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Abstract
Pigeons responded to intermittently reinforced classical conditioning trials with erratic bouts of
responding to the CS. Responding depended on whether the prior trial contained a peck, food, or
both. A linear-persistence/learning model moved animals into and out of a response state, and a
Weibull distribution for number of within-trial responses governed in-state pecking. Variations of
trial and inter-trial durations caused correlated changes in rate and probability of responding, and
model parameters. A novel prediction—in the protracted absence of food, response rates can plateau
above zero—was validated. The model predicted smooth acquisition functions when instantiated
with the probability of food, but a more accurate jagged learning curve when instantiated with trial-
to-trial records of reinforcement. The Skinnerian parameter was dominant only when food could be
accelerated or delayed by pecking. These experiments provide a framework for trial-by-trial accounts
of conditioning and extinction that increases the information available from the data, permitting them
to comment more definitively on complex contemporary models of momentum and conditioning.
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Estes’s stimulus sampling theory provided the first approximation to a general quantitative
theory of learning; by adding a hypothetical attentional mechanism to conditioning, it carried
analysis one step beyond extant linear learning models into the realm of theory (Atkinson &
Estes, 1962; Bower, 1994; Estes, 1950, 1962; Healy, Kosslyn, & Shiffrin, 1992). Wagner and
Rescorla (1972) added the important nuance that the asymptotic level of conditioning might
be partitioned among stimuli that are associated with reinforcers, as a function of their
reliability as predictors of reinforcement; that refinement has had tremendous and widespread
impact (Siegel & Allan, 1996). The attempt to couch the theory in ways that account for
increasing amounts of the variance in behavior has been one of the main engines driving modern
learning theory. Models have been the agents of progress, the go-betweens that reshaped both
our theoretical inferences about the conditioning processes, and our modes of analysis of the
data. In this theoretical-empirical dialog, the Rescorla-Wagner (R-W) model has been paragon.

Despite the elegant mathematical form of their arguments, the predictions of recent learning
models are almost always qualitative—a particular constellation of cues is predicted to block
or enhance conditioning more than others, due to their differential associability, or their history
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of association, and those effects are measured by differences in speed of acquisition or
extinction, or as response rate in test trials. Individual differences, and the brevity of learning
and extinction processes, make convergence on meaningful parametric values difficult: There
are nothing like the basic constants of physics and chemistry to be found in psychology. To
this is the added difficulty of a general analytic solution of the R-W model (Danks, 2003;
Yamaguchi, 2006). As Bitterman astutely noted, the residue of these difficulties leaves
predictions which are at best ordinal, and dependent on simplifying assumptions concerning
the map from reinforcers to associations, and from associations to responses:

The only thing we have now that begins to approximate a general theory of
conditioning was introduced more than 30 years ago by Rescorla and Wagner
(1972). … An especially attractive feature of the theory is its statement in equational
form, the old linear equation of Bush and Mosteller (1951) in a different and now
familiar notation, which opens the door to quantitative prediction. That door,
unfortunately, remains unentered. Without values for the several parameters of the
equation, associative strength cannot be computed, which means that predictions from
the theory can be no more than ordinal, and even then those predictions are made on
the naïve assumption of a one-to-one relation between associative strength and
performance. (Bitterman, 2006, p. 367)

To pass through the doorway that these pioneers have opened requires techniques for estimating
parameters in which we can have some confidence; and to achieve that requires a database of
more than a few score learning and testing trials. But most regnant paradigms get only a few
conditioning sessions out of an organism (see, e.g., Mackintosh, 1974), whereupon the subject
is no longer naive. To reduce error variance, therefore, data must be averaged over many
animals. This is inefficient in terms of data utilization, and also confounds the variability of
learning parameters as a function of conditions with the variability of performance across
subjects (Loftus & Masson, 1994). The pooled data may not yield parameters representative
of individual animals; when functions are nonlinear, as are most learning models, the average
of parameters of individual animals may deviate from the parameters of pooled data (Estes,
1956; Killeen, 2001). Averaging the output of “large N” studies is therefore an expensive and
non-optimal way to narrow the confidence intervals on parameters (Ashby & O'Brien, 2008).

Most learning is not in any case the learning of novel responses to novel stimuli. It is refining,
retuning, reinstating or remembering sequences of action that may have had a checkered history
of association with reinforcement. In the present article, we make a virtue of the necessity to
work with non-naïve animals, to explore ways to compile adequate data for convergence on
parameters, and prediction of data on an instance-by-instance basis. Our strategy is to use
voluminous data sets to choose among learning processes that permit both Pavlovian and
Skinnerian associations. Our tactic is to develop and deploy general versions of the linear
learning equation—an error-correction equation in modern parlance—to characterize repeated
acquisition, extinction and reacquisition of conditioned responding.

Perhaps the most important problem with the traditional paradigm is its ecological validity:
Conditioning and extinction acting in isolation may occur at different rates than when occurring
in mélange (Rescorla, 2000a, 2000b). This limits the generalizability of acquisition-extinction
analyses to newly acquired associations. A seldom-explored alternative approach consists of
setting up reinforcement contingencies that engender continual sequences of acquisition and
extinction. This would allow the estimation of within-subject learning parameters on the basis
of large data sets, thus increasing the efficiency of data use and disentangling between-subject
variability in parameter estimates from variability in performance. Against the possibility that
animals will just stop learning at some point in extended probabilistic training, Colwill and
Rescorla (1988; Colwill & Triola, 2002) have shown that, if anything, associations increase
throughout such training.
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One of Skinner’s many innovations was to examine the effects of mixtures of extinction and
conditioning in a systematic manner. He originally studied Fixed-Interval schedules under the
rubric “Periodic Reconditioning” (Skinner, 1938). But absent computers to aggregate the
masses of data his operant techniques generated, he studied the temporal patterns drawn by
cumulative recorders (Skinner, 1976). Cumulative records are artful and sometimes elegant;
but difficult to translate into that common currency of science, numbers (Killeen, 1985). With
a few notable exceptions (e.g., Davison & Baum, 2000; Shull, 1991; Shull, Gaynor, & Grimes,
2001), subsequent generations of operant conditioners tended to aggregate data and report
summary statistics, even though computers had made a plethora of analyses possible. Limited
implementations of conditional reconditioning have begun to provide critical insights on
learning (e.g., Davison & Baum, 2006).

