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Abstract: Some synthetically useful transformations of organosilicon compounds have

been developed since the mid 1970s, based on the new concept that the silicon-carbon bonds are

activated toward electrophilic cleavage via the formation of penta- and hexa-coordinate species.

This review mainly consists of the following aspects: (1) a general concept for the activation of

the silicon-carbon bond via penta- and hexa-coordinate species, (2) synthetic application of hexa-

coordinate organopentafluorosilicates, and (3) development of the H2O2 oxidation of the silicon-

carbon bond and its synthetic applications via the intramolecular hydrosilylation, silicon-

tethered intramolecular radical cyclization and Diels-Alder reaction, and some silicon-containing

organometallic reagents for nucleophilic hydroxymethylation and hydroxyallylation synthons.

Keywords: organosilicon chemistry, hypercoordination, organopentafluorosilicate, hy-
drogen peroxide oxidation, intramolecular hydrosilylation

Introduction

The author was awarded the Japan Academy

Prize 2007, together with Hisashi Yamamoto, Uni-

versity of Chicago, for the collaborative work,

entitled ‘‘Exploitation of chemical and physical

properties of main-group element compounds based

on flexibility for high coordination’’. The work is

based on the following common features of main-

group element compounds. Organic compounds

RnE of certain main group elements, especially

heavy elements of groups 13 and 14, have electron-

accepting molecular orbitals and thus the central

element E behaves as a Lewis acidic center to

accept a ligand L to form hyper-coordinate species

RnEL, increasing both the electrophilicity of the

ligand L and the nucleophilicity of the group R; the

electronic states and steric environments around

the central element E can be tuned by appropriate

modification to the R and/or L. While Yamamoto’s

work is mainly based on the former concept for the

enhanced electrophilicity of the ligand L, the author

has been interested in the latter concept for the

enhanced nucleophilicity of the group R, especially

in organosilicon compounds.

A brief comparison of silicon with carbon in

four categories is first made to determine key

characteristic features of organosilicon compounds

using the chart shown in Fig. 1. Among some

similarities and differences between them, only

several of the most striking features are mentioned

as follows. (1) Size and electronegativity: silicon is

larger and more electropositive than carbon, as

shown in the central part, (2) reactive intermedi-

ates such as anion, radical, cation, and divalent

species shown on the left side: among them, the

trivalent silicocation can hardly be present as a free

stable species in solution1) in which the vacant site

is occupied by any basic species, suggesting that

nucleophilic substitution reactions at silicon gener-

ally proceed not by a dissociative mechanism but by

an associative mechanism,2) (3) high-coordinate

species shown on the right side: this is the most

important difference that while a penta-coordinate

species of carbon corresponds to a high energy

structure at a transition state of SN2 substitution

reactions, penta- and hexa-coordinate silicon spe-
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cies are stable enough to be isolated in many

cases,3),4) and (4) unsaturated species, catenation

and polymeric materials shown on the top and

bottom: silicon-containing unsaturated compounds

are so reactive that they can only be isolated

through stabilization by introduction of bulky

kinetically-protecting groups.5) Obviously, most of

these three features (2), (3) and (4) related to

silicon-containing molecules are based on the fea-

ture (1) of the silicon atom. In particular, the large

and electropositive silicon atom is the origin of the

Lewis acid properties of organosilicon compounds to

accept Lewis bases, resulting in the formation of

hypercoordinate species. Since the mid 1970s, we

have been interested in these inherent properties of

organosilicon compounds with the objective of their

application in organic syntheses.

This review summarizes several aspects ob-

tained in our laboratories at Kyoto University

where the author worked for 35 years, as listed

below.

1. A general concept for the activation of the

silicon-carbon bond via penta- and hexa-coor-

dinate species

2. Synthetic application of hexa-coordinate orga-

nopentafluorosilicates

3. Development of the H2O2 oxidation of the

silicon-carbon bond and its synthetic applica-

tions

A general concept for the activation
of the silicon-carbon bond via penta-

and hexa-coordinate species

A key step in the synthetic application of

organosilicon compounds is the electrophilic cleav-

age of the silicon-carbon bond,6) where an electro-

phile links to the carbon center to form the desired

product, while the counter nucleophile attacks the

silicon atom, as shown in Scheme 1.

