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The successful design of biomaterial scaffolds for articular cartilage tissue engineering requires an understanding
of the impact of combinations of material formulation parameters on diverse and competing functional out-
comes of biomaterial performance. This study sought to explore the use of a type of unsupervised artificial
network, a self-organizing map, to identify relationships between scaffold formulation parameters (crosslink
density, molecular weight, and concentration) and 11 such outcomes (including mechanical properties, matrix
accumulation, metabolite usage and production, and histological appearance) for scaffolds formed from cross-
linked elastin-like polypeptide (ELP) hydrogels. The artificial neural network recognized patterns in functional
outcomes and provided a set of relationships between ELP formulation parameters and measured outcomes.
Mapping resulted in the best mean separation amongst neurons for mechanical properties and pointed to
crosslink density as the strongest predictor of most outcomes, followed by ELP concentration. The map also
grouped formulations together that simultaneously resulted in the highest values for matrix production, greatest
changes in metabolite consumption or production, and highest histological scores, indicating that the network
was able to recognize patterns amongst diverse measurement outcomes. These results demonstrated the utility
of artificial neural network tools for recognizing relationships in systems with competing parameters, toward the
goal of optimizing and accelerating the design of biomaterial scaffolds for articular cartilage tissue engineering.

Introduction

Tissue engineering and regenerative medicine
strategies for functional articular cartilage regeneration

or repair have suggested a large number of scaffolds for
guiding new tissue formation.1–14 Scaffolds have included
those that are prefabricated ex situ4,9,15–17 or those that may
be injected,18–20 and they have been formed from a variety of
natural and synthetic materials. Several studies have dem-
onstrated that material formulation parameters affect the
mechanical properties of these scaffolds as well as their
ability to support chondrogenesis by encapsulated or seeded
cells.7,21–31 These and other studies have demonstrated
difficulty in meeting the competing requirements amongst
design goals, or outcome measures, for creating an envi-
ronment supportive of growing new cartilage tissue. This is
largely due to the complex role that cartilage plays within the
diarthrodial joint, providing important mechanical, bio-
chemical, and biological functions32,33 that are regulated by a

sparse population of one cell type. These cells are responsible
for synthesizing a very specialized extracellular matrix33 that
displays mechanical integrity in tension and compression,
exhibits resistance to shear, and is a multiphasic, viscoelastic
material.34–39 Biomaterials used as scaffold materials in car-
tilage tissue engineering applications must not only support
these biological and mechanical roles, but must also be bio-
compatible, biodegradable, and able to be securely affixed
within a defect,11,40–43 which has led to difficulty in simul-
taneously targeting all of these goals with any one tissue
engineering strategy.

This competition amongst design goals, combined with
the inherent difficulty in handling datasets that include both
biological and mechanical information, suggested a need for
a tool to rapidly and simultaneously investigate the effects of
perturbations of multiple biomaterial formulation parame-
ters on the competing outcome measures relevant to cartilage
tissue engineering. Motivated by this rationale, the goal of
this study is to examine the utility of one such mathematical
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tool, unsupervised artificial neural networks (ANNs), for
identifying relationships between a range of biomaterial
formulations and diverse and competing outcomes.

Chemically crosslinked elastin-like polypeptide (ELP) hy-
drogels were chosen as the model biomaterial for creating
tissue engineering scaffold for this study. ELPs are polymeric
repeats of the VPGXG amino acid repeat found in native
elastin44 (where X denotes a guest residue and may be any
amino acid except proline). We chose ELPs for the following
reasons: (1) chondrocytes1,45 and progenitor cells46 encap-
sulated in ELPs promote cartilage matrix synthesis in vitro;
(2) ELPs afford the ability to precisely control formula-
tion parameters at the genetic level, which allows the effects
of ELP formulation parameters on functional outcomes to
be systematically investigated; (3) the elastin peptide se-
quence is native to musculoskeletal tissues44; (4) ELPs elicit
no known antigenic response when implanted subcutane-
ously47; (5) ELPs are thermally responsive, and undergo
a soluble to insoluble transition above their characteristic
transition temperature leading to the formation of an ELP-
rich coacervate phase, which promotes the formation of gels
in situ.

