviews for extensive discussions on the details of different glycoprotein production
systems.(62,76–88)

3. Optimization of Protein Therapeutic Efficacy by Glycosylation
3.1 Effects of Glycosylation on Protein Molecular Instability

A vast amount of studies have demonstrated that natural glycosylation increases the molecular
stability of proteins (for a detailed mechanistic account refer to the recent review on
glycoprotein biophysics by Solá et al.).(49) Furthermore, engineered glycosylation has been
shown to stabilize a variety of protein drugs against almost all of the major physicochemical
instabilities encountered during their pharmaceutical employment thus leading to enhanced in
vitro molecular stabilities.(13) Pharmaceutically relevant protein instabilities which are
improved by glycosylation include: oxidation; cross-linking; pH, chemical, heating, and
freezing induced unfolding/denaturation; precipitation; kinetic inactivation; and aggregation.
(13) Furthermore, these stabilization effects appear to be of a generalized nature since they
have been shown to occur in a variety of structurally unrelated proteins.(13) Protein drugs
whose stability has been reported to be increased by glycosylation include agalsidase alfa
(REPLAGAL®, Shire) (aggregation, precipitation),(89) alglucosidase (MYOZYME®; Shire)
(thermal denaturation),(90) alpha 1-antitrypsin (PROLASTIN®; Talecris Biotherapeutics)
(chemical/thermal denaturation),(91) chymotrypsin (WOBE MUGOS®; Marlyn
Nutraceuticals) (chemical/thermal/kinetic denaturation, aggregation),(92,93)
choriogonadotropin alfa (OVIDREL®; EMD Serono) (thermal denaturation),(94) epoetin alfa
(EPOGEN®/PROCRIT®; Amgen/Ortho Biotech) (thermal/pH/chemical/kinetic denaturation,
oxidation, aggregation),(95–97) interferon beta (AVONEX®/REBIF®; Biogen/Pfizer EMD
Serono) (disulfide crosslinking, precipitation, thermal denaturation, aggregation),(98–100)
ranpirnase (ONCONASE®; Alfacell) (thermal denaturation),(101,102) lenograstim
(GRANOCYTE®/NEUTROGIN®; Sanofi Aventis/Chugai Pharma) (thermal/pH/kinetic
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denaturation, disulfide crosslinking),(103–105) thyrotropin alfa (THYROGEN®; Genzyme)
(aggregation),(106) urokinase alfa (ABBOKINASE®; ImaRx Therapeutics) (thermal
denaturation),(107) insulin (nondisulfide crosslinking, aggregation),(108) and various IgG-
like antibodies (thermal denaturation).(109,110) These in vitro stabilization effects as a result
of protein glycosylation have been directly related to the amount of glycans present in the
protein drug (for a detailed account of each of the different stabilization mechanisms see the
recent review by Solá and Griebenow).(13) Many of these in vitro stabilization effects have
been proposed to lead to increased in vivo efficacies by possibly allowing for a greater amount
of functional protein to be administered to the patient and by minimizing the formation of
neutralizing antibodies due to the lack of conformationally altered and aggregated species in
the end formulation.(13)

In addition to these in vitro stabilizing effects, glycosylation can also result in increased in
vivo molecular stability for protein drugs once administered by leading to increased lifetimes
for the functional forms of these proteins due to its prevention of proteolytic degradation.(13,
111–114) Some examples of therapeutically relevant proteins whose proteolytic susceptibility
has been reported to be decreased by glycosylation include glucagons-like peptide 1,(115)
lenograstim,(103,116) bucelipase alfa,(117) drotrecogin alfa (XIGRIS®; Eli Lilly),(118)
ranpirnase,(101,102) thyrotropin alfa,(106) urokinase alfa,(119) interferon-γ
(ACTIMMUNE®; Intermune),(120) and various IgG-like antibodies.(121) Proteolytic
stabilization of proteins has also been related to the number of glycans bound to the protein
surface; their length and branching; and the charges of their terminal end glycans therefore this
effect can be influenced by both from steric and electrostatic repulsions induced by the surface
bound glycans.(13,122) In this context, it was recently shown by Raju et al. that negatively
charged glycans (e.g., those ending with sialic acids) are more efficient in preventing antibody
proteolysis.(121)