Recent contributions to the study of continual reconditioning are found in Kacelnik and
Reboreda (1993), Killeen (2003), and Shull and Grimes (2006). The first two studies exploited
the natural tendency of animals to approach signs of impending reinforcement, known as sign-
tracking (Hearst & Jenkins, 1974; Janssen, Farley, & Hearst, 1995). Sign-tracking has been
extensively studied as Pavlovian conditioned behavior (Hearst, 1975; Locurto, Terrace, &
Gibbon, 1981; Vogel, Castro, & Saavedra, 2006). It is frequently elicited in birds using a
positive automaintenance procedure (e.g., Perkins, Beavers, Hancock, Hemmendinger, &
Ricci, 1975), in which the illumination of a response key is followed by food, regardless of the
bird’s behavior. Kacelnik and Reboreda and Killeen recorded pecks to the illuminated key as
indicators of an acquired key-food association. In both studies a negative contingency between
key pecking and food, known as negative automaintenance (Williams & Williams, 1972), was
imposed. In negative automaintenance an omission contingency is superimposed such that key
pecks cancel forthcoming food deliveries, whereas absent key pecks, food follows key
illuminations. Key-food pairing elicits key pecking (conditioning), which, in turn, eliminates
the key-food pairings, reducing key pecking (extinction), which re-establishes key-food
pairings (conditioning), and so on. This generates alternating epochs of responding and non-
responding, in which responding eventually moves off key or lever (Myerson, 1974; Sanabria,
Sitomer, & Killeen, 2006), and, to a naive recorder, “extinguishes”. Presenting food whether
or not the animal responds provides a more enduring, but no less stochastic, record of
conditioning (Perkins et al., 1975). The data look similar to those shown in Figure 2 below; a
self-similar random walk ranging from epochs of non-responding to epochs of responding with
high probabilities. Such data are paragons of what we wish to understand: How does one make
scientific sense of such an unstable dynamic process? A simple average rate certainly won’t
do. Killeen (2003) showed that data like these had fractal properties, with Hurst exponents in
the “pink noise” range. But, other than alerting us to control over multiple time scales, this
throws no new light on the data in terms of psychological processes.

To generate a data-base in which pecking is being continually conditioned and extinguished,
we instituted probabilistic classical conditioning, with the unconditioned stimulus (US)
generally presented independently of responding. Using this paradigm, we examined the effect
of duration of inter-trial interval (ITI; Experiment 1), duration of conditioned stimulus (CS;
Experiment 2), and peck-US contingency (Experiment 3) on the dynamics of key peck
conditioning and extinction.

Experiment 1 –Effects of ITI Duration and US Probability
Method

Subjects—Six experienced adult homing pigeons (Columba livia) were housed in a room
with a 12:12-hr day:night cycle, with dawn at 6:00 am. They had free access to water and grit
in their home cages. Running weights were maintained just above their 80% ad libitum weight;
a pigeon was excluded from a session if its weight exceeded its running weight by more than

Killeen et al. Page 3

J Exp Psychol Anim Behav Process. Author manuscript; available in PMC 2010 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



7%. When required, supplementary feeding of ACE-HI pigeon pellets (Star Milling Co.) was
given at the end of each day, no fewer than 12 hrs before experimental sessions were conducted.
Supplementary feeding amounts were based equally on current deviation and on a moving
average of supplements over the last 15 sessions.

Apparatus—Experimental sessions were conducted in three MED Associates test chambers
(305 mm long, 241 mm wide, and 292 mm high), enclosed in sound and light-attenuating boxes
equipped with a ventilating fan. The sidewalls and ceiling of the experimental chambers were
clear plastic. The floor consisted of thin metal bars above a catch pan. A plastic translucent
response key 25 mm in diameter was located 70 mm from the ceiling, centered horizontally
on the front of the chamber. The key could be illuminated by green, white, or red light emitted
from diodes behind the keys. A square opening 77 mm across was located 20 mm above the
floor on the front panel, and could provide access to milo grain when the food hopper
(Coulbourne Instruments, part H14-10R) was activated. A house light was mounted 12 mm
from the ceiling on the back wall. The ventilation fan on the rear wall of the enclosing chamber
provided masking noise of 60 dB. Experimental events were arranged and recorded via a Med-
PC interface connected to a PC computer controlled by Med-PC IV software.

Procedure—Each session started with the illumination of the house light, which remained
on for the duration of the session. Sessions started with a 40-s ITI, followed by a 5-s trial, for
a total cycle duration of 45 s. During the ITI only the house light was lit; during the trial the
center response key was illuminated white. After completing a cycle, the key light was turned
off for 2.5 s, during which food could be delivered. Two and a half seconds after the end of a
cycle, a new cycle started, or the session ended and the house light was turned off. Food was
always provided at the end of the first trial of every session. Pecking the center key during a
trial had no programmed effect.

Initially, food was accessible for 2.5 s with reinforcement p = .1 at the end of every trial after
the first, regardless of the pigeon’s behavior. In subsequent conditions, the ITI was changed
from 40 s to 20 s, and then to 80 s for 3 pigeons; for the other 3 pigeons, ITI was changed to
80 s first, and then to 20 s. Inter-trial intervals for all pigeons were then returned to 40 s. Each
session lasted for 200 cycles when ITI = 20 s, 100 cycles when ITI = 40 s, and 50 cycles when
ITI = 80 s. In the last condition, the probability of reinforcement was reduced to .05 at the 40s
ITI. One pigeon (#113) had ceased responding by the end of the .1 series, and was not run in
the .05 condition. Table 1 arrays these conditions and the number of sessions at each.

Results
The first dozen trails of each condition were discarded, and the responses in the remaining
trials, averaging 2500 per condition, are presented in the top panel of Figure 1 as mean number
of responses per 5-s trial. The high-rate subject at the top of the graph is P106 (cf Figure 3
below). There appears a slight decrease in average response rates as the ITI increased, and a
larger decrease when the probability of food decreased from .1 to .05. Rates in the second
exposure to the 40 s condition were lower than the first. These changes are echoed in the lower
panel, which gives the relative frequency of at least one response on a trial. The interposition
of other ITIs between the first and second exposure to the 40-s ITI caused a slight decrease in
rate and probability of responding in 5 of the 6 birds, although the spread in rates in the top
panel and the error bars in the bottom, indicate that that trend would not achieve significance.

These data seem inconsistent with the many studies that have shown faster acquisition of the
key-peck response at longer ITIs. But the present data were probabilistically-maintained
responses over the course of many sessions. Only one other report, that of Perkins and
associates (1975), constitutes a relatively close prequel to this one. These authors maintained
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responding on schedules of non-contingent partial reinforcement after CSs associated with
different delays, probabilities, and ITIs. They used 5 different key-colors associated with
different conditions within each study. Those that come closest to those of the present
experiment are shown as open symbols in Figure 1. The circles represents the average response
rate of 4 pigeons on 4-s trials (converted to this 5-s base) receiving reinforcement on 1/6
(~16.7%) of the trials, at ITIs of 30 s (first circle) and 120 s (second circle). These data also
indicate a slight decrease in rates with increasing ITIs. These investigators also reported a
condition with 8-s trials and 60-s ITIs involving probabilistic reinforcement. The first square
in Figure 1 shows the average rate (per 5 s) of 4 pigeons at a probability of 3/27 (~11.1%), and
the second at a probability of 1/27 (~3.7%). Their subjects, like ours (and like a few other
studies reported by these authors) showed a decrease in responding with a decrease in
probability of reinforcement.