The ELPs used here have been designed so that they may
undergo chemical crosslinking to form turgid hydrogels in a
biocompatible process.48 Sixteen different hydrogel formula-
tions of ELPs were used to evaluate the ability of unsuper-
vised neural network modeling to identify relationships
amongst ELP formulation parameters and 11 different and
competing outcome measures, including mechanical proper-

ties, substrates and products of glucose metabolism, accu-
mulation of appropriate matrix components, and histological
appearance.

An unsupervised form of ANN, termed a self-organizing
map (SOM), was used to identify these relationships because
of their ability to recognize patterns in large and diverse
datasets.49 SOMs are also generally robust to noise and er-
rors in datasets, which are common features of biological
data, and they require no a priori knowledge of relationships
amongst data components.49 SOMs consist most commonly
of one-dimensional or two-dimensional arrays of units, or
neurons, which become specifically matched to regions of
input space during training, and effectively result in clusters
of data based on similarities in measured parameters.49

SOMs have been used in many diverse applications includ-
ing analysis and visualization of gene array data,50,51 in
materials science for automation and quality control,52 and in
protein engineering for computer-based molecular design.53

SOMs have also recently been shown to be useful for clas-
sifying cells based on their single-cell mechanical properties
for tissue engineering applications.54

SOM networks are trained by presenting vectors of data to
a network of neurons, each having an associated weight
vector of the same dimension as the input vector (Fig. 1). As
used here, each input vector is compared with the weight
vector associated with each neuron by computing the dis-
tance between them. The neuron whose weight vector is
most closely matched to a given vector of inputs receives the
greatest amount of adjustment, according to the Kohonen

FIG. 1. Simplified schematic of self-organizing map learning. A vector of dependent variables {p} [1] is presented to a
network of neurons [2] that each possesses a weight vector having the same number of components as the input vector {p}.
The norm of the distance between the weight vector for each neuron and the input vector is then calculated (weighted input
and net input), and a competitive transfer function [3] outputs 1 for the ‘‘winning neuron,’’ the neuron with the most positive
net input. The neurons are then updated according to the Kohonen learning rule [4]. The winning neuron is updated to the
greatest degree, followed by neighboring neurons, and then all other neurons according to scaling by the learning rate (lr) and
activation (a). The learning rate decreases during training to provide coarse to fine tuning of neuron weights. Activation is 1
for the winning neuron, 0.5 for neighboring neurons, and 0 for all other neurons.
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learning rule,49 with all other neurons’ weight vectors being
updated according to their proximity, or distance, to this
neuron, creating a topologically ordered map. The final map
resembles ‘‘clusters’’ of input space with various regions of
maximum response, such that those neurons physically close
to one another in output space are the neurons that are most
similar to input vectors that are near each other in input
space.49 In this study, ELP formulations whose parameters
had a similar effect on measured outcomes were grouped
together by use of SOM, thereby allowing one to identify
relationships between the formulation parameters and the
measured outcomes.

Methods and Materials

ELP synthesis

Genes for all ELPs were available from previous stud-
ies.48,55,56 The nomenclature for ELPs used here provides the
stochiometric ratio of valines (V) to lysines (K) at the guest
residue position (X in VPGXG) as well as the total number of
pentapeptides in the polymer. For example, ELP [KV6]-112
designates an ELP with a substitution ratio of V:K of 6:1
(K-period¼ 7) at the guest residue position in the penta-
peptide repeat VPGXG and a total of 112 pentapeptides in
the ELP. Different K-containing ELP genes were chosen in
this study to provide a wide variation in ELP parameters
including crosslink density (determined by periodicity of K),
molecular weight (MW), and ELP architecture, as shown in
Table 1.57 ELPs were expressed from plasmid-borne genes in
E. coli as previously described48,55,56 and purified from E. coli
lysate by inverse transition cycling, a nonchromatographic
purification method that exploits the inverse phase transition
behavior of ELPs and their fusion proteins.58,59 Purified ELP
protein concentrations were measured by UV spectropho-
tometry (UV mini 1240; molar extinction coefficient at 280 nm
of 5690 M�1 cm�1; Shimadzu Scientific, Columbia, MD) and
adjusted to 100, 150, 200, or 250 mg=mL prior to crosslinking
in 25 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

(HEPES)-buffered saline. A total of 16 distinctly different ELP
scaffolds were generated for the study (Table 1).