In principle, there are two extreme cases for

activation of the silicon-carbon bond, depending on

the timing of the interaction of the electrophilic

part with the organic group and the nucleophilic

part with the silicon center.7) One is the use of

electron-rich organic groups, such as allyl and

vinyl groups, and the other involves the formation

of penta- and/or hexa-coordinate silicon species.
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Fig. 1. A schematic comparison between carbon and silicon. rc and � represent, respectively, the covalent radius and the

electronegativity. Structures in parentheses are still unknown.
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Scheme 1.
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In the former case, as shown in Scheme 2,

electrophiles may first interact with the � electron

moiety to form a carbocation � to silicon which is

stabilized by the silyl group via the so-called �–�

conjugation, followed by nucleophilic attack on

silicon to cleave the silicon-carbon bond, resulting

in the formation of the product.8) Thus, organo-

silicon compounds such as allylsilanes and vinyl-

silanes containing an ‘‘activated group’’ toward

electrophiles have been well recognized as versatile

synthetic reagents.

The latter concept has been developed for the

activation of the silicon-carbon bond in simple

‘‘non-activated’’ alkyl-silanes via the formation of

hyper-coordinate species. The complete view is

summarized in Scheme 3. This is the main theme

of our research in this field.

In Scheme 3, while the route denoted as Route

A corresponds to the former case for the activated

organic groups discussed above, the route denoted

as Route B is for the latter ‘‘non-activated’’ case

(R = simple alkyl). In Route B, electronegative

groups X are introduced on silicon to enhance

the Lewis acidity of the silicon center and form the

penta-coordinate silicon species. The resulting pen-

ta-coordinate silicon complex has 10 electrons

around silicon, being two electrons more than the

ordinary 8-electron state. These excess electrons are

distributed onto the five ligands to enhance the

electron density on the R group and thus the

silicon-carbon (Si-R) bond becomes susceptible

toward electrophilic cleavage. The silicon center in

the penta-coordinate complex is still Lewis acidic to

accept another Lewis base to form a hexa-coordi-

nate silicon complex of 12 electrons, in which the

silicon-carbon bond is further activated toward

electrophilic cleavage. In this way, the ‘‘non-acti-

vated’’ silicon-carbon bond may be activated for

electrophiles up to a synthetically useful level. We

have confirmed this concept by using hexa-coordi-

nate organopentafluorosilicates as an extreme

case since 1978.9)

Synthetic application of hexa-coordinate
organopentafluorosilicates

The silicon-carbon bond in hexa-coordinate

organopentafluorosilicates K2[RSiF5] can readily

be cleaved by a variety of electrophiles or oxidants

including halogens,9),10) peracid,11) copper(II)

halides,12) silver(I) halides,13) and palladium(II)

salts,14) as summarized in Scheme 4.15) There are

several points to be mentioned. (a) While organo-

pentafluorosilicates were first reported in 1961 by

L. Tansjoe16) and some basic reactions were studied

by R. Mueller17) by the end of the 1960s, our

work has shown that the silicon-carbon bonds

therein are readily cleaved by a variety of electro-

philes to give various functionalized products

and carbon-carbon bond forming products up to a

synthetically useful level. Worthy of note is that

these transformations hardly occur with ordinary

tetra-coordinate organosilicon compounds, demon-

strating that the silicon-carbon bonds in the hexa-

coordinate silicates are indeed highly activated

toward electrophiles. (b) The organopentafluorosi-

licates are readily prepared from the corresponding

organotrichlorosilanes by addition to an aqueous

solution containing a large excess of potassium

fluoride as air-stable, insoluble white powders.

The most impressive example is the reaction with

halogen or N-bromosuccinimide (NBS) to form the

corresponding organic halides; even in a suspension

of an organic solvent, the solid silicate exothermi-

cally reacts with NBS to form the organic bromide
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in an almost quantitative yield. Since the inorganic

byproducts are also insoluble, simple filtration and

concentration afford an almost pure organic bro-

mide. Alcohols are also obtained by the reaction

with m-chloroperoxybenzoic acid (MCPBA) in a

polar solvent such as DMF. (c) Most important

from a mechanistic point of view was the different

stereochemical outcomes from the halogen or NBS

cleavage18) and the alcohol synthesis19) with inver-

sion and retention at the carbon center, respective-

ly, as shown in Scheme 5. Thus, the former must

involve the back-side attack, while the latter

alcohol synthesis must proceed through the front-

side attack.

Plausible mechanisms are shown in Scheme 6.

The halogen cleavage may be initiated by a single

electron transfer from the electron rich hexa-

coordinate silicate to the halogen molecule; the

resulting halide ion attacks the carbon atom from

the back side to give the organic halide with

inversion of stereochemistry. In this connection,

the high electron donating ability of the hexa-

coordinate organosilicate has been confirmed by the

reaction with tetracyanoethylene (TCNE); even in

the solid state, deep-blue TCNE anion radicals were

rapidly formed.20) In contrast, the peroxide oxida-

tion reaction in a polar solvent may proceed

through a penta-coordinate silicate formed by

fluoride ion dissociation, to which the peracid

oxygen atom links as the sixth ligand and within

the resulting hexa-coordinate silicate, the organic

group migrates from silicon to the coordinating

peracid oxygen atom to give an alkoxy-silicate

and eventually the alcohol upon hydrolysis. The

retention of configuration is explained by the

intramolecular front side attack.

