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Abstract
The interest in registering a set of images has quickly risen in the field of medical image analysis.
Mutual information (MI) based methods are well-established for pairwise registration but their
extension to higher dimensions (multiple images) has encountered practical implementation
difficulties. We extend the use of alpha mutual information (αMI) as the similarity measure to
simultaneously register multiple images. αMI of a set of images can be directly estimated using
entropic graphs spanning feature vectors extracted from the images, which is demonstrated to be
practically feasible for joint registration.

In this paper we are specifically interested in monitoring malignant tumor changes using
simultaneous registration of multiple interval MR or CT scans. Tumor scans are typically a
decorrelating sequence due to the cycles of heterogeneous cell death and growth. The accuracy of
joint and pairwise registration using entropic graph methods is evaluated by registering several sets
of interval exams. We show that for the parameters we investigated simultaneous joint registration
method yields lower average registration errors compared to pairwise. Different degrees of
decorrelation in the serial scans are studied and registration performance suggests that an appropriate
scanning interval can be determined for efficiently monitoring lesion changes. Different levels of
observation noise are added to the image sequences and the experimental results show that entropic
graph based methods are robust and can be used reliably for multiple image registration.

1 Introduction
Most malignant tumors are rapidly changing structures that threaten the life of the patient.
Interval MR or CT scanning is often performed to follow these changes. Quantification of such
changes is important especially for early detection of response to therapy, or even more
importantly as a means of validating mechanistic hypotheses regarding therapeutic action and
cellular response.

While segmentation of the interval exams is one method of quantifying response to therapy,
since segmentation can be quite noisy, it is quite possible that such an approach is not capable
of reliably detecting small changes. Another approach to quantifying tumor change is nonlinear
registration of the serial interval exams followed by regional integration of the resulting
Jacobian determinants [1]. Here the boundaries of the regional analysis need to be identified
in only one of the interval exams as the registration will propagate those boundaries in a
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consistent manner to the remainder of the registered interval exams. Over the duration of
interval imaging the tumor may morph significantly in a background of acquisition system
related noise. For example, growing tumors generate heterogeneous regions of increased
hypoxia and cellular density, as well as apoptosis and necrosis; likewise cells responding
regionally to therapy die and necrose as well. Over the total span of interval imaging the tumor
typically decorrelates with its initial appearance even with perfect registration due to cycles of
heterogeneous cell death and growth.

There are typically two approaches to detecting these geometric deformations in serial interval
exams – pairwise and joint registration. The pairwise registration method is to repeatedly
perform pairwise registration over all the images in the set and settle for a transformation of
all the images with a fixed reference frame based on a series of compositions. But this would
not guarantee jointly optimal or unique results. On the other hand, joint registration achieves
a consistent correspondence of pixels across all images and thus aligns them to a common
spatial frame by optimizing an objective function that is calculated using all the images in the
group. Recently several papers have discussed the importance of registering multiple images
simultaneously and have shown improved registration accuracy compared to pairwise methods.

Bhatia et al. [2] binned all pairs of intensities, comprising the voxel intensity in the reference
and the corresponding intensity in each image into a single histogram and computed normalized
mutual information (NMI). This was applied to an atlas construction problem where the
maximization of NMI was subjected to the condition that the total deformation onto the
common spatial frame summed to zero. A minimum description length based framework was
proposed in [3]. Groupwise registration was achieved by minimizing the length of the encoded
messages consisting of the reference image, the reference frame, the transformation model and
its parameters, and discrepancy images. Learned-Miller [4] discussed joint registration in the
context of bias removal where entropy was computed at the same voxel across the image stack
and summed over all voxels. Its applicability to small image sets (too few samples) may be
limited by noisy entropy estimates.

All the above methods targeted same modality applications. A method of group alignment
minimizing the summation of pairwise dissimilarity while improving inverse consistency and
transitivity was discussed in [5]. Studholme and Cardenas [6] estimated the joint density
function of the image set and used a measure of self information to drive alignment. Zhang
and Rangarajan [7] reported a study of several higher dimensional information theoretic
measures for joint registration. In the last two methods joint densities are estimated and
optimally stored. These methods are directly applicable to multi-modality registration.