3.2 Effects of Glycosylation on Protein Pharmacodynamics and Pharmacokinetics
The initial understanding of the role of glycans on protein in vivo circulatory behavior can be
attributed in large part to the discovery of the hepatic asialoglycoprotein receptor by Aswell
and Morell in the 1960’s.(123–126) While studying the mechanisms controlling the circulatory
turnover of ceruloplasmin, a protein involved in hepatolenticular degeneration (Wilson
disease), Aswell et al. noticed dramatic differences in the circulatory lifetimes between the
natively glycosylated protein (sialic acid terminated glycans) (t1/2: ~ 56 hrs) and a partially
deglycosylated variant of the protein (galactose terminated glycans) (t1/2: < 30 min).(127)
Subsequent studies by them and others extended these findings to other proteins (α1-acid
glycoprotein, α2-macroglobulin, thyroglobulin, haptoglobin, fetuin, orosomucoid,
ribonuclease) validating the generality of this specific hepatic clearance mechanism.(128–
130) It was found that exposure of galactose terminating glycans through desialylation led to
fast removal of the partially deglycosylated proteins from the circulation due to specific
endocytosis mediated by asialoglycoprotein receptors expressed in the hepatocytes.(123,124,
129,131) Subsequently it was found that glycoproteins exposing glycans terminating in
mannose, N-acetyl-glucosamine, or fucose could be also removed from the circulation due to
specific interactions with other mammalian lectin-like receptors expressed at different cell
types.(132–136) These pioneering studies highlighted several important facts about the effects
of surface glycans on the circulatory behavior of glycoproteins: (i) improperly glycosylated
proteins are rapidly removed from the circulation by specific receptor-based mechanisms, (ii)
natively glycosylated proteins (sialic acid terminated) have longer circulating lifetimes than
non-glycosylated proteins and partially glycosylated proteins, (iii) increased sialic acid and
glycan content correlates with increased circulating lifetimes, (iv) depending on their
glycosylation patterns proteins can be targeted to certain tissue types and organs. Accordingly
most studies on the effects of glycosylation on the in vivo efficacy of proteins have emphasized
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on the role of increased glycan content and glycan structure.(23) It is important to note that
these lectin-like receptor based clearance mechanisms do not apply to all glycosylated
biopharmaceuticals. An exception being IgG-like antibodies whose clearance is mediated via
the neonatal Fc receptor (FcRn) and is not influenced by antibody glycosylation or glycoforms.
(137) Glycosylation of protein drugs has been found to lead to improved therapeutic efficacy
by increasing in vivo bioavailability, ambient circulating levels, and duration of effects through
the modulation of their PK/PD properties. Changes to protein PK parameters induced by
glycosylation include: improved absorption for small peptides,(138–142) modulated
absorption for larger proteins,(143) improved distribution,(26,144) longer circulation
lifetimes,(26,27,130,145–153) and decreased clearance rates.(24–27,29,42,82,130,140,145–
171) Alternatively glycosylation modulates protein PK parameters by leading to altered
potencies as a result of diminished in vitro enzymatic activities and altered receptor binding
affinities.(49,137,140,172,173) Therefore similarly as to what has been described to occur for
other protein engineering methodologies (e.g. pegylation), glycosylation appears to modulate
the in vivo efficacy of protein drugs by altering the balance between their potencies (PD) and
exposure times (PK).(174) In the specific case of IgG-like antibody based therapeutics,
glycosylation has been shown to improve their in-vivo therapeutic efficacy by altering their
effector functions through modulated binding affinities for the FcγR receptor (for a mechanistic
discussion see the following reviews).(21,175,176)