Any inferences one may wish to draw concerning these data are chastened by a glance at the
inter-subject variability of Figure 1 and of Perkins and associates’ (1975) data. The effect size
is small given that variability, and in fact some authors such as Gibbon, Baldock, Locurto,
Gold, and Terrace (1977) report no effect of ITI on response rate in sustained automaintenance
conditions; others (e.g., Terrace, Gibbon, Farrell, and Baldock, 1975) report some effect.
Representing inter-trial variability visually is no simpler than characterizing inter-subject
variability; Figure 2 gives an approximation for one subject (P98) under the first 40 s ITI
condition, with data averaged in running windows of 25 trials. There is an early rise in rates
to around 6 per trial, then slow drift down over the first thousand trials, with rates stabilizing
thereafter at around 4 responses per trial. There may be within-session warm-up and cool down
effects not obvious in this figure. We may proceed with similar displays and characterizations
of them for each of the subjects in each of the conditions—all different. Or we may average
performance over the whole of the experimental condition, as we did to generate the vanilla
Figure 1. Or we may average data over the last 5 or 10 sessions as is the traditional modus
operandi for such data. But such averages reduce a performance yielding thousands of bits of
data to a report conveying only a few bits of information. As is apparent from the (smoothed)
trace of Figure 2, the averages do not tell the whole story. How do we pick a path between the
over-simplification of Figure 1, and the overwhelming complexity of Figures such as 2? And
how do we tell a story of psychological processes, rather than of procedural results? Models
help, assayed next.

Analysis: The Models
1. The Response Output Model: The goal of this research is to develop a procedure that can
provide a more informative characterization of the dynamics of conditioning. To do this we
begin analysis with the simplest and oldest of learning models, a linear learning model of
associative strength. These analyses have been in play for over half a century (Bower, 1994;
Burke & Estes, 1956; Bush & Mosteller, 1951; Couvillon & Bitterman, 1985; Levine & Burke,
1972), with the Rescorla-Wagner model a modern avatar (Miller, Barnet, & Grahame, 1995;
Wasserman & Miller, 1997). Because associative strengths are asymptotically bounded by the
unit interval, it is seductive to think that they can be directly mapped to probabilities of
responding, or to the probabilities of being in a conditioned state. Probabilities can be estimated
by taking the number of trials containing at least one response within some epoch, say, 25
trials, and dividing that by the number of trials in that epoch (cf. Figure 2). There are three
problems with this approach:

1. Twenty-five trials is an arbitrary epoch which may or may not coincide with a
meaningful theoretical/behavioral window.

2. Information about the contingencies that were operative within that epoch are lost,
along with the blurring of responses to them.

Killeen et al. Page 5

J Exp Psychol Anim Behav Process. Author manuscript; available in PMC 2010 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3. Parsing trials into those with and without a response discards information. Response
probability makes no distinction between trials containing one response and trials
containing 10 responses, even though they may convey different information about
response strength.

4. As Bitterman noted above, associative strengths are not necessarily isomorphic with
probability (Rescorla, 2001).

The map between response rates and inferred strength must be the first problem attacked. The
place to start is by looking at, and characterizing, the distribution of responses during a CS.
Figure 3 displays the relative frequency of 0, 1, 2, … responses during a trial in the first
condition of Experiment 1 for each of its participants.

The curves through the distributions are linear functions of Weibull densities:

(1)

The variable si is the probability that the animal is in the response state on the ith trial. For the
data in Figure 3, this is averaged over all trials. The w-function is the Weibull density with
index n for the actual number of responses during the CS, the shape parameter α, and the scale
parameter c, which is proportional to the mean number of responses on a trial. The first line of
(1) gives the probability of no responses on a trial: It is the probability that the animal is in the
response state (si) and makes no responses (w(n, α, c)), plus the probability that it is out of the
response state (1 − si). The second line gives the probabiilty all non-zero responses.

The Weibull distribution is a generalization of the Exponential/Poisson distribution that was
recommended by Killeen, Hall, Reilly, and Kettle (2002) as a map from response rate to
response probability. That recommendation was made for free operant responding during brief
observational epochs. The Poisson also provides an approximate account of the response
distributions shown in Figure 2. It is inferior to the Weibull, however, even when the additional
shape parameter is taken into account using the Akaike Information Criterion (AIC). The
Weibull distributioni is:

(2)

According to this model, when the animal is in a response state, it begins responding after trial
onset and emits n responses during the course of that trial. It is obvious that when α = 1, the
Weibull reduces to the exponential distribution recommended by Killeen and associates
(2002). In that case, there is a constant probability 1/c of terminating the response state from
one response to the next, and the cumulative distribution is the concave asymptotic form we
might associate with learning curves. Pigeon 105 exemplifies such a shape parameter, as
witnessed by the almost-exponential shape of its density shown in Figure 3. Just below him,
Pigeon 107 has a more representative shape parameter, around 2. Whenever α > 1, as was

1Whereas the Weibull is a continuous function, it approximates a proper distribution function on the integers, as ∑n w(n, α, c) ≈ 1 over
the range of all parameters studied here.
The approximation is significantly improved by adding a continuity correction of ε = 0.5 to all response counts. Epsilon may be thought
of as a threshold for emitting the first response, but is treated here merely as an ad hoc statistical correction applied to all data (except
not to the pedagogic example given below). A better estimate is given by evaluating the distribution function between n + ½ and n − ½,
with the latter taking 0 as a minimum. However, that extra computation does not add enough precision in the current situation to be
useful.
The Weibull should be right-censored, as there are time constraints on responding. This causes the deviation between predicted and
obtained for 106 in Figure 3 and Figure 4. That refinement is not engaged here.
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generally found here, there is an increasing probability of terminating responding as the trial
elapses—the hazard function increases. When α is slightly greater than 3, the function most
closely approximates the normal distribution, as seen in the data for P119. Pigeon 106, familiar
from the top of Figure 1, has the most extreme shape parameter seen anywhere in these
experiments, α ≈ 5. The poor fit of the function to this animal is due to his “running through”
many trials, which were not long enough for his distribution to come to their natural end.

It is the Weibull density, the derivative of Equation 2, that drew the curves through the data in
Figure 3. The density is easily called as a function in Excel® as = Weibull(n, α, c, false). It is
readily interpreted as an extreme value distribution, one complementary to that shown to hold
for latencies (Killeen et al., 2002). In this paper the Weibull is not used as part of a theory of
behavior, but rather as a convenient interface between response rates and the conditioning
machinery. Conditioning is assumed to act on s, the probability of being in the response state,
a mode of activation (Timberlake, 2000, 2003) that supports key-pecking.

Does the Weibull continue to act as an adequate model of the response distribution after tens
of thousands of trials? For a different, and more succinct, picture of the distributions, in Figure
4 we plot the cumulative probability of emitting n responses on a trial, along with the linear
functions of the Weibull distribution. As before, the y-intercept of the distribution is the average
probability of not making a response; the corresponding theoretical value is the probability of
being out of the state, plus the (small) probability of being in the state but still not making a
response. Thereafter, the probability of being in the state multiplies the cumulative Weibull
distribution. The fits to the data are generally excellent, except, once again, for P106, who did
not have time for a graceful wind-down. This subject continues to “run through” the end of the
trial, a good fit requires the Weibull distribution to be “censored”, involving another parameter,
which was not deemed worthwhile for its present purposes.