Crosslinker preparation

A biocompatible, trifunctional, amine-reactive crosslinker,
b-[tris(hydroxymethyl) phosphino] propionic acid (betaine)
(THPP; Pierce Biotechnology, Rockford, IL),20,48,57 was dis-
solved in 200 mL of 25 mM HEPES-buffered saline to a final
concentration of 250 mg=mL. Aliquots of this solution were
stored at�808C until further use.

Preparation of samples for mechanical testing

Each ELP solution was mixed with THPP in a 1:1 molar
ratio of ELP amines to THPP (hydroxyl)methylphosphines.
Solutions were then injected into custom molds and incu-
bated at 378C to promote crosslinking as described previ-
ously.57 Cylindrical samples (6 mm diameter�2 mm thick,
n¼ 6 per formulation) were incubated overnight at 378C in
a serum-free medium (Ham’s F-12 culture medium; Invi-
trogen, Carlsbad, CA) supplemented with 5 mL of 100�
penicillin=streptomycin (Sigma, St. Louis, MO) and 25 mM
HEPES buffer (Invitrogen). This procedure was followed for
13 of 16 formulations, which will hereafter be referred to as
‘‘Group 1’’ formulations.

Three formulations (1, 7, and 8; Table 1) formed a pi-
pettable solution after crosslinking rather than a turgid gel
and so were prepared according to an altered protocol. For
these formulations, the crosslinker was added to the ap-
propriate ELP solutions and mixed. These mixed solutions
were incubated at 48C overnight in the serum-free medium
in a reaction tube to prevent ELP coacervation. These
formulations will hereafter be referred to as ‘‘Group 2’’
formulations.

Compression testing

Sample diameters of crosslinked discs (n¼ 6 per formu-
lation) were determined from their photographs (Photoshop;

Table 1. Elastin-like Polypeptide Formulations of Eight Different Molecular Weights, Five Periods

of Lysine Repeats (K-Period), and Four Different Concentrations Were Studied

Formulation no. ELP amino acid sequence–pentapeptide repeats MW (kDa) K-period Concentration (mg=mL)

1 [KV6]-56 23.9 7 250
2 [KV6]-112 47.1 7 150
3 [KV6]-112 47.1 7 200
4 [KV6]-224 93.4 7 100
5 [KV6]-224 93.4 7 150
6 [KV6]-224 93.4 7 200
7 [KV6]-102 42.7 17 200
8 [KV16]-204 84.8 17 150
9 [KV16]-204 84.8 17 200

10 [KV2F]-128 55.7 4 100
11 [KV2F]-128 55.7 4 150
12 [KV2F]-128 55.7 4 200
13 [KV7F]-144 61.1 9 100
14 [KV7F]-144 61.1 9 150
15 [KV7F]-72 – [VG7A8]-64 – [KV7F]-72 85.2 12 100
16 [KV7F]-72 – [VG7A8]-64 – [KV7F]-72 85.2 12 200

ELP, elastin-like polypeptide; MW, molecular weight.
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Adobe, San Jose, CA). Samples were mechanically tested in a
378C, temperature-controlled phosphate-buffered saline
bath. Group 1 formulations were tested in compression using
a strain-controlled rheometer (ARES; TA Instruments, New
Castle, DE) as previously described.10,60 Briefly, samples
were subjected to compressive deformation with a nonpo-
rous upper platen (8 mm diameter). After equilibrating un-
der a tare load (1–2 g), the samples were subjected to
compressive strains in 5% increments followed by 25 min
relaxation to a maximum of 20% compressive strain. Linear
regression applied to the normal stress (s) at equilibrium
versus strain (e) was used to determine the equilibrium
compressive Young’s modulus (E). The samples from Group
2 along with Formulations 9, 15, and 16 (Table 1) from Group
1 were not tested in compression because of continuous flow
under compressive strain.

Shear testing

All samples (n¼ 6 per formulation) were tested in oscil-
latory shear. Group 1 samples were subjected to an oscilla-
tory frequency sweep with angular frequencies between 1
and 20 rad=s with an amplitude of 0.05 strain (g). The mag-
nitude of the complex shear modulus (|G*|) and loss angle
(d) were obtained at a frequency of 10 rad=s because fre-
quency dependence of these ELPs was observed to be min-
imal.

For Group 2 formulations, sample thicknesses were esti-
mated (*1.194 mm) based on a sample diameter of 8 mm
(top platen diameter) and a fixed volume of 60mL. The
samples (60 mL) were pipetted onto a preheated bottom
platen and immediately underwent a temperature-driven
phase transition. The upper platen was then lowered to a gap
thickness of 1.194 mm and then further compressive strain
was applied to generate a corresponding 20% strain level
(0.955 mm), to be consistent with Group 1 formulations and
to prevent slippage during testing. Five minutes of equili-
bration were then allowed before oscillatory shear was ap-
plied. Shear was applied at a strain amplitude of 0.05, and
the magnitude of the complex shear modulus (|G*|) and
loss angle (d) were then obtained at 10 rad=s in the same
manner as for Group 1 samples.

Chondrocyte isolation and encapsulation
in ELP hydrogels

Primary porcine chondrocytes were isolated and encap-
sulated in crosslinked ELP as previously described.57 Briefly,
cells (100�106=mL) were mixed with each ELP solution,
THPP was added, and solutions were crosslinked in custom
molds as described for mechanical testing of samples. Each
sample (4 mm diameter�2 mm thick, n¼ 6 per formulation)
was cultured in a separate vial containing 1.5 mL Ham’s F-12
culture medium (Invitrogen) supplemented with 10% fetal
bovine serum (Hyclone=ThermoFisher Scientific, Waltham,
MA), 50mg=mL l-ascorbic acid 2 phosphate (Sigma), 5 mL of
100� penicillin=streptomycin (Sigma), and 25 mM HEPES
buffer (Gibco=Invitrogen, Carlsbad, CA). Media was not
changed for the first 7 days (see section ‘‘Measurement of
Media Metabolites’’) so that cumulative metabolite levels
could be measured, and 50% volume changes were made
every 3–4 days following for 28 days. The samples of ELP
containing no cells served as assay controls.

Measurement of media metabolites

The concentrations of glucose, lactate, and pyruvate were
measured from conditioned media on day 4 as previously
described57 (CMA Microdialysis, North Chelmsford, MA).
The difference between the value of the concentration of each
metabolite in media from cell-containing samples and the
value for that metabolite in cell-free media, incubated for an
equivalent time period and analyzed in the same batch, was
calculated for each sample.

Determination of biochemical content (DNA, sulfated
glycosaminoglycan, and hydroxyproline)

In a related study57 of the relationships between measures
of short- and long-term cultures, the cell content (via DNA)
and the concentration of accumulated sulfated glycosamino-
glycans (sGAG) and hydroxyproline (OHP) were determined
for papain digests of samples cultured for 28 days (n¼ 6 per
formulation)57 according to established protocols. Briefly,
DNA content was determined using the PicoGreen� dsDNA
Assay Kit (Molecular Probes=Invitrogen, Carlsbad, CA), using
a standard curve generated from standard DNA provided
in the assay kit. sGAG was determined using the dime-
thylmethylene blue assay61 and a standard curve generated
using commercial chondroitin-4-sulfate (Sigma). OHP content
was determined after acid hydrolysis (6 M HCl, 1108C)62

using a 96-well plate format and a standard curve gener-
ated using commercial hydroxyl-l-proline (Sigma-Aldrich,
St. Louis, MO). Mean absorbances (or fluorescence) for each
cell-free ELP formulation were subtracted from correspond-
ing ELP samples for each assay to obtain values for the con-
centrations of DNA, sGAG, and OHP for each formulation.

Histological analysis

On day 28 of culture, samples (n¼ 2 or 3 per formulation)
were embedded in Tissue-Tek� O.C.T. Compound (Sakura
Finetek U.S.A., Torrance, CA) flash frozen in liquid nitrogen
and then stored at�808C until further use. Eight-micrometer-
thick frozen sections were stained with safranin-O to visu-
alize negatively charged proteoglycans or were processed for
immunohistochemical labeling of types I (C2456; Sigma) and
II (II-II6B3; Developmental Studies Hybridoma Bank, Iowa
City, IA) collagen using the HistoStain Plus Broad Spectrum
staining kit (Invitrogen).

Following staining,57 all samples were photographed, and
images were randomized and graded by two blinded readers
according to a histological grading scheme adapted from the
work of O’Driscoll et al. and from the International Cartilage
Repair Society Visual Histological Assessment.63,64 The
scheme includes categories that describe the number and
distribution of cells, as well as the abundance and type of
matrix, and each category was graded on a 0–3 or 0–4 point
scale. The blinded readers reached consensus for all samples
and categories. Histological scores were analyzed using prin-
cipal component analysis65 to obtain a weighted contribution
of histological categories to the overall data set (factor 1 and
factor 2) (MatLab; The MathWorks, Natick, MA).

Unsupervised ANN simulation

Altogether, 11 experimental outcomes were measured for
cartilage regeneration in vitro and were assembled into a
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vector, or array of values, to be fed to an ANN model as an
‘‘input vector’’ for each sample (Fig. 1) as follows:

INPUTS¼ {Glu, Lac, Pyr, d, DNA, E, |G*|, OHP, sGAG,
Factor 1, Factor 2}.

Thus, as this vector contains experimental outcome mea-
sures, it is indeed fed to the ANN as an input vector. Each
sample of each formulation gives rise to a single input vector.
These input vectors were entered into the training simulation
for an unsupervised ANN (SOM), to identify relationships
between the 11 outcomes of in vitro cartilage regeneration
and the controlling biomaterial parameters. The unsuper-
vised ANN consisted of a one-dimensional array of five
‘‘neurons’’ (‘‘newsom,’’ Neural Network Toolbox) which was
trained using the ‘‘train’’ command in the MatLab Neural
Network Toolbox.

In developing this model of a one-dimensional array of
five neurons, a parametric study was undertaken to deter-
mine the optimal number of neurons and number of samples
required to train a network with excellent repeatability.
This was accomplished by iteratively varying the sample
number and then the number of neurons, followed by net-
work training for each iteration. Statistical analyses were
then performed on the clusters resulting from each iteration
to determine the sample number and neuron number that
resulted in the greatest number of statistically significant
clusters and correctly classified samples (a correctly classified
sample is one that maps to the neuron containing the ma-
jority of samples for that formulation). With this dataset,
neuron numbers greater or less than 5 did not yield correctly
classified formulations for a majority of formulations. Fur-
ther, the number of mismatched samples was minimized
when at least 10 data examples were used. Because data
were collected here for only n¼ 6 samples, we followed
methods established in ANN modeling of biomaterials,66

which use Monte Carlo methods to obtain pseudoexperi-
mental data points for each measurement outcome to achieve
the target of n¼ 10 data examples. We generated pseu-
doexperimental data using a previously developed method,
based on generating a normal distribution of the experi-
mental data for n¼ 6 data examples, and random sampling
of the normal distribution to yield n¼ 10 data examples.
Given that pseudoexperimental data points are sampled
from the same statistical distribution as experimentally de-
termined samples, clustering on these data should not affect
conclusions drawn from network analysis.

Statistical analysis

For experimental outcomes, analysis of variance (ANO-
VA) and Tukey’s post hoc tests were used to determine the
effects of K-period and starting ELP concentration on each
measured parameter, including mechanical properties, me-
tabolite concentrations, cell content, and sGAG and OHP
accumulation at a significance level of 0.05. Testing for an
effect of ELP MW or a starting ELP concentration of
250 mg=mL was not performed because of insufficient sta-
tistical power.

For modeling outcomes, custom code was used to probe
each neuron for a list of samples, mean values, and standard
deviations of all ELP formulation parameters and measured
parameters contained therein. The number of samples in
each neuron was also obtained. ANOVA and Fisher’s post

hoc tests were used to test for an effect of clustering on means
of each ELP formulation parameter and measured outcome
in each neuron at a significance level of 0.05. Because of the
high number of significant comparisons in each case, statistics
are not represented on plots. The map was also evaluated for
‘‘quality’’ by determining the number of mismatched samples
per formulation. Statistical analysis was performed using JMP
Software (SAS, Cary, NC).

Results

Mechanical testing

Statistical analysis revealed that both ELP concentration
(ANOVA, p< 0.05) and K-period (ANOVA, p< 0.01) signif-
icantly affected compressive modulus and loss angle, but
only K-period (ANOVA, p< 0.0001) significantly affected the
magnitude of the complex shear modulus. Generally, the
results illustrated that a higher density of reactive lysines
was associated with more solid-like and stiffer gels, pre-
sumably because of a higher density of functional crosslinks
with THPP (Supplemental Fig. S1, available online at
www.liebertonline.com).

Metabolite concentrations

Both K-period (ANOVA, p< 0.01) and concentration
(ANOVA, p< 0.0001) were found to have a significant effect
on the concentration of all three measured metabolites. In
general, cells encapsulated in ELPs of moderate K-period (9
or 12) and low concentration (100 mg=mL) consumed more
glucose and pyruvate and produced more lactate than cells
encapsulated in ELPs of all other K-periods and concentra-
tions (Supplemental Fig. S2, available online at www
.liebertonline.com).

Cell content, sGAG, and OHP accumulation

K-period (ANOVA, p< 0.0001), but not ELP concentration
(ANOVA, p> 0.6), had a significant effect on the number of
cells per sample at day 28, with formulations of lower
crosslink densities (higher K-period) possessing environ-
ments that promoted cell viability and=or proliferation
(Supplemental Fig. 3A, available online at www.liebertonline
.com). Both ELP concentration and K-period had a signifi-
cant effect on sGAG and OHP accumulation (ANOVA,
p< 0.0001). Formulations prepared at low concentrations or
those having a moderate crosslink density accumulated sig-
nificantly more sGAG and OHP than other formulations
(Supplemental Fig. 3B, C, available online at www
.liebertonline.com).

Histological outcomes

Histological scoring categories were not considered to be
additive (i.e., total histological score was not determined by
simply summing scores for each category) because of as-
sumed nonequal contributions of each category to the overall
variability of the dataset. Therefore, scores were analyzed via
principal component analysis. The results revealed that the
first two factors explained greater than 80% of the variability
in the data. Factor 1 was heavily weighted by the matrix
score (weighting factor: 0.92) and secondarily by the
Safranin-O score (weighting factor: 0.39), whereas Factor 2
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was heavily weighted by the cell distribution score
(weighting factor:�0.70) and secondarily by cell population
(weighting factor:�0.62). These findings indicated that the
majority of variability in the histological grading data is ex-
plained by scoring for extracellular matrix components with
a small amount of additional information being explained by
cellular categories. Factors 1 and 2 were used for ANN
modeling.

SOM simulation

Mapping resulted in a significant effect of clustering on
each ELP formulation parameter ( p< 0.0001) and measured
outcome ( p< 0.0001). Mapping results revealed that the me-
chanical properties (in particular, loss angle and compressive
modulus) showed the most significant mean separation
amongst neurons (Fig. 2A). Formulations with significantly
higher values for compressive and shear modulus were
contained in Neuron 1 versus all other neurons ( p< 0.0001).
All pairwise comparisons revealed significant differences
between two neurons, with the exception of Neurons 2 and 3
(E: p¼ 0.72; |G*|: p¼ 0.3), 4 and 5 (E: p> 0.99; |G*|:
p¼ 0.08), or 3 and 5 (E only: p¼ 0.6) which were found to be
similar. Loss angle expectedly followed the opposite trend,
with highly elastic formulations (low loss angle) mapping to
Neuron 1, corresponding to higher compressive and shear
stiffness. All pairwise comparisons for loss angle revealed
significant differences except that between Neurons 1 and 2
( p> 0.4).

Formulations contained in Neuron 3 were associated with
significantly higher sGAG and OHP accumulation
( p< 0.0001) (Fig. 2B), and higher metabolic (Fig. 2C) outputs
( p< 0.001), than formulations mapping to Neurons 1 or 2.
Neurons 4 and 5 also contained higher values of biochemical
composition and most metabolite outputs than Neurons 1
and 2. DNA=sample values in formulations associated with
Neuron 3 were significantly higher than formulations asso-
ciated with Neurons 1 and 2 ( p< 0.0001), but not signifi-
cantly different from values for formulations mapping to

Neurons 4 ( p¼ 0.93) or 5 ( p¼ 0.98). Histological Factor 1,
which was most heavily weighted by the matrix score and
secondarily by the Safranin-O score, was highest in Neuron 3
( p< 0.05) (Fig. 2D), while the highest positive values of
Factor 2 were contained in Neuron 4 (Fig. 2D). This is con-
sistent with Factor 2 being heavily negatively weighted by
cell population and distribution scores, but being positively
weighted by the matrix score, given that formulations with
the second highest levels of OHP accumulation were also
contained in Neuron 4.

Mean values for ELP formulation parameters contained
within each neuron are shown in Figure 3. Neurons con-
taining formulations with high compressive and shear stiff-
nesses (Neurons 1 and 2) contained formulations with low
to moderate MWs, moderate ELP concentrations, and low
K-periods (Fig. 3). Formulations producing the highest val-
ues for biochemical, metabolic, and histological (Factor 1)
outputs were contained in Neuron 3 and were characterized
most notably by ELPs of low concentration and moderate
K-period (Fig. 3), suggesting an interaction between these
two parameters that lead to optimal cellular activity. Neu-
rons 4 and 5 also contained formulations that supported
significantly higher biochemical, metabolic, and histological

FIG. 2. Mean normalized values for (A)
mechanical properties, (B) biochemical
data, (C) metabolite data, and (D) histo-
logical outputs from artificial neural net-
work modeling by neuron (mean�
standard deviation).

FIG. 3. Elastin-like polypeptide formulation parameters by
neuron (mean� standard deviation).
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outputs compared with Neurons 1 and 2, but were of sig-
nificantly lower stiffness and are most notably different from
formulations in Neurons 1 and 2 by their K-period. This
suggests that K-period has strong power for predicting both
mechanical properties and cellular activity for these cross-
linked ELP gels. An increasing or decreasing trend was not
observed for MW or concentration with neuron number,
suggesting these parameters may not be as useful as pre-
dictors of outcomes as K-period. However, K-period de-
creased from Neurons 4 to 5 and ELP concentration steadily
increased from Neurons 3 to 5, suggesting an interaction
between K-period and concentration, and thus the knowl-
edge of both these parameters may be necessary for accu-
rately predicting the outcomes.

The percentage of a formulation’s samples located in each
neuron as well as the number of mismatched samples for
each formulation were also analyzed (Supplemental Table 1,
available online at www.liebertonline.com). The results of
this analysis revealed that only 15 of 160 samples, or a little
more than 9% of samples, were mismatched as a result of this
neural network training. In total, 81% of formulations (13=16)
had greater than 90% of samples mapping to the same
neuron.

Discussion

This study was designed to test the ability of an unsu-
pervised neural network to recognize patterns in competing
mechanical and biological outcomes from crosslinked ELP
scaffolds for cartilage matrix regeneration. The unsupervised
network was successfully used to reveal relationships be-
tween parameters of 16 different formulations of crosslinked
ELP hydrogel scaffolds and 11 diverse and competing out-
come measures relevant to cartilage tissue regeneration
in vitro. The frequency of reactive lysine residues (K-period)
in ELP was found to be the strongest predictor of both me-
chanical properties and biological outcomes of in vitro
studies of cartilage matrix regeneration. Further, formula-
tions prepared from low ELP concentrations (*100–
150 mg=mL) and intermediate K-periods (*7–9) were found
to result in hydrogels possessing favorable mechanical
properties while still supporting abundant cartilage-like
matrix synthesis, suggesting these ranges as optimal design
criteria for engineering ELP-based cartilage scaffolds. The
neural network was able to capture many of these observa-
tions, with results that led to mapping of formulations as-
sociated with the highest cellular bioactivities within one
neuron, Neuron 3 (Formulations 4, 13, 14, and 15; Table 1,
Fig. 2). Formulations within this neuron possessed interme-
diate mechanical properties, between those associated with
stiff solids and liquid-like, viscous fluids. It is also note-
worthy that Neuron 3 contained three of four formulations
that metabolized glucose almost entirely via the anaerobic
pathway (i.e., lactate production to glucose consumption
ratio was near 2) and showed accumulation of extracellular
matrix with collagen to sGAG ratios near those of native
tissue (Formulations 4, 13, and 15; Table 1). Other neurons
containing formulations with moderate to high cellular bio-
activity (Neurons 4 and 5) corresponded to more viscous and
less stiff ELP hydrogels, suggesting that favorable biological
activity was also promoted in less solid-like hydrogels; in
contrast, little to no evidence of biological activity was

observed for those crosslinked ELP gels that exhibited solid-
like behaviors with high compressive or complex shear
moduli (i.e.,>15 kPa). Taken together, these results demon-
strate that formulations resulting in stiffer hydrogels, driven
by higher crosslink densities, are not favorable for support-
ing optimal cellular bioactivity, pointing to K-period as the
most important ELP parameter for predicting both me-
chanical properties (low K-periods) and favorable biochem-
ical and metabolic outcomes (moderate K-periods).

The strong dependence of both mechanical and biological
outcomes on K-period, or crosslink density, was somewhat
surprising given the wide range of ELP MWs studied here.
These findings suggest that the apparent MW between
crosslinks may be a far stronger determinant of outcomes than
starting MW for the uncrosslinked ELP. Despite this finding, it
is noteworthy that higher MW ELP formulations were neither
associated with favorable biological outcomes, nor stiff and
solid-like gels, independent of their K-period. This observa-
tion suggests an interaction between K-period and MW that
may relate to a dependence of crosslinker access to lysine
residues on ELP MW, with easier access afforded by lower
MW ELPs. Also, this observation suggests some flexibility in
the design of ELPs, and possibly other polymers, to emphasize
utility of low to intermediate MW polymers.

Interestingly, DNA levels for crosslinked ELPs mapping to
Neurons 3–5 were not significantly different, despite ample
evidence of differences in other biological outcomes such as
histological score and biochemical composition. This may re-
flect an ability for ELP stiffness to regulate cellular phenotype
and matrix production, as substrate stiffness is a well-known
determinant of cellular phenotype in other model systems.67 It
is also possible that the higher K-period (low crosslink densi-
ties) formulations associated with Neurons 4 and 5 allow for
diffusion of synthesized matrix components from the gels.
Regardless of the cause, knowledge that DNA content does
not significantly contribute to the overall variability in this
system could allow one to eliminate measurement of this var-
iable in future studies, pointing to the utility of neural network
modeling for identifying relevant outcome measures.

The idea of using advanced mathematical and statistical
tools to study the effects of biomaterial formulations on
functional outcomes has gained popularity for the purposes
of accelerating biomaterial design in applications involving
biological interfaces.68–70 With most techniques, however,
challenges exist with the simultaneous study of multiple,
diverse, and=or competing outcomes. In contrast, ANN
modeling offers advantages over many deterministic tech-
niques that have been used to predict tissue engineering
processes such as matrix synthesis71 and metabolite con-
sumption and evolution.72 Although some deterministic,
mechanism-dependent models have the advantage of pro-
viding temporal and spatial dependencies of the modeled
process, they generally do not allow more than one outcome
for a given set of inputs. ANN modeling, as demonstrated
here, is able to incorporate statistical variation in these pro-
cesses and in such a way that allows the user to visualize
multiple states of biomaterial parameters and outcomes si-
multaneously. Unsupervised ANN modeling, as used here,
was also shown to be highly repeatable in its mapping of
formulations, such that on average,>90% of all samples
within a formulation mapped to the same neuron across all
formulations. Further, it was noted that the ANN provided
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statistical separation of means of all parameters amongst
neurons for this dataset of 10 samples. This observation
suggests that the ANN will be useful for biological studies
that are frequently resource-limited in terms of sample
number. One limitation of using unsupervised ANN, how-
ever, is that this form of ANN is not capable of predicting
outcomes for previously untested formulations. This capa-
bility is afforded by supervised forms of ANN and has been
demonstrated for mechanical properties of a similar cross-
linked ELP system73 as well as for predicting fibrino-
gen absorption to polymeric surfaces designed for use in
stents.74

In an effort to minimize bias based on range differences
amongst variables, each measured parameter was normal-
ized using a pooled standard deviation for that variable
across all formulations before the pseudoexperimental data
set was created. One limitation of this normalization method
is that the range represented by the loss angle variable is still
greater than the range exhibited by all other variables, even
after normalization. This could influence mapping according
to this variable by range alone. Therefore, caution should
be exercised in choosing a normalization method to mini-
mize the potential of biasing mapping that could arise from
large differences in perceived variability amongst measured
parameters.

In summary, the work presented here was designed to test
the ability of unsupervised ANNs to recognize patterns in
outcomes of mechanical and biological properties for chon-
drocytes in crosslinked ELP gels. The ANN was able to
successfully separate formulations based on these diverse
measurement outcomes, as shown by significant differences
in means of outcomes amongst neurons. The ANN was very
useful for identifying an optimal range of ELP physical
properties that promote scaffold integrity while supporting
extracellular matrix synthesis. This optimal range of formu-
lation parameters consists of moderate crosslink densities
(K-period between 6 and 12), lower ELP MW (*50 kDa), and
moderate ELP concentrations (*150 mg=mL), which provide
the requisite mechanical stiffness while maximizing nutrient
transport and retention of matrix molecules. Overall, unsu-
pervised ANN modeling provided a method by which the
effects of three ELP formulation parameters were able to be
related to 11 diverse and competing outcome measures, and
a method by which ELP formulations could be rationally
identified for further investigation.
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