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Abstract
Signaling from the endothelin-A (Ednra) receptor is responsible for initiating multiple signaling
pathways within neural crest cells (NCCs). Loss of this initiation is presumably the basis for the
craniofacial defects observed in Ednra−/− embryos. However, it is not known whether continued
Ednra signaling in NCC derivatives is required for subsequent development of the lower jaw. To
address this question, mice containing loxP recombination sequences flanking a portion of the
Ednra gene were bred with transgenic mice that express Cre recombinase under control of a
Dlx5/6 enhancer element. We find that while Ednra gene inactivation within the mandibular arch of
these Ednra conditional knockout embryos is detectable by embryonic day (E) 10.5, mandibular arch-
specific gene expression is normal, as is overall mandible development. These results suggest that
while Ednra receptor signaling is crucial for early NCC patterning, subsequent Ednra signaling is
not essential for mandible bone development.
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Introduction
Lower jaw formation is arguably one of the more amazing morphological achievements of
embryogenesis. Much of the facial skeleton is formed by cephalic neural crest cells (NCCs),
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which migrate to the pharyngeal arches from the midbrain/hindbrain region, subsequently
giving rise to bone and cartilage (Noden 1983; Lumsden et al. 1991; Serbedzija et al. 1992).
NCCs appear to be patterned once in the arches by environmental signals from the surrounding
tissues (Le Douarin et al. 1993; Couly et al. 2002; Trainor et al. 2002; Schneider and Helms
2003). However, the ability of NCCs and their derivatives to respond to these signals appears
to decrease with time. In E9.0 explanted mandibles, Fgf8-soaked beads can induce widespread
Lhx7 expression, though by E11.0, Lhx7 expression is independent of Fgf8 (Tucker et al.
1999). These findings illustrate that NCC patterning signals may only be necessary for the
initiation of developmental pathways within NCCs but not during subsequent mesenchymal
differentiation.

Endothelin-1 (Edn1), expressed by the surrounding ectoderm, core paraxial mesoderm and
pharyngeal pouch endoderm, is also crucial for NCC patterning, acting through the endothelin-
A receptor (Ednra) located on NCCs (for review, see Clouthier and Schilling 2004). Targeted
inactivation of either Edn1 or Ednra results in severe craniofacial and cardiovascular defects
that are attributable to aberrant NCC development (Kurihara et al. 1994; Clouthier et al.
1998; Yanagisawa et al. 1998). These include an apparent homeotic transformation of lower
jaw structures to more maxillary-like derivatives (Ozeki et al. 2004; Ruest et al. 2004). While
these findings indicate a role for Ednra signaling in initiating early crest cell patterning, it is
not clear if continued Ednra signaling is required to maintain patterning mechanisms and
whether Ednra signaling is required for later differentiation of the crest derived mesenchyme.
To address these questions, we specifically inactivated the Ednra gene in a subset of cells
within the mandibular arch using Cre/loxP technology.

Materials and methods
Animals

Ednraflox/flox (Kedzierski et al. 2003) and Dlx5/6-Cre (Ruest et al. 2003) mice were generated
as previously described. Ednraflox/flox; Dlx5/6-Cre embryos were generated by crossing
Ednraflox/+; Dlx5/6-Cre female mice with Ednraflox/flox male mice. We also generated
conditional knockout mice carrying one conventional Ednra mutant allele (Ednra+/−; Clouthier
et al. 1998) and one conditional allele (Ednraflox/−).Ednraflox/− female mice were bred with
Ednraflox/flox; Dlx5/6-Cre male mice to generate Ednraflox/−; Dlx5/6-Cre embryos. Genotyping
was performed by PCR using genomic DNA prepared from tail biopsies or amniotic sacs.
Dlx5/6-Cre mouse genotyping was performed as previously described (Ruest et al. 2003). The
genotyping of the Ednra conditional allele was performed with the following primers: 5′-
ACACAACCATGGTGTCGA-3′ and 5′-CGGTTCTTATCCATCTCATC-3′. These primers
flank the 5′ loxP site located between the fifth and sixth exons of the conditionally targeted
Ednra gene (Kedzierski et al. 2003), thus producing ~420 bp and ~380 bp bands in
Ednraflox/+ animals, a single ~420 bp band in Ednraflox/flox animals and a single ~380 bp band
in Ednra+/+mice. Reaction products were visualized on a 1.5% agarose gel. Ednra mutant
genotyping was performed as previously described (Clouthier et al. 1998).