2. Changes in response state probability: Momentum and Pavlovian conditioning: In his
analysis of the dynamics of responding under negative automaintenance schedules, Killeen
(2003) found that the best first-order predictor was the probability that the animal was in a
response state, as given by a linear average of it’s probability of being in that state on the last
trial, and the behavior on the last trial. In the case of a trial in which a response occurred, the
probability of being in the response state is incremented toward its ceiling (θ = 1) using the
classic (Killeen, 1981) linear average:

(3)

where pi (π) is a rate parameter. Pi will take different values depending on the contingencies:
π R subscripts the Response, being instantiated as πP on trials containing a peck, and πQ on
quiet trials. Theta (θ) is 1 on trials that predict future responding, and 0 on trials that predict
quiescence. Thus, after a trial on which the animal responded, the probability of being in the
response state on the next trial will increase as:

whereas after a trial that contained no peck, it will decrease as:
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After these intermediate values of strength are computed, they are perturbed by the delivery
or non-delivery of food. For that we use a version of the same “exponentially-weighted moving
average” of Equation 3:

(4)

Now the learning parameter πO subscripts the Outcome (Food or Empty). All of these pi
parameters tell us how quickly probability approaches its ceiling or floor, and thus how quickly
the state on the prior trial is washed out of control (Tonneau, 2005). For geometric progressions
such as these, the mean distance back is (1-π)/π, whenever π > 0. One might say that this is the
size of the window on the past when the window is half open. As before, theta (θ) is 1 on trials
that strengthen responding, and 0 on trials that weaken it. Thus, after a trial on which food was
delivered, we might expect to see the probability of being in the response state on the next trial
(si+1) increase as:

whereas after a trial that contained no food, it might decrease as:

These steps may be combined in a single expression, as noted in the Appendix. Although
shamefully simple compared to more recent theoretical treatments, such linear operator models
can acquit themselves well in mapping performance (e. g. Grace, 2002).

There are four performance parameters in this model corresponding to the four operative
contingencies, each with an associated ceiling or floor. We list them in Table 2, where
parenthetical signs indicate whether behavior is being strengthened (positive entails that θ =
1) or weakened (negative entails that θ = 0).ii The values assumed by these parameters, as a
function of the conditions of reinforcement, are the key objects of our study.

Notice that this model makes no special provision for whether a response and food co-occurred
on a trial. It is a model of persistence, or behavioral momentum, and Pavlovian conditioning
of the CS. Since these factors may always be operative, it is presented first, and the role of
Skinnerian response-outcome associations subsequently evaluated. The model also takes no
account of warm-up or cool-down effects that may occur as each session progresses. Covarying
these out could only help the fit of the models to the residuals; but it would also put one more
layer of parameters between the data and the readers eye.

The matrix of Table 2 is referred to as the Momentum/Pavlov Model, or MP Model. By calling
it a model of momentum, it is not meant that a new hypothetical construct is invoked to explain
the data. It simply is a way of recognizing that response strength will not in general change
maximally upon receipt of food or extinction. Just how quickly it will change is given by the
parameters πP and πQ. If these are 1, there will be no lag in responsiveness and no need for the

2In our analysis programs we let the learning variables go negative to indicate decrementing (θ = 0), extract the sign of the parameters
to set their direction toward floor (when π < 0, θ = 0) or ceiling (when π > 0, θ = 1), and use their absolute value | π | to adjust the distance
traveled toward those limits, as in Equation 4. Thus we refrain from imposing our expectations about what the directions of events should
be on behavior.
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construct; if they equal 0, the animal will persist at the current probability indefinitely, and
there will be no need for the construct of conditioning. In early models without momentum
(that is, where these parameters were de facto 1), goodness of fit was at least e10 worse than
in the model as developed here, and typically worse than the comparison model, to be described
below.

3. Implementation: To fit the model to the data we use Equation 1 to calculate the probability
of the observed data given the model. Two hypothetical cases illustrate the computation of this
probability:

1. Assume the following: no key pecks on trial i, the predicted probability of being in
the response state si = 2/3, and the Weibull parameters were α = 2, c = 6; then:

The probability of the data (0 responses) given the model p(di | m) is the probability
of being:

a. Out of the response state, 1 − si, times the probability of no response when
out of the state, 1.0: (1 − 2/3)·1 = 1/3. To that add the probability of being:

b. In the state, times the probability of no responses in the state: 2/3w(n, 2, 6)
= 2/3·0;

c. the sum of which equals p(di = 0 | m)≈ .333 + 0 ≈ 0.333.

2. If four pecks were made on trial i, given the same model parameters, then:

The probability would be p(di = 4 | m) = 0 + 2/3w(n, 4, 6), ≈ 0.142.

The natural logarithm of these conditional probabilities gives the index of merit of the model
for this trial: that is, it gives the log-likelihood (LLi) of the data (given the model) on trial i.
These logarithms are summed over the thousands of trials in each condition to give a total index
of merit LL (Myung, 2003). Case 1 above added ln(1/3) ≈ −1.1 to the index, whereas Case 2
added ln(.142) ≈ −1.9, its smaller value reflecting the poorer performance of the model in
predicting the data on that trial. The parameters are adjusted iteratively to maximize this sum,
and thus to maximize the likelihood of the data given the model. The LL is a sufficient statistic,
so that it contains all information in the sample relevant to making any inference between the
models in question (Cox & Hinkley, 1974).

A base (comparison) model: Log likelihoods are less familiar to this audience than are
coefficients of determination—the proportion of variance accounted for by the model. The
coefficient of determination compares the residual error (the mean square error) with that
available from a simple default model, the mean (whose error term is the variance); if a
candidate model can do no better than the mean, it is said to account for zero percent of the
variance around the mean. In like manner, the maximum likelihood analysis becomes more
interpretable if it is compared to a default, or Base model. The Base model we adopt has a
similar structure to our candidate model: It uses Equation 1, and updates the probability of
being in the response state as a moving average of the recent probability of a response on a
trial:

(5)

where gamma (γ) is the weight given to the most recent event, and P takes a value of 1 if there
was a response on the prior trial and 0 otherwise. Equation 5 is a linear average, also called an
exponentially weighted moving average. It can also be written as si+1 = si + γ(Pi − si), which
reveals its similarity to the Momentum/Pavlovian model, with the one parameter γ replacing
the four contingency parameters of that model. The base model attempts to do the best possible
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job of predicting future behavior from past behavior, with its handicap being ignorance as to
whether food or extinction occurred on a trial. It is a model of perseveration, or momentum,
pure and simple. It invokes 3 explicit parameters: γ, α, and c. Other details are covered in the
Appendix.