Examples of therapeutically relevant proteins whose in vivo efficacies have been reported to
be increased by their natural glycosylation include: agalsidase alfa,(177–179) agalsidase beta
(FABRAZYME®; Genzyme),(177,179–181) epoetin alfa and epoetin beta,(143,168,172,182,
183) follitropin alfa (GONAL-F®; Merck/Serono) and follitropin beta (FOLLISTIM®;
Schering-Plough),(159,160,169,184,185) insulin growth factor binding protein 6 (IGFBP-6),
(163) lutropin alfa (LUVERIS®; Merck/Serono),(186–191) transforming growth factor β1,
(192) antithrombin (ATryn®/TROMBATE-III®; Genzyme/Talecris Biotherapeutics),(162)
thyrotropin alfa (THYROGEN®; Genzyme),(166) lenograstim,(103,193) sargramostim
(LEUKINE®; Genzyme),(154,194,195) interleukin-3,(196) prourokinase,(151) lymphotoxin,
(152,197) C1-esterase inhibitor (Berinert®; CSL),(198–200) IgG-like antibodies,(72,121,
201) interferon beta,(98,202,203) coagulation factor VIIa (NOVOSEVEN®; Novo Nordisk),
(204) coagulation factor VIII (moroctocog alfa),(155,156,205) coagulation factor IX (nonacog
alfa) (BENEFIX®; Wyeth), and the p55 tumor necrosis receptor fusion protein.(158) In most
of these studies increased circulatory lifetimes and improved in vivo activities have been
attributed to reduced hepatic and renal clearance as well as diminished proteolytic degradation
as a result of the presence of the charged glycans (terminal sialic acid). Expanding on this
concept several studies have shown that increasing the number of sialic acid containing glycans
beyond those of the native protein through engineered hyperglycosylation can effectively be
employed as a technology to further optimize the circulatory half-life and in vivo activity of
proteins.(24,27,206–208) Examples of pharmaceutically relevant proteins whose circulatory
half-lifes were shown to be increased by hyperglycosylation include: interferon alfa and
gamma,(26,120) luteinizing hormone,(149) Fv antibody fragments,(209) asparaginase,(210,
211) cholinesterase,(164,165) darbepoetin alfa (AraNESP®; Amgen),(25,27,161,212–214)
trombopoietin,(25,27,215) leptin,(25,27) FSH,(159,184,216,217) IFN-α2,(26) serum albumin,
(145) and corifollitropin alfa.(218–222) Engineered glycosylation has been also employed to
further optimize the in vivo pharmacological behavior of protein drugs by allowing for targeted
delivery to disease-affected tissues.(48) This methodology has been mainly applied to treat the
lysosomal storage diseases (e.g. Gaucher, Pompe, and Fabry disease; Hurler and Maroteaux-
Lamy syndrome).(223) The employed strategy involves enzyme transport to the lysosomes by
receptor-mediated endocytosis after targeting the mannose and IGF-II/cation-independent
mannose 6-phosphate receptors.(224–228) This is achieved through glycoengineering of the
protein glycans to expose at their terminal either mannose or mannose 6-phosphate. This
strategy has been employed successfully with the following enzymes: β-glucocerebrosidase
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(CEREZYME®; Genzyme),(229–231) α-glucosidase (MYOZYME®; Genzyme),(232) α-
galactosidase (FABRAZYME®/REPLAGAL® Genzyme/Shire),(177,178) galsulfase
(NAGLAZYME®; Biomarin Pharmaceuticals),(233) and α-L-iduronidase
(ALDURAZYME®; Genzyme/Biomarin Pharmaceuticals).(234) For all of these enzymes
increase therapeutic efficacy has been achieved by targeting the protein drug to the desired site
of action.

4. Conclusions and Future Prospects
Design of protein therapeutics with optimized in vivo efficacy can be achieved through the
simultaneous optimization of drug molecular stability, pharmacokinetics, pharmacodynamics,
and targeting by engineered glycosylation. This technology can be employed to ameliorate a
multitude of pharmaceutically relevant physicochemical and pharmacological problems.
Mechanistically, it appears that the different glycosylation parameters (e.g., number of glycans
attached, glycan’s molecular size, sequence, and charge) can modulate the pharmacological
properties of protein drugs to different extents. Engineered glycosylation could therefore
provide ample future opportunities towards the improvement of protein drugs since in principle
all of these glycosylation parameters can be simultaneously optimized.

While the pharmaceutical application of glycosylation still suffers from some technical
challenges due to the intrinsically complex nature of glycan structures and the difficulties
related to glycoprotein production in host-expression systems (e.g., low glycoprotein
expression yields, glycan structural macro- and micro-heterogeneity), further advancements
in the understanding of chemical- and enzyme- based glycan remodeling strategies being
currently pursued by glycoengineering companies, will allow for the rational design of targeted
glycoprotein structures. The significant potential that glycosylation engineering holds towards
improving the therapeutic efficacy of protein drugs should lead to further research towards the
understanding of the fundamental effects that glycans have on protein physicochemical and
pharmacological properties.
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