Obviously, these mechanistic considerations in

Scheme 6 are traced back to the ordinary tetra-

coordinate organosilicon compounds via the reverse

route as discussed in Scheme 3, and thus strongly

suggest the possibility for the oxidative cleavage of

the silicon-carbon bonds in readily available tetra-

coordinate silicon compounds under appropriate

reaction conditions, if the silicon center is designed

to be reasonably Lewis acidic by introduction of

an electronegative group(s).

In 1983, with a strong certainty for this

possibility, we started to survey the reaction con-

ditions suitable for the oxidative cleavage reaction

with hydrogen peroxide as the most readily avail-

able, practical oxidizing agent instead of peracids

such as MCPBA.19)
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Development of the H2O2 oxidation
of the silicon-carbon bond and its synthetic

applications

Discovery of the H2O2 oxidation. Indeed,

we soon found that the silicon-carbon bonds are

readily cleaved by 30% H2O2 as the oxidant in

the presence of a fluoride ion, as shown in

Scheme 7.21),22) In the first trials, we used 90%

H2O2 with a greatest care for the oxidation, but

finally found that the more practical 30% H2O2 was

quite effective.

Several points deserve comment. First, the

presence of at least one heteroatom, such as a

fluorine and alkoxy and amino groups on the silicon,

is essential for the oxidation. Second, the oxidation

is highly accelerated by a fluoride ion, which has a

strong affinity to silicon, to convert the silicon

species to the activated penta-coordinate state.

Third, in control experiments, the silicon-carbon

bonds in some isolable penta-coordinate diorgano-

trifluorosilicates were found to be easily cleaved

under similar conditions but without an extra

fluoride ion, demonstrating the penta-coordinate

organosilicates to be actual reactive species.23)

Fourth, it was confirmed that the H2O2 oxidation

also proceeds with retention of configuration at

the carbon center.21a) Thus, a plausible mechanism

is shown in Scheme 8.
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It should be noted that this discovery over-

turned the established common knowledge of or-

ganic chemists that silicon-carbon bonds are fairly

resistant to oxidative cleavage.

Synthetic application. With this new oxi-

dation reaction in hand, we have developed a

variety of new synthetic methodologies and new

reagents, as summarized in Eqs. 1–16. Some char-

acteristic features deserve more comment.

Intramolecular hydrosilylation. The intra-

molecular hydrosilylation of allyl alcohols and

homoallyl alcohols followed by the H2O2 oxidation

has provided a new methodology for the regio- and

stereo-selective synthesis of 1,3-diol skeletons.24)

In a typical example shown in Eq. 1,24b)–24d) the

hydroxyl group of the 3-hydroxy-2-methyl-1-alkene

skeleton is protected by a hydrosilyl group. Sub-

sequent Pt-catalyzed hydrosilylation proceeds in a

5-endo mode to give a five-membered ring product

with a high 2,3-syn stereoselectivity. Since the

silicon moiety has the oxygen functionality, the

resulting silicon-carbon bond is cleaved by the H2O2

oxidation with retention of configuration to form

the corresponding 1,3-diol derivative with a high

2,3-syn stereoselectivity.

For homoallyl alcohols, such as the 1-hydroxy-

2-methyl-3-alkenes (Eq. 2),24b) they afford different

stereoisomers of 1,3-diol; thus, the intramolecular

hydrosilylation proceeds in a 5-exo mode to form a

five-membered ring product, in which the 2,3-

stereochemistry arising from the entering silyl

group is controlled anti to the allylic methyl group

and the stereochemistry on the 4-position depends

on the olefin geometry of the starting material.

These results observed with homoallylic alcohols

have also provided two significant aspects from a

mechanistic viewpoint: the first example of the

direct hydrosilylation to an internal olefin without

positional isomerization and the first clear-cut

experimental evidence for the cis addition of the

Si-H functionality to an olefin.