4. An Index of Merit for the Models: The log-likelihood does not take into account the number
of free parameters utilized in the model. Therefore we employ a transformation of the log-
likelihood that takes model parsimony into account. The Akaike Information Criterion, or AIC,
(Burnham & Anderson, 2002) corrects the log likelihood of the model for the number of free
parameters in the model, in order to provide an unbiased estimate of the information theoretic
distance between model and data:

(6)

where nP is the number of free parameters, and LL is the total log-likelihood of the data given
the model. (We do not require the secondary correction for small sample size, AICC).

We compare the models under analysis with the simple perseveration model, the Base model,
characterized by Equations 1 and 5. This comparison is done by subtraction of their AICs. The
smaller the AIC, the better the adjusted fit to the data. There are nP = 3 parameters in the base
model (hereinafter Base), and 6 parameters (or 8 in later versions) in the candidate model
(hereinafter Model), so the relative AIC is:

(7)

Because logarithms of probabilities are negative, the actual log likelihoods are negative.
However, our index of merit subtracts the model AIC from the base AIC, so that it is generally
positive, and is larger as the model under purview is better than the Base model. The relative
AIC is a linear function of the log-likelihood ratio of Model to Base (LLR = log[(likelihood
of Model)/(likelihood of Base)]). Because of the additional free parameters of the Model, it
must account for e3 as much variance as the Base model just to break even. An index of merit
of 4 for a model means that, under that model, the data are e4—approximately 50 times—as
probable as under the Base model, after taking into account the difference in number of free
parameters. A net merit of 4 is our criterion for claiming strong support for one model over
another. If the prior probabilities of the model under consideration and the Base (or other
comparison) model are deemed equal, Bayes theorem tells us that when the index of merit is
greater than 4 (after handicapping for excess parameters) then the posterior odds of the
candidate model compared to the comparison is at least 50/1.

The Base model is nested in the Pavlovian/Momentum model: Setting πQ = −πP = γ, and πF =
πE = 0 reduces it to the Base model. For summary data we also display the Bayesian Information
Criterion (BIC; Schwarz, 1978), which sets a higher standard for the admission of free
parameters in large data sets such as ours; BIC ≈ −2LL + kln(n). This modeling framework is
now applied to the results of the first experiment.

The index of merit is relative to the default Base model, just as the “proportion of variance
accounted for” in quotidian use is relative to a default model (the mean). If the default model
is very bad, the candidate model looks very good by comparison. If for instance we had use
the mean response rate or probability over all sessions in a condition as the default model, the
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candidate would be on the order of e400 better in most of the experiments. A tougher test would
be to contrast the present linear operator model with the more sophisticated models in the
literature, but that is not, per reviewers’ advice, included here.

Applying the Models—The AIC advantage of the Pavlovian model over the Base model
averaged 43 AIC points for the first four conditions, in which only 2 of the 24 subject by
condition comparisons did not exceed our criterion for strong evidence (improvement over the
Base by 4 points). For the last, p = .05, condition the average merit jumped to 183 points. Figure
5 shows that the Weibull response rate parameters were little affected by the varied conditions.
The average value of c, 8.2, corresponded to a mean of 7.3 responses per trial on trials where
a response was made (the mean is primarily a function of c, but also of α). The average value
of the shape parameter α was 2.4: The modal response distribution looked like that of Pigeon
113 in Figure 3. The values of these Weibull parameters were always essentially identical for
the Base and MP models, and were therefore shared by them.

The values of gamma, γ, the perseveration constant in the Base model, averaged .038 in the
first four conditions, and increased to .100 in the p = .05 condition. This indicates that there
was a greater amount of character—more local variance—in this last condition for the moving
average to take advantage of; a feature which was also exploited by the MP model. There was
no change in the rate of responding—given that the animal is in a response state—as indicated
by the constancy of c. All of the decrease seen in Figure 1 was due to changes in the probability
of entering a response state, as given by the model and seen in the model’s predictions, traced
by the lines in the bottom panel of Figure 1. Parameter values for each animal are listed in
Table 3, and indices of merit in Table 4.

The weighted average parameters of the MP model are shown in the bottom panel of Figure 5
(the values for each subject were weighted by the variance accounted for by the model for that
subject). Just as autoshaping is fastest with longer ITIs, the impact of the πF and πP parameters
increases markedly with ITI. The increase in πF indicates that at long ITIs, the delivery of food,
independent of pigeons’ behavior, increases the probability of a response on the next trial. It
increases 11% of its distance towards 1.0 in the ITI 20s condition, up to 28% in the ITI 80s
condition. Also notice that πF is everywhere of greater absolute magnitude than πE, a finding
consistent with that of Rescorla (2002a,2002b).

The increase in πP indicates that pecking acquires more behavioral momentum as the ITI is
increased. The parameter πQ remains around −7% over conditions (although a drop from −5%
to −10% in the first and second replication of the 40 s conditions accounts for the decrease in
probability of responding in the second exposure). A trial without a response decreases the
probability of a response on the next by 7%. The parameter πE hovers at zero for the short and
intermediate ITIs: Extinction trials add no new information about the animals’ state on the next
trial, and do not change behavior from the status quo ante. Under these conditions extinction
does not discourage responding. The law of disuse, rather than extinction, is operative: If an
animal does not respond, momentum in not responding (measured by πQ) carries response
probability lower and lower. At the longest ITI and in the p = .05 condition, E trials decrease
the probability of being in a response state on the next by 4% and 10% respectively. When
reinforcement is scarce, both food and extinction matter more, as indicated by increased values
of πF and πE; but the somewhat surprising effect on πE is modest compared to the former. The
importance of food when it is scarce is substantial—with πF increasing to over 30% in the p
= .05 condition. The fall toward extinction of responding, driven by πQ and πE, is arrested only
by delivery of food, a strong tonic to responding (πF), or an increasingly improbable peck,
which, as reflected in πP, is associated with substantially enhanced response probabilities on
the next trial.
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We may see how close the simulations look to the real performance, such as that shown in
Figure 2. We did this by replacing the pigeon with a random number generator, using the
average parameters from the first condition, shown in Figure 5. The probability of the
generator’s entering a response state was adjusted using the MP model, and when in the
response state, it emitted responses according to a Weibull distribution with the parameters
shown in the top of Figure 5. Figure 6 plots the resulting data in a fashion similar to that shown
in Figure 2 (a running average of 25 trials). Comparison of the three panels cautions how
different a profile can result from a system operating according to the same fixed parameters
once a random element enters. Analyses are wonted that can deal with such vagaries without
recourse to averaging over a dozen animals. By analysis on a trial by trial basis, the present
models attempt to take a step in that direction.

These graphs have a similar character to those generated by the pigeons (although they lack
the change in levels shown by P98 in Figure 2; a change not clearly shown by most of the other
subjects). The challenge is how to measure “similar” in a fashion other than impressionistically.
Killeen (2003) showed that responding had a fractal structure, and given the self-similar aspect
of these curves, that is likely to be the case here. However, the indices yielded by fractal analysis
throw little new light on the psychological processes. The AIC values returned by the model
provide another guide for those comfortable with likelihood analyses; they tell us how good
the candidate model is relative to a plausible contender.

The variance accounted for in the probability of responding will look pathetic to those used to
fitting averaged data: It averages around 10% in Experiment 1, and around 15% in the
remaining experiments. But even when the probability of a response on the next trial is known
exactly, there is probabilistic variance associate with Bernoulli processes such as these: in
particular, a variance of p(1-p). The parameters were not selected to maximize variance
accounted for, and in aggregates of data, much of the sampling error that is inevitable in single-
trial predictions is averaged out. When the average rate over the next ten trials, rather than the
single next trial, are the prediction, the variance accounted for by the matrix models doubles.
At the same time, the ability to speak to the trial-by-trial adjustment of the parameters is blunted.
Other analyses, educing predictions from the model and testing them against the data, follow.

Hazard functions: That πQ and πE are negative in the p = .05 condition makes a strong
prediction about sojourns away from the key: When an animal does not respond on a trial, there
is a greater likelihood that he will not respond on the next, and yet greater on the next, and so
on. Only free food (or the unlikely peck despite the odds) saves him. The probability of food
is 5%, but the cumulative probability is continually increasing, reaching 50% after 15 trials
since the first non-response. The probability of returning to the key should decrease at first,
flatten and then eventually increase. A simple test of this prediction is possible: plot the
probability of returning to the key after various numbers of quiet trials. In making these plots,
each point has to be corrected for the number of opportunities left for the next quiet trial. Such
plots of marginal probabilities are called hazard functions. If there is a constant probability of
returning to the key, as would be the case if returns were at random, the hazard function would
be flat. The above analysis predicts hazard functions that decrease under the pressure of the
negative parameters, and eventually increase as the cumulative probability of the arrival of
food increases.

Figure 7 shows the functions for individual animals (truncated when the residual response
probabilities fell to 1%). They show the predicted form. The filled squares shows the averaged
results from of running three “statrats” in the program, with parameters taken from the .05
condition of Figure 5. If the model controls behavior the way it is claimed, the output of the
statrats should resemble that of the pigeons. There is indeed a family resemblance, although
the statrats’ hazard function was more elevated than the average of the pigeons, indicating a
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greater eagerness to return to the operandum than was the case for the birds. Note also that the
predicted decrease—first 8% of the distance to 0 from πQ and then another 11% from πE —
predicts a decrease to 82% of the initial value after the first quiet. That is, from about 0.45 to
0.37 for the statrats, and from about .28 to about .23 for the average pigeon. These are right in
line with the functions of Figure 7. The eventual flattening and slow rise in the functions is
due to the cumulative effects of πF.

Is momentum necessary?: In the parameters πP and πQ the MP model invokes a trait of
persistence or momentum, which may appear supererogatory to some readers. However, the
base model, the linear average of the recent probability of responding, actually proves a strong
contender to the MP model. It embodies the adage “The best predictor of what you will do
tomorrow is what you did today”. It is the simplest model of persistence, or momentum. We
may contrast it with a MP-minus-M model: that is, adjust the probability of responding on the
next trial as a function of food or extinction on the current trial, while holding the momentum
parameters at zero. Even though the base model has one fewer parameter, it easily trumps the
MP-M model. For example, for P98, the median advantage of the MP model over the base
model was 14 AIC points in the .1 condition, and 58 points in the .05 condition. But without
the momentum aspect, the MP-M model tumbles to a median of 106 points below the base
model in the .1 conditions, and 540 points below in the .05 condition. However one
characterizes the action of the πP and πQ parameters, their presence in the model is absolutely
necessary. This analysis carries the within-session measurement of resistance to change
reported by Tonneau, Ríos, and Cabrera (2006) to the next level of contact with data.

Operant conditioning: What is the role of response-reinforcer pairing in controlling this
performance? The first analysis of these data (unreported here) consisted of a model involving
all interaction terms, and those alone: PF, PE, QF, QE. Although this interaction model was
substantially better than the Base model (18 AIC units over all conditions, 73 in the p = .05
condition), it was always trumped by the Momentum/Pavlov model (51 AIC units over all
conditions, 183 in the p = .05 condition).

In search of evidence of Skinnerian conditioning, we asked whether there was a correlation
between the number of responses on a trial and the probability of responding on the next trial.
Any simple correlation could be just due to persistence; but if response-reinforcer contiguity
is a factor in strengthening responding, then that correlation should be larger for trials that end
with food (rF) than for trials that end without food (rE). When many responses occur on a
reinforced trial, there are: (a) more responses in close contiguity with the reinforcer, and (b)
the last of them is likely to be closer in time to the reinforcer than the case on trials with only
a few responses. Therefore there should be a positive correlation between number of responses
on trials ending with food, and number of responses on the next trial. It is different for trials
that end without food: When many responses occur on a non-reinforced trial, there are many
more instances of the response subject to extinction; this should not only undermine a positive
correlation, it could drive it negative. We can therefore test for Skinnerian conditioning by
correlating the number of responses on F and E trials that had at least one response (the
predictors) with the presence or absence of a response on the next trial (the criterion). If
contiguity of multiple responses with food strengthens behavior more than contiguity of one
response to food, the correlation with subsequent responding should be larger when the trial
was followed by food than when it wasn’t. That is, we would expect rF > rE. We restrict the
analysis to trials with at least one response, so that the correlation isn’t simply driven by the
information that the animal is in a response state, which we know from πP has good predictive
value.

We analyzed the data for all subjects from all conditions, and found no evidence for value
added by multiple response-reinforcer contiguity. For no animal was the average correlation
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between predictor and criterion greater when the predictor was followed by food than when it
was not. The averages over all subjects and conditions were rF = 0.035 and rE = 0.081. With
an average n of 150 for rF and 1470 for rE for each of the 29 pairs of correlations, the conclusion
is unavoidable: Reinforcement on trials with multiple responses did not increase the probability
of a response on the next trial any more than did extinction on trials with multiple responses.

Perhaps fitting a delay of reinforcement model from each response to an eventual reinforcer
would show evidence of operant conditioning? This was our first model of these data, not
reported here. We found no value added by the extra parameter (the slope of the delay-of-
reinforcement gradient).

Convinced that there must be some way to adduce evidence of (adventitious) operant
conditioning, we turned to the next analysis. It remains possible that reinforcement increases
the probability of staying in the response state on the next trial: Possibly the commitment to a
behavioral module (Timberlake, 1994), rather than the details of actions within the module, is
what gets strengthened by reinforcement. To test this hypothesis, an conditioning factors,
πPF and πPE, were added to the model. If response-reinforcer contiguity added strengthening/
prediction beyond that afforded by the independent actions of persistence and of food delivery,
one or both of these parameters should take values above zero; and should add significantly to
predictive accuracy when it does. We measure accuracy with the AIC score; any increase (after
handicapping for the added parameter) lends credibility, while increases by at least 4 constitute
strong evidence.

The average value of πPF across the 29 cases was 0.064: that is, the probability of a response
on the next trial increased by 6% beyond that predicted by momentum and mere delivery of
food (independent of the presence or absence of a peck). For two birds, 107 and 119, there was
no advantage, and πPF remained close to zero, as often negative as positive. Of the 19 remaining
pigeon by condition cases, 11 showed an AIC advantage for the added parameter, five of them
meeting our criterion for strong evidence. Of these four birds that showed evidence of
Skinnerian conditioning, the average value of πPF was 8%, which may be compared to 16%
for πP and 14% for πF. Examining the data on a condition-by-condition basis, all four of these
pigeons showed evidence of Skinnerian conditioning in the ITI 20 condition (three of them
strong evidence), and in all cases but one πPF was larger than either πP or πF. Across all six
animals, the advantage of adding the contiguity parameter was 2.6 AIC points at ITI 20, 0.8 at
ITI 40, and −1.5 at ITI 80. (The negative value indicates that the cost of the extra parameter in
Equation 7 is not repaid by increased predictive ability.) In the p = .05 condition the total
advantage conferred by the πPF parameter increased to 6.4. (When the Skinnerian parameter
comes into play, there is typically a readjustment of the other parameters that had been tasked
with picking up the slack.) The Skinnerian extinction parameter πPE was almost never called
into play, and exerted negligible improvement in the predictions.

These results indicate that Skinnerian conditioning was strongest where Pavlovian
conditioning was weakest—whether that weakness was due to a small ITI-to-trial ratio (ITI
20) or to a less reliable CS (p = .05). This is consistent with the findings of Woodruff, Conner,
Gamzu, and Williams (1977). πPF and πPE will be retained in subsequent analyses, where the
full model will be called the MPS (Momentum/Pavlovian/Skinnerian) model.

Implications for Acquisition and Extinction: Based on Equation 4 and the parameters shown
in Figure 5, we may predict the courses of acquisition and extinction in similar contexts—it is
given by Equation A5 in the appendix. For the parameters in Figure 5, the MPS model predicts
faster acquisition at longer ITIs—the trial spacing effect, along with an increasing dependence
on the original starting strength (derived from hopper training) as trial spacing decreases.
Pretraining plays a critical role in determining the speed of acquisition (Davol, Steinhauer, &
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Lee, 2002; Downing & Neuringer, 2003); the current analysis suggests that this is in part due
to elevation of the initial probability of a response, s0, possibly through generalization of hopper
stimuli and key stimuli (Sperling, Perkins, & Duncan, 1977; Steinhauer, 1982). Conditioning
of the context proceeds rapidly, however, so that more than a few pretraining trials in the same
context will slow the speed of subsequent key-conditioning (Balsam & Schwartz, 2004).

The predicted number of trials to criterion show an approximate power-law relation between
trials-to acquisition and the inter-trial interval (Gibbon et al., 1977). Those researchers, along
with Terrace, Gibbon, Farrell, and Baldock (1975), found that both acquisition, and response
probability in steady-state performance after acquisition, co-varied with the ratio of trial
duration to ITI. The permutation Gibbon, Farrell, Locurto, Duncan, and Terrace (1980) found
that partial reinforcement during acquisition had no effect on trials to acquisition, when those
were measured as reinforced trials to acquisition. This is consistent with the acquisition
equations in the appendix. Despite these tantalizing similarities, however, the obvious
difference in the parameters for the p = .1 and .05 conditions seen in Figure 5 undermines
confidence in extrapolations to typical acquisition, where p = 1.0.

It is possible to test the predictions for extinction within the context of the present experiments,
where parameter change is not so central an issue, for there were long stretches (especially in
the p = .05 condition) without food. The relevant equation, transplanted from the appendix
(Equation A6), is:

(8)

where the strength si+1 gives the probability of entering a response state on that trial. All
parameters are positive, with asymptotes of 0 or 1 used as appropriate to the signs shown in
Figure 5. Neither πF nor πPF appear because there are no food trials in a series of extinction
trials, and πPE is typically small, and its work can be adequately handled by πE. The probability
of responding on a trial decreases with πE as expected (note the element −πEsi)—substantially
when si is large, not much at all when si is small. Only the difference in the two momentum
parameters, πP − πQ affects the prediction; for parsimony we collapse those into a single
parameter representing their difference πP−Q = πP − πQ. Equation 8 makes an apparently
counterfactual prediction.

A surprising prediction: Inspection of Figure 5 shows that πP−Q is generally positive. Because
it multiplies the probability of not responding (Equation 8 contains the element πP−Q(1 − si)),
on the average πP−Q increases the probability of responding on each trial, and does so more
as si gets small. Depending on the specific value of the parameters, this restorative force may
be sufficient to forestall extinction. To show this more clearly, we solve Equation 8 for its fixed
point, or steady state, which occurs when si+1 = si:

(9)

this is the level at which responding is predicted to stabilize after a long string of extinction
trials.

If response probability fluctuates below the level of si, the next response (if and when it occurs,
which it does with probability si) will drive probability up; and if it fluctuates above this level,
the next trial will drive it down. For responding to extinguish, it is necessary that the force of
extinction be greater than the restoring force:
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(10)

This is automatically satisfied whenever momentum in quiescence, πQ, is greater than
momentum in pecking πP--whenever πP−Q is negative. That is especially likely to be the case
in rich contexts where quiescence on the target key may be associated with foraging in another
patch or responding on a concurrent schedule. For the parameters in Figure 5 under p = .05,
however, this is never the case; indeed, the more general inequality of Equation 10 is never
satisfied. Therefore Equations 8 and 9 make the egregious prediction that the probability of
responding will fall (with a speed dictated by πE) to a non-zero equilibrium dictated by Equation
9. We may directly test this derivation by plotting the course of extinction within the context
of dynamic reconditioning of these experiments. The best data come from the p = .05 condition,
which contained long strings of non-reinforced responding. The courses of extinction, along
with the locus of Equation 8, is shown in Figure 8.

Do Equations 8–10 condemn the birds to an endless Sisyphean repetition of unreinforced
responding? If not, what then saves them? Those equations are continuous approximations of
a finitary process. Because the right-hand side of Equation 8 is multiplied by si, if that
probability ever does get close enough to 0 through a low-probability series of quiescent trials,
it may never recover. It is also likely that after hundreds of extinction trials, the governing
parameters would change, as they did change across the conditions of this experiment, releasing
the animals to seek more profitable employment. The maximum number of consecutive trials
without food in this condition averaged around 120. Surely over unreinforced strings of length
95 through 120, the probability of responding would be decreasing toward zero. Such was the
case for two animals, 98 and 107, whose response probability decreased significantly (using a
binomial test) to around 5% (the drift for 107 is already visible in Figure 8). The predicted
fixed points and obtained probabilities for another two, 105 and 119, were invariant: .20→.
19; .77→.78; pigeon 106 showed a decrease in probability, .61→.54, that was not significant
by the binomial test. The substantial momentum shown in Figure 8, and extended in some cases
by the binomial analysis, resonates with the data of Killeen (2003; cf. Sanabria, Sitomer &
Killeen, 2006), where some pigeons persisted in responding over many thousands of trials of
negative automaintenance.

The validation of this unlikely prediction should, by some accounts of how science works, lend
credence to the model. But it certainly could also be viewed as a fault of the model, in that it
predicts the flatlines of Figure 8, when few animals, except perhaps those subjected to learned
helplessness training, will persist in unreinforced responding indefinitely. On that basis we
could reject the MPS model, as it does not specify when the animals will abandon a response
mode (as reflected in changes in the persistence parameters). Conversely, the data of Figure 8
indict models that do not predict the plateaus that are clearly manifest there. On that same basis
we could therefore reject all of the remaining models. Clean slate. But perhaps the most
profitable path is to reject Popper in favor of MPS, which permits tracking of parameters over
an indefinite number of trials, to see when, under extended dashing of expectations, those begin
to change.

Equation 8 contains the element si(1 − si): The product of the probability of a response and its
complement enters the prediction of response probability on the next trial. This element is the
core of the “logistic map”. Depending on the coefficient of this term, the pattern of behavior
it governs is complex, and may become chaotic. This, along with the multiple timescales
associated with the rate parameters, is the origin of the chaos that Killeen (2003) found in the
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signatures of pigeons responding over many trials of automaintenance, and the factor that gives
the displays in Figure 2 and Figure 6 their self-similar character.

Experiment 2: Trial Duration
The trial-spacing effect depends on both the duration of the ITI, and on the trial duration;
arrangements that keep that ratio constant often yield about the same speed of acquisition of
responding. Therefore, to test both the generalizability of the response rate model, and the MPS
model, in this experiment the trial duration is systematically varied.

Method
Subjects and Apparatus—Six experienced adult homing pigeons (Columba livia), housed
in similar conditions as before, served. Pigeons 105, 106, 107, 113, and 119, who had
participated in Experiment 1, were joined by 108, who replaced 98. The apparatus remained
the same.

Procedure—Seven sessions of extinction were conducted before beginning this experiment.
In extinction stimulus conditions were similar to those of Experiment 1, but the ITI was 35 s
and trial duration 10 s; no food was delivered (p = 0). In experimental conditions, food was
delivered with p = .05, ITI remained 35 s, and trial duration varied, starting at 10 s for 13
sessions. Then half the subjects went to condition CS 5s, half to CS 20 s. Finally CS 10 s was
recovered. All sessions lasted 150 trials; Table 5 reports the number of sessions per condition.

Results
In the last session of extinction the typical pigeon pecked on 3% of the trials. This is a lower
percentage than shown in Figure 8, because it follows 6 sessions of extinction. Extinction
happens. Upon moving to the first experimental condition, this proportion increased to an
average of 75%. The average response rates and probabilities of responding are shown in Figure
9. Both rates and probabilities decreased as CS duration increased. Also shown are averages
rate from 4 pigeons studied by Perkins and associates (1975) for CS durations of 4, 8, 16, and
32 s for pigeons maintained on probabilistic (p = 1/6) Pavlovian conditioning schedules, with
an ITI of 30 s. (The average rate at 32 s was 0.2 responses per second). The higher rates for
Perkins’s subjects are probably due to their higher rates of reinforcement (1/6 trials compared
to our 1/20). The decrease in response rate with CS duration is consistent with the data of
Gibbon, Baldock, Locurto, Gold, and Terrace (1977), who found that rate decreased as a power
function of trial duration, with exponent −0.75. A power function also described rates in the
present experiments, accounting for 99% of the variance in the average data, with exponent
−0.74.

The MPS model continued to outperform the Base momentum model, with an average
advantage of 130 AIC units, giving it an advantage in likelihood of e130. The parameters were
larger than those found in the last condition of Experiment 1 (see Figure 10 and Table 6 and
Table 7), and on the average did not show major changes among conditions, although the impact
of a trial with food was greatest in the first condition studied, 10(1), and there were slight
decreases in πPF and πQ as a function of trial duration. There was a moderate increase in the
average number of responses emitted (c, top panel of Figure 10) as trial duration increased
from 5 to 20; the birds adjusted to having longer to peck before the chance of reinforcement
carried them to the hopper.

Despite the importance of trial duration for acquisition of autoshaped responding, the changes
in the conditioning parameters as a function of that variable were modest. They did, however,
work in unison to decrease response rates as the CS duration increased. The only-moderate
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changes may be due to the very short ITI in this series. The biggest effect was the transition
into the first condition of the experiment, the first 10 s CS, after several sessions of extinction,
where the Pavlovian and Skinnerian learning parameters πF and πPF were as large or larger
than in any other conditions. Empty trials, although common, had little effect on behavior, as
πE was generally very close to 0. In general, the dominance of πF over πPF (and the other
parameters), especially at the longest CS duration, may have been due to the extended
opportunity for nonreinforced pecking in that long CS condition.

In interpreting these parameters, and those of Figure 5, it is important to keep in mind that
πE was in play on 95% on the trials; either πP or πQ on every trial; πF on 5% of the trials; and
πPF on fewer than 5% of the trials. Thus, a trial with food in this experiment would move
response strength a very substantial 60% of the way to maximum—but this happened only
rarely.

Once again the quiescence parameter πQ was the primary force driving the probability of entry
into the response state toward 0, having a mean value of −.215. This value, so close to that for
πP (.222), indicates that the momenta of pecking and quiescence were, on the average,
essentially identical. This situation, πP−Q ≈ 0, will not sustain asymptotic responding above
zero (see Equation 10); with so short an ITI, that is perhaps not surprising. The success of this
prediction is illustrated in Figure 11 for the 5 s CS condition, which showed no evidence of a
plateau. The slight negative acceleration is due to the dominance in the pooled data of profiles
from animals whose πP−Q was negative. This analysis may throw additional light on within-
session partial reinforcement extinction effects (Rescorla, 1999), as different animals or
paradigms may have quite different values of πP−Q.

Because these conditions were preceded by seven sessions of extinction, the opportunity arises
to trace the course of re-acquisition for these birds, and compare with the model’s profiles. The
probability of a response on each of the first 100 trials, averaged over all pigeons, and over a
7-trial moving window, is drawn as circles in Figure 12. The MPS model provides a closed
form solution to the acquisition curve. The equation is shown in the appendix; the smooth
acquisition curve is shown in Figure 12. The curve provides—at best—an idealized picture of
the process, because it assumes that response probability is dependent on the programmed
probability of food, p, which is uniform over trials. MPS can do better than that by using the
real thing—whether food was delivered or not—to inform its predictions. Replacing p with the
trial-to-trial relative frequency across animals, represented by the hatch marks in the figure,
and keeping all parameters otherwise the same, gives the jagged curve, a better characterization
of the process. Figure 12 draws a graphic reminder of a point made by Benedict and Ayres
(1972): Nonlinear dynamic processes, such as the course of learning, can be extremely sensitive
to the particulars of stochastic processes. Generic models with asymptotic parameters, such as
limiting values for p or even for s, will provide at best an idealization; the dynamics is in the
details. The text-book smooth curve shown in Figure 12 does