To determine whether the conditional Ednra gene had undergone recombination, genomic
DNA was extracted from the mandibular pharyngeal arch of E9.5 and E10.5 embryos. To obtain
bone DNA, the mandible bone was dissected from 3-month-old Ednraflox/flox; Dlx5/6-Cre
females and cleaned of all muscle and tendon tissue. Mandibles were ground in liquid nitrogen
and incubated for 48 h in 1 ml of 0.5 M EDTA (pH 8.0)/2% sarkosyl with agitation at room
temperature. After addition of TRIS (pH 8.0) and NaCl to 20 mM and 400 mM final
concentration, respectively, samples were incubated with proteinase K (10 mg/ml) at 55°C
overnight. Following phenol/chloroform extraction, samples were dialyzed in Spectra Float A
Lyzer tubes (3500 MWcut-off) for 20 h in TE buffer. After addition of sodium acetate and
isopropyl alcohol, DNA was precipitated and washed with 75% ethanol. DNAwas used in a
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recombinant PCR reaction with the following primers: 5′-
ACACAACCATGTTGTCGAGGTCGA-3′ and 5′-
GAGAACCTACAACTGGGGACACAAACAC-3′. Recombination of the conditional
Ednra allele gives rise to a 1.2 kb band.

Skeleton staining and histology
Skeleton staining was performed as previously described (McLeod 1980). Skeletons were
preserved in glycerol or in 25% glycerol/75% ethanol. Skeletons were photographed with an
Olympus DP11 digital camera mounted on an Olympus SZX12 stereomicroscope. For
histological analysis, E18.5 embryos were fixed in 10% neutral buffered formalin (Sigma),
dehydrated in graded ethanols and then embedded in paraffin. Eight-µm sagittal sections were
then collected onto Plus-coated slides. Every other section was then counterstained with
hematoxylin and eosin (H&E), dehydrated in graded ethanols and then coverslipped using DPX
mounting medium (BDH). Sections were examined and photographed on an E600 Nikon
microscope fitted with a Spot-RT digital camera. To examine the extent of calcification in the
mandible of embryos, contiguous slides to those used for H&E analysis were deparaffinized
and rehydrated and then subjected to Van Kossa’s method. Briefly, sections were incubated in
5% silver nitrate for 1 h at room temperature under a 60-W bulb. Slides were then rinsed 3
times in distilled water and incubated in 5% sodium thiosulfate. Sections were rinsed in water
and then counterstained with nuclear fast red before dehydrating and mounting as described
above. We analyzed more than 20 Ednraflox/flox; Dlx5/6-Cre embryos and ten Ednraflox/−;
Dlx5/6-Cre embryos.

In situ hybridization
Whole-mount in situ hybridization analysis was performed as previously described (Clouthier
et al. 2000). Embryos were hybridized with digoxigenin (DIG)-labeled cRNA riboprobes
against dHAND (Srivastava et al. 1997) and Dlx5 (Depew et al. 1999). Riboprobe labeling was
performed using the DIG labeling kit (Roche). Stained embryos were photographed in whole-
mount as described above.