For the Pt-catalyzed hydrosilylation of allyl-

amines, it proceeds in a 4-exo fashion to finally give

a 1,2-aminoalcohol derivative with a high 1,2-syn-

stereoselcvitiy, as shown in Eq. 3.25)

The intramolecular hydrosilylation/oxidation

sequence can be repeatedly performed in a step-

wise fashion to construct polyols, such as poly-

propionate skeletons, as shown in Eqs. 4 and

5.24b)
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The catalytic asymmetric intramolecular hy-

drosilylation of an allylic alcohol is also possible

to give an optically active 1,3-diol with a high

stereoselectivity (Eq. 6).26) The intramolecular hy-

drosilylation of homopropargylic alcohols followed

by the H2O2 oxidation provides a new regioselective

functionalization of the acetylene group (Eq. 7).27)

Silicon-tethered intramolecular radical cy-

clization and Diels-Alder reaction. The 1-bro-

movinylsilyl and dichloromethylsilyl groups have

been found to be useful as a synthetic equivalent,

respectively, to the acetyl radical and the hydroxy-

methylene diradical, as exemplified by the silicon-

tethered radical cyclization/oxidation sequence of

allylic alcohols, as shown in Eqs. 828) and 9.29) The

latter example demonstrates that the high regio- and

stereoselective stepwise radical cyclization can pro-

vide four new chiral centers from one chiral center,

accompanied by a new carbon-ring annulation.

Eq. 10 represents the first example of the

silicon-tethered intramolecular Diels-Alder reac-

tion, followed by the H2O2 oxidation, as an efficient

method for the construction of poly-functionalized

cyclohexane derivatives.30)

Silicon-containing organometallic reagents

for nucleophilic hydroxymethylation and hy-

droxyallylation and as a hydroxide ion equiv-

alent. One of the interesting silicon reagents is

the (isopropoxy)silylmethyl Grignard reagent (i-

PrO)Me2SiCH2MgCl,31) because this reagent con-

tains both a carbon nucleophilic center and a

leaving group on silicon, but is quite stable as it
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[17]

can be stored in THF even at room temperature;

the isopropoxy group is probably bulky enough to

prevent the intermolecular nucleophilic substitu-

tion at the silicon. This reagent is used as the

nucleophilic hydroxymethylating agent for carbon-

yl compounds, as shown in Eq. 11.31b) The primary

product contains a �-hydroxy-silicon moiety which

might undergo �-elimination, known as the Peter-

son elimination,32) to form the corresponding olefin;

however, under the H2O2 oxidation conditions even

in the presence of fluoride ions, the oxidative

cleavage of the silicon-carbon bond preferentially

proceeds, without any such elimination, to form the

corresponding 1,2-diol derivative in high yields.

In connection with this, it has been reported that

the conjugate addition of a hydroxymethyl anion

synthon, namely the (allyldimethylsilyl)methyl

Grignard reagent, to �,�-enones has also been

achieved.33)

This reagent also undergoes a palladium cata-

lyzed cross-coupling with aromatic halides, such as

3-bromothiophene, to give, after the H2O2 oxida-

tion, the hydroxymethylation products, as shown in

Eq. 12.31a) The copper-catalyzed cross-coupling re-

action with allylic halides, followed by the H2O2

oxidation, affords the corresponding homoallyl

alcohols, as shown by Eqs. 13 and 14. This ap-

proach significantly provides the most efficient,

regio- and stereo-specific transformation of allylic

halides to homoallylic alcohols without scrambling

of the olefin geometry and the allylic position, as

well as the one-carbon elongation of certain func-

tionalized alcohols.34)

A metallated (allyl)aminosilane is a practical

reagent for the stereoselective �-hydroxyallylation

of aldehydes to form erythro-1,2-diol skeletons, as

shown in Eq. 15.35)

Aminosilyllithium reagents, the first stable

functionalized silyllithiums which we found in

1992,36) act as a hydroxide ion synthon, as shown

in Eqs. 16 and 17.37)

Conclusion

In this review, we have concentrated on our
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own work, but our concept about the activation

of the silicon-carbon bond via hypercoordination

and the H2O2 oxidative cleavage of the silicon-

carbon bond have been widely recognized as a

new general concept and a new synthetically useful

transformation.

The first point has clearly been described by R.

Corriu and his co-workers in their review article3) as

follows: ‘‘This was the first demonstration of the

synthetic applications of hypercoordinate organo-

silicon compounds and stimulated other chemists to

use the same idea that the silicon-carbon bonds are

highly activated by hypercoordination. This idea

has now become a widely accepted basic concept

in synthetic organic chemistry.’’

The second point, i.e., the synthetic usefulness

of the H2O2 oxidation of the silicon-carbon bond,

was recognized by many synthetic chemists soon

after the discovery by our group, together with a

similar oxidative cleavage reaction independently

developed by I. Fleming.38) We are proud of the fact

that the oxidation reaction is now generally known

as the ‘‘Tamao oxidation’’ and/or ‘‘Tamao-Fleming

oxidation’’. As reference data, the citation number

of our first paper published in 1983 has reached 300

times by the end of 2007.

All results described in this review are rather

old, but the author is convinced that the concept

and the information are still very informative for

synthetic organic chemists.
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