Maximizing mutual information between images is one of the most broadly used methods for
pairwise image registration [8,9,10]. Its primary advantage is the ability to accomplish reliable
and accurate alignment between the image pairs although their intensities may be non-linearly
related. Even when we monitor tumor changes using the same imaging modality, the intensities
of corresponding locations may not be linearly related due to tumor cell growth or death.
Therefore, mutual information based registration is the one of choice for our application. In
this approach, probability densities are usually estimated using histogram or kernel techniques,
which are well established for low-dimensional problems. While using histograms to compute
mutual information for pairwise registration has been vastly studied and validated in
registration literature, its extension to higher dimensions has encountered computational
difficulties due to the sparse nature of the multi-dimensional histograms.

Neemuchwala et al. used alpha mutual information (αMI) – an extension of mutual information
– as the similarity measure for image registration [11]. The introduction of entropic graphs
enables the practical computation of the similarity measure in high dimensions. In this paper
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we extend the utilization of αMI to simultaneous registration of multiple images. With this
unified similarity measure calculated based on all the images in the group we can maximize
the joint correspondence through the optimization of a single objective function that measures
the statistical dependency of all images simultaneously. Since this similarity measure is a
mutual information it can be used for multi-modality registration. The alpha mutual
information of a set of images is calculated through entropic graphs spanning the feature vectors
extracted from the images. It eliminates the need to estimate joint densities of the feature
vectors, which could become very computationally intensive for multiple image cases. Using
k-nearest neighbor graphs we have demonstrated its computational feasibility by registering
several images simultaneously.

While our effort is focused on following tumor shape change, clearly there are many other
sources of serially decorrelating image sequences for which the following techniques and
comparisons are applicable. In this paper we examine the relative registration accuracy of both
pairwise and joint registration applied to 2D decorrelated image sequences; the 2D results can
be generalized directly to 3D. Additionally entropic estimation of mutual information was
implemented by extraction of wavelet feature vectors followed by entropic graph estimation
of αMI [12]. Both joint and pairwise registration has been implemented and tested on the same
data sets using the same initialization and geometric deformation model for performance
comparison.

2 Methods
2.1 Alpha Mutual Information and Entropic Graphs

The alpha divergence between two densities f1 and f2 of fractional order α ∈ (0, 1) is given by
[13,14]

(1)

Dα(f1||f2) is a measure of dissimilarity between f1 and f2 and it converges to the Kullback-

Liebler divergence  as α → 1[13].

Let Z1 and Z2 be two random variables with marginal densities f1(z1) and f2(z2) and joint density
f1,2(z1, z2). Similar to Shannon MI, the alpha mutual information between Z1 and Z2 is defined
as the divergence between their joint density and the product of their marginal densities,

(2)

If Z1 and Z2 are independent, we have f1,2(z1, z2) = f1(z1)f2(z2) and thus αMI = 0, which means
that the random variables do not provide any information about each other and thus agrees with
their independence assumption. A limiting case of αMI when αapproaches 1 is Shannon MI
given by

(3)
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The αMI among multiple random variables Z1, Z2, ···, ZM is a generalization of (2)

(4)

The computational advantage of αMI relies on its direct estimation using entropic graphs (see
[12] for details). Examples of entropic graphs are minimal spanning trees, Steiner trees,
traveling salesman problems, k-nearest neighbor graphs, etc. By circumventing the
intermediate estimation of the marginal and joint densities, entropic graph approaches to
estimating αMI are suitable in multiple image registration.

2.2 Alpha Mutual Information as Similarity Measure for Image Registration
Since alpha mutual information is capable of capturing the information content across the
whole set of images and it can be directly estimated using entropic graphs, we choose it as the
similarity measure in simultaneous registration of multiple images.

The basic framework for entropic graph image registration is as follows. Given multiple images
I1, I2, ···, IM, let  represent the common coordinate space and x ∈  is a spatial coordinate on
which an image pixel is defined. To emphasize image dependence on the geometric space, we
denote the images with explicit coordinates as I1(x), I2(x), ···, IM (x). For a geometric
transformation set T = {T1, T2, ···, TM}∈ , the transformed images after interpolation are
I1(T1(x)), I2(T2(x)), ···, IM (TM (x)), respectively. Notice that we have applied a transformation
for each image which is not always required. If a certain image is selected as the reference, the
transformation posed on it will be identity. We specify each transformation to show that if a
common spatial frame other than any of the images is chosen as the reference, each image can
be transformed to that common coordinate space. In such a framework, simultaneous multiple
image registration can be solved by finding the optimal transformation set T ̂ ∈  such that the
alpha mutual information is maximized:

(5)

2.3 Feature Extraction
The αMI between a set of images is estimated using the entropic graphs spanning the feature
vectors extracted from these images. Examples of feature vectors include: the intensity and
spatial location of representative samples; the position and orientation of a randomly chosen
edge; a vector of samples in a textured region; or the output vector of a spatial prediction filter.
The choice of feature vectors is typically application dependent. The desirable feature vectors
should be capable of thoroughly representing the images while keeping the number of feature
vectors small since the construction of entropic graphs becomes more computationally
expensive with the increase of the number of vectors.

To study the effect of different types of feature vectors on the estimation of αMI, we examine
the estimated αMI as a function of transformation parameters. An axial MR T1 weighted slice
(shown in Fig. 1(a)) is selected as the reference image and it is affine transformed to generate
the floating image. We limit the geometric transformation to affine only since here our objective
is to get a basic idea of the profile of this similarity measure. αMI between the reference and
floating images is estimated using two types of features: (a) pixel intensity scalar and (b)
concatenated wavelet coefficient vector.
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Intensity value of a representative pixel is a straightforward choice for feature vector. In this
case, the feature vector is in fact a scalar. In Fig. 1(b), αMI values are plotted with respect to
the translation in the horizontal direction. The general trend of estimated αMI is as expected,
i.e., peak at the center and tapering off from the center, but it suffers many local extrema due
to high frequency noise in the MRI scan.

An immediate solution to this noisy objective function is to remove high frequency noise before
estimating αMI. Over the past several years wavelet transforms have gained widespread
acceptance in signal processing and image compression in particular with the establishment of
the JPEG2000 standard [15]. They are capable of well representing an image using relatively
small number of wavelet coefficients. We have taken advantage of the efficiency of wavelet
transforms and used concatenated wavelet coefficients as feature vectors. The Daubechies
wavelet transform with 4 coefficients is applied to the images and all coefficients except the
high-frequency components are used to form the feature vector. Fig. 1(c) illustrates the
objective function profile using the wavelet feature vectors. Note that the αMI curve is much
smoother than its pixel intensity counterpart (Fig. 1(b)). Although calculating wavelet
coefficients introduces some computational overhead, the much less noisy objective function
not only leads to faster convergence, but is also less likely for the optimizer to get trapped in
local optima. We used wavelet feature vectors in our experiments.

3 Experimental Results
In this paper we jointly register a series of decorrelating images using the proposed algorithm.
While our effort is focused on following tumor shape change, the proposed joint registration
algorithm applies to general multiple image registration as well since the derivation of the
registration algorithm does not make any assumptions on the nature of the images.

3.1 Synthetic Decorrelating Image Sequences
Since our primary goal is to quantitatively compare the performance of joint and pairwise
registration methods, it is necessary to know the ground truth. One way is to work on real image
sequences and consult experts to manually draw the ground truth based on landmark
correspondences. This is very time-consuming, labor-intensive and costly because a reasonably
large number of experts are needed to provide reliable ground truth due to human subjectivity.
An alternative is to use synthetic data via Monte Carlo simulations to demonstrate the statistical
performance. We take the latter approach and systematically generate image sequences that
mimic lesion changes.

1. Image Deformation and Decorrelation—During chemotherapy the lesion usually
changes in the following fashion: some malignant cells die as a result of drug and/or radiation
therapy; in the mean time some benign cells turn malignant due to the propagation of
pathological cells. For a given patient during the monitoring period the existing lesion may
change its shape and new lesion structure may be introduced as well. The lesion change can
be modeled as a low order Markov chain due to the short temporal dependence between scans
– simply put, in a series of exams, the lesion at a certain time point relies heavily on the previous
Q exams (Q is a small integer). In our simulations, we choose first-order Markov model to
generate the test image sequences.

Let represent the coordinate space of the region we are interested. For x ∈ , Yi(x), i = 1, ···,
N, is the scene at x at the i-th scanning time point. The scenes are generated using the following
rule:

(6)
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where Y1(x) and Gi(x), i = 2, ···, N are Rayleigh random variables , where v1 and v2 are
lowpass filtered Gaussian random variables. A Gaussian filter of kernel size 23 × 23 was used
in our experiments. T is a geometric deformation and Yi−1(T (x)) is the interpolated scene after
applying the deformation T. Y1(x) represents the structures that exist at the beginning of the
imaging period while Gi(x) includes new structures introduced along the imaging period.

β ∈ (0, 1] is a constant which controls the correlation between adjacent image pairs assuming
perfect registration. The smaller β is, the images are more decorrelated. In the trivial case of
β = 1 the image sequence consists of deformations of existing structures only.

In the ideal noise-free case, the obtained images are exactly the scenes, i.e., Ii = Yi. From the
properties of first order Markov sequence, M I (I1, I2, …, IN) = M I(I1, IN). Since the mutual
information of the sequence is the same as the smallest mutual information between the image
pairs, joint registration does not hold an advantage over pairwise.

However, during the image acquisition procedure random observation noise is inevitable and
the images in the sequence are modeled as

(7)

where ni(x) is a Rayleigh noise of the same characteristic as described above except that the
lowpass Gaussian filter is of a much smaller kernel size (5 × 5 in our experiments).

The images for the simulations were generated serially based on (6) and (7). Each new image
was obtained by first applying a geometric deformation (T) to the previous scene in the series
and then adding Rayleigh noise and finally adding a random acquisition noise.

In our experiments, thin plate splines (TPS) model [16] is used as the geometric deformation
T and thus the introduced deformation is a serially increasing TPS deformation shown in Fig.
2(a). An example of realizations of the Markov process for β = 0.8 is shown in Fig. 2(b), where
both deformation of existing structures in the first image and introduction of new structures
are included in the subsequent images. At the bottom left corner of the images (indicated by
circles in white), there is a structure in the fifth image which has not shown in the first one.
This is an example of new structures introduced during the Markov process since this area is
out of the deformation field and thus the possibility that the structure is the result of geometric
deformations is excluded.

2. Registration Results—To register a series of images, two approaches have been applied:
sequentially pairwise registration and simultaneously joint registration of multiple images. In
both approaches, αMI (5) is used as the similarity measure.

In all registration efforts TPS was employed as the deformation interpolant with 49 uniformly
distributed control points placed on the nodes of a 7×7 rectangular grid spanning the deformed
area in the image. k-nearest neighbor graphs were used to estimate αMI (α = 0.99) due to their
computational advantage. Optimization was implemented using Nelder-Mead simplex
minimization [17] by moving the control points in the floating images. On a Pentium 4, 3.06
GHz with 4 Gb memory, it took approximately 12 minutes to register a pair of images and 4–
5 hours for joint registration of five images.

The registration errors are illustrated with boxplots. In each boxplot, the bottom, middle, and
upper lines of the box represent the 25th percentile, median, and 75th percentile of the errors.
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The whisker shows the extent of the rest of the data and the outliers are shown as “+”. The
performance comparison of pairwise and joint registration is shown in Fig. 3.

Fig. 3(a) shows the average registration errors for image sequences generated with β = 0.9.
Joint registration outperforms its pairwise counterpart yielding lower registration errors. One
common cause for pairwise registration errors is the propagation of errors along image pairs.
This is due to the composition used to map all the floating images to a common reference. In
joint registration, since every floating image is registered to the reference image simultaneously
under the constraints of one unified objective function, this error propagation does not occur.
Another reason for joint registration’s better performance is that when all the images are
registered simultaneously, they can provide additional information to other images. For
example, with acquisition noise some structure is corrupted in an image, the other images may
be able to provide supplemental information regarding the same structure and thus help the
corrupted image to align with others.

Fig. 3(a) also shows the effects of additive acquisition noise on registration performance. Two
noise levels have been tested: 20% and 40% of the signal power. At 40% noise level, the image
quality is more deteriorated. As a result, the performance of both joint and pairwise registration
methods is more adversely affected. For pairwise registration at such high noise levels,
inaccurate registration is more likely to occur for some pair and the registration error will be
carried over to the subsequent pairs. Therefore, although the observation noise is uncorrelated
in each image, the noise in an image actually has affected the performance of registering the
other images. On the other hand, for joint registration, even if every image in the sequence is
severely corrupted, the uncorrelated observation noise will not affect the matching of other
images. Therefore, the performance degradation is less severe for joint registration. So the
higher the noise, the greater is the improvement observed for joint registration compared to
pairwise.

β controls the weight of new structures in the whole signal component. The smaller the value
of β, the more decorrelation and thus less mutual information between adjacent pairs of exams.
For both joint and pairwise registration there must be adequate amount of mutual information
between the images to achieve good registration ac curacy. Therefore, β plays a crucial role in
registration performance. The average errors for different values of β are shown in Fig. 3(b).
The registration errors for both pairwise and joint methods increase as β decreases. With
preliminary experimental results we observe that joint registration produces significantly lower
average registration errors than pairwise when β ≥ 0.8. When β is smaller than 0.8, the
registration error increases significantly for both methods and there is no observable advantage
of either method.

This study can be used to determine appropriate intervals for patient scanning to efficiently
monitor lesion change. With small time interval between exams the adjacent exam pairs are
highly correlated and registration results are expected to be excellent. However, imaging too
frequently can be expensive and the difference between adjacent exams may be too trivial to
track or analyze. On the other hand, long intervals render the registration problem intractable
because of poorly correlated images with very different lesion structure. Clearly the sampling
interval is an important consideration factor to monitor lesion change effiectively.

3.2 Artificial Lesion Changes
With the promising results we have obtained above, we proceed to track lesion change in brain
MRI scans. We choose a 256 × 256 brain MRI scan (the lower left image in Fig. 4) as the base
image and introduce consecutive B-spline deformation to simulate a series of lesion changes.
The introduced B-spline deformation is shown in the upper row of Fig. 4. The lower row shows
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an example of the image sequence generated with known deformation plus a random Rayleigh
observation noise.

20 realizations of image sequences generated using the formula (6) and (7) with β = 1 underwent
registration with both joint and pairwise approaches. Registration errors are calculated in the
approximate area where the lesion is located. The registration errors plotted in Fig. 5 show that
the joint method outperforms pairwise.

4 Conclusion
We have developed a joint registration algorithm using αMI as the similarity measure. We have
implemented and tested the joint registration algorithm for multiple image registration on
several sets of image data. For comparison, we have also registered the same data sets using
the pairwise approach. The experimental results have affirmed that the joint method
outperforms pairwise in registering noisy image sequences by yielding lower average
registration errors. The high registration accuracy of αMI based joint registration shows that
it can be used as a reliable means to simultaneously register multiple images.

We have studied the performance change of joint registration as correlation (β) decreases. In
conclusion joint registration works well for sufficiently large β values (> 0.8) and this
observation can help us pick the optimal scanning interval to efficiently and effectively monitor
lesions.
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Fig. 1.
Profiles of αMI calculated based on different feature vectors: (a) An axial MR T1 weighted
slice as the reference image; (b) intensity value of each pixel as the feature vector (scalar in
this specific case); (c) concatenated wavelet coefficients except the high frequency component
as the feature vector.

Ma et al. Page 10

Inf Process Med Imaging. Author manuscript; available in PMC 2010 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Geometric deformations and generated images. (a) Consecutive TPS deformation; (b) An
example of generated image sequence with β = 0.8.
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Fig. 3.
Registration errors for both joint and pairwise registrations. (a) Average registration errors for
different acquisition noise levels (β = 0.9); (b) Average registration errors for different β values
(the acquisition noise level is 20%). The labels in the horizontal axis: ‘P’ and ‘J’ indicate
pairwise and joint registration, respectively; the number following ‘n’ indicates the observation
noise level, e.g., ‘n20’ means the noise level is 20% of the signal power; the number after ‘b’
is the value of β.
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Fig. 4.
Geometric deformations and corresponding brain images. (a) Consecutive B-spline geometric
deformation; (b) Corresponding brain image sequence.
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Fig. 5.
Registration errors for both joint and pairwise registration of the brain sequences. (a)
Registration errors between image pairs; (b) Average registration errors across the image
sequence. The labels in the horizontal axis: ‘P’ and ‘J’ mean pairwise and joint registration,
respectively; the two digits following ‘P’ or ‘J’ are the indices for an image pair, e.g., ‘14’
means the alignment of I4 to I1; ‘-av’ after ‘P’ or ‘J’ means average.
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