Results
Generation of Ednraflox/flox; Dlx5/6-Cre conditional knockout mice

Mice carrying a conditionally targeted Ednra allele (referred to as ETA
flox/flox) have been

described previously (Kedzierski et al. 2003). Briefly, these mice carry two loxP sites that flank
the last three exons of the Ednra gene (hence the term “flox”). We have also previously
described the generation and characterization of Dlx5/6-Cre transgenic mice (Ruest et al.
2003). Cre expression in these mice is restricted to the mandibular first arch, with expression
first detected at embryonic day (E) 9.5 before being down regulated by E10.5. Ednraflox/flox;
Dlx5/6-Cre embryos, generated by crossing Ednraflox/+; Dlx5/6-Cre with Ednraflox/flox mice,
were collected at both E9.5 and E10.5 and mandibular arch DNA isolated to verify
recombination of the conditional Ednra allele. At E9.5, recombination of the conditional allele
was not detected by PCR in either Ednraflox/flox; Dlx5/6-Cre (Fig. 1, lane 4) or ETAflox/+;
Dlx5/6-Cre embryos (data not shown). However, by E10.5, recombination of the conditional
Ednra allele was observed in embryos carrying both an Edmraflox allele and the Dlx5/6-Cre
transgene (lanes 5 and 6). Recombination was not observed in Ednraflox embryos (lanes 2 and
3) or in amniotic sac DNA from Ednraflox/flox; Dlx5/6-Cre (neither Dlx5 nor Dlx6 is expressed
in the amniotic sac; Beverdam et al. 2002; Robledo et al. 2002; Ruest et al. 2003). To quantify
the extent of recombination, we counted the number of labeled cells in multiple sections
through the mandibular arch of E10.5 R26R; Dlx5/6-Cre embryos, finding that 3.2% (±0.5) of
cells were labeled (data not shown). While this indicates a low level of recombination, we have
shown that Dlx5/6 daughter cells are restricted to the mandibular bone of E16.5 R26R; Dlx5/6-
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Cre embryos. To determine if this restriction was detectable by recombination PCR, we
examined the extent of Ednra gene recombination in the adult mandible bone, comparing it to
surrounding tissue. We found that recombination was only present in bone DNA but not in
skin or muscle DNA (Fig. 1d).

Lower jaw development in Ednraflox/flox; Dlx5/6-Cre embryos
The mandible of Ednra−/−embryos has significant defects in NCC-derived structures of the
first mandibular arch (Clouthier et al. 1998; Ruest et al. 2004). To examine whether similar
defects were present in Ednraflox/flox; Dlx5/6-Cre embryos, we examined the skulls of E18.5
embryos. We focused our attention on the mandible bone, since β-galactosidase-labeled cells
in Dlx5/6-Cre; R26R embryos, representing Dlx5/6 daughter cells, are found almost exclusively
in the mandible bone of E16.5 embryos (Ruest et al. 2003). In Ednraflox/flox; Dlx5/6-Cre
embryos (Fig. 2c,d), no obvious differences were apparent in the mandible bone when
compared with either Ednraflox/+; Dlx5/6-Cre (Fig. 2a,b) or Ednraflox/flox (data not shown)
control littermates. The absence of defects in Ednraflox/flox; Dlx5/6-Cre embryos could reflect
insufficient recombination of the Ednra conditional allele, resulting in genetic mosaicism
(Nagy 2000; Kwan 2002). To address this issue, we also examined lower jaw structures in
Ednraflox/−; Dlx5/6-Cre embryos. Since one Ednra allele of Ednraflox/− animals already
contains a traditional mutation, recombination would only have to occur once to result in an
Ednra mutant genotype. However, defects were also not present in Ednraflox/−; Dlx5/6-Cre
embryos (Fig. 2e, f).

Histological analysis of E18.5 embryos also did not reveal any structural differences in the
mandible bone between Ednraflox/flox (control; Fig. 3a), Ednraflox/flox; Dlx5/6-Cre (data not
shown) and Ednraflox/−; Dlx5/6-Cre embryos (Fig. 3b). The size of the dental papilla and the
extent of early dentin matrix formation around the teeth also appeared normal and suggested
that odontogenesis was unaffected in Ednraflox/−; Dlx5/6-Cre embryos.We also examined
calcification of the mandibular bone at E18.5 using Van Kossa’s method, which results in a
black deposit of reduced silver in the presence of calcium. Calcified matrices along the
mandible bone appeared similar between Ednraflox/flox (control; Fig. 3c) and Ednraflox/−;
Dlx5/6-Cre (Fig. 3d) embryos. The absence of defects was reflected in adult Ednraflox/flox;
Dlx5/6-Cre mice, which are viable and fertile at least to 15 months, indicating normal dentition,
growth, musculature, innervation and tendon connections.

Normal gene expression within the mandibular arch of Ednraflox/flox; Dlx5/6-Cre embryos
Ednra signaling is required for normal signaling of at least eight transcription factors involved
in neural crest cell development, including the bHLH transcription factor dHAND/HAND2
and the Distal-less homeobox family member Dlx5 (Clouthier et al. 1998,Clouthier et al.
2000; Thomas et al. 1998; Ivey et al. 2003;Park et al. 2004; Ruest et al. 2004). Since defects
were not observed in either Ednraflox/flox; Dlx5/6-Cre or Ednraflox/−; Dlx5/6-Cre embryos, we
examined whether this reflected normal gene expression within the mandibular arch. In both
Ednraflox/flox; Dlx5/6-Cre and Ednraflox/−; Dlx5/6-Cre embryos, expression of both Dlx5 (Fig.
4a–c) and dHAND (Fig. 4d–f) was normal in the pharyngeal arch mesenchyme. This suggests
that inactivation of the conditional Ednra gene is occurring after activation of the signaling
cascade(s) involving both Dlx5 and dHAND.

Discussion
Our previous analysis of Dlx5/6-Cre; R26R embryos demonstrated that Cre expression in
Dlx5/6-Cre embryos occurs between E9.5 and E10.5, with Dlx5/6 daughter cells restricted to
the mandible bone of E18.5 embryos (Ruest et al. 2003). However, when crossed into the
conditional Ednraflox/flox background, neither Ednraflox/flox; Dlx5/6-Cre nor Ednraflox/−;
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Dlx5/6-Cre embryos develop defects in lower jaw structures. The Ednraflox line has been used
previously to inactivate Ednra expression specifically in myocardial cells of the adult heart,
with Edn1 binding assays illustrating loss of Ednra receptor function (Kedzierski et al. 2003).
While the size of E9.5 and E10.5 pharyngeal arches make binding assays unfeasible, our PCR
analysis shows that the conditional Ednra allele is recombined by E10.5 in Ednraflox/flox;
Dlx5/6-Cre embryos. While we do not observe recombination at E9.5, the time period that
Cre transgene expression first appears, this absence may simply reflect a very limited
recombination of the conditional Ednra allele at that time. However, even at E10.5,
recombination is only observed in 3.2% of the arch mesenchyme cells, which could suggest
that inefficient recombination leads to an absence of mandibular defects. Yet, our results with
Ednraflox/−; Dlx5/6-Cre embryos argue against inefficient recombination of the conditional
Ednra allele. Rather, we believe that we are targeting a small group of cells that will later
participate in mandible bone formation. A lack of phenotype is probably due to the timing of
recombination rather than the extent of recombination, as we have shown using chimera
analysis that the Ednra mutation acts in a cell autonomous manner (Clouthier et al. 2003). This
argues against rescue of mutant cells by neighboring cells within the arches. This is also
supported by a lack of change in gene expression patterns. Taken together, these aspects
indicate, though do not prove, that an absence of phenotype is more probably due to the timing
of gene recombination rather than an absence of recombination.

Ednra signaling is crucial for NCC development in mouse (Clouthier et al. 1998), rat (Spence
et al. 1999), zebrafish (Miller et al. 2000) and chick (Kempf et al. 1998). We have clarified the
function of Ednra receptor signaling in this study, illustrating that it does not appear to be
required for mandible bone development after NCC patterning. However, it is still possible
that Ednra receptor function is required within the adult mandibular bone. Ednra receptors are
located on osteoblasts (Stern et al. 1995; Suzuki et al. 1997), including those in craniofacial
bone (Kitano et al. 1998). Further, recent evidence suggests that Ednra signaling may play a
role in the bone formation observed during osteoblastic bone metastases (Yin et al. 2003).
These findings may indicate that Ednra receptor signaling is required for adult bone
remodeling. It is plausible that such a mechanism could be mediated by Dlx5, as Dlx5
expression is observed in broken bones of adult mice (Miyama et al. 1999). It will be interesting
to examine whether the absence of the Ednra gene in Ednraflox/flox; Dlx5/6-Cre or
Ednraflox/−; Dlx5/6-Cre mice affects mandible fracture repair.
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Fig. 1.
Analysis of the Ednra gene recombination in Ednraflox/flox; Dlx5/6-Cre embryos. Genomic
PCR analysis of DNA extracted from adult mouse tails (lanes 1–3), embryonic mandibular
pharyngeal arches (lanes 4–6) or embryonic yolk sac (lane 7). The genotype of each animal is
listed above the lane number. a CrePCR amplification generates a band ~500 bp. b loxP PCR
reveals a 375 bp band, representing the wild type (WT) allele, a 425 bp band, representing the
mutant allele (flox), or both. c Recombinant PCR detects the recombined Ednraflox allele and
generates a 1200 bp band. d Recombinant PCR of DNA extracted from the skin, muscle and
bone of the lower jaw of adult Ednraflox/flox; Dlx5/6-Cre mice
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Fig. 2.
Analysis of jaw development in E18.5 Ednraflox/flox; Dlx5/6-Cre and Ednraflox/−; Dlx5/6-Cre
conditional knockout embryos. Lateral (a,c,e), ventral (b,d,f,g) and intralateral (h) views of
Ednraflox/+; Dlx5/6-Cre (control; a,b), Ednraflox/flox; Dlx5/6-Cre (c,d) and Ednraflox/−; Dlx5/6-
Cre (e,f) conditional knockout embryos stained with alizarin red and alcian blue. a,f Regardless
of the genotype, defects are not observed in any skeletal structures, including the mandible,
Meckel’s cartilage, malleus and incisors. g,h In comparison to a control mandible,
Ednraflox/flox; Dlx5/6-Cre and Ednraflox/−; Dlx5/6-Cre conditional knockout mandibles do not
display any morphological differences in their shape, length or processes. a Articular process;
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c condylar process; cr coronoid process; i incisor; md mandible; mc Meckel’s cartilage; hy
hyoid; ty tympanic ring
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Fig. 3.
Analysis of general histology and calcification in E18.5 Ednraflox/−;Dlx5/6-Cre conditional
knockout mandibles. Sagittal paraffin sections through the head of E18.5 Ednraflox/flox (used
as control; a,c) and Ednraflox/−;Dlx5/6-Cre (b,d) embryos stained with either hematoxylin and
eosin (H&E; a,b) or Van Kossa’s method counterstained with nuclear fast red (c,d). a,b
Histological analysis of H&E-stained sections illustrate that differences are not observed in
either the mandibular/alveolar bone structure or incisors of control (a) and Ednraflox/−;Dlx5/6-
Cre (b) embryos. c,d Analysis of calcification by Van Kossa’s method, which produces a
precipitate of reduced silver metal in the presence of calcium, reveals no differences between
control (c) and Ednraflox/−;Dlx5/6-Cre (d) embryos. Silver metal deposits were also observed
along the incisors of Ednraflox/−; Dlx5/6-Cre embryos, though this is not apparent in the section
shown in d. i Incisor; m; molar; m1 first molar; m2 second molar; md mandible; mx maxilla;
pmx pre-maxilla; t tongue
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Fig. 4.
Analysis of gene expression in E10.5 conditional knockout embryos. Whole-mount in situ
hybridization analysis of Dlx5 (a–c) and dHAND (d–f) expression in E10.5 Ednraflox/flox

(control; a,d), Ednraflox/flox; Dlx5/6-Cre (b,e) and Ednraflox/−; Dlx5/6-Cre (c,f) embryos,
presented in lateral (a–f) and ventral (a′–f′) views. (a–f) No differences in Dlx5 and dHAND
expression are observed in the mandibular (1) and second (2) pharyngeal arches between the
different genotypes. oc Otic capsule; h heart; lb limb bud; 3 third pharyngeal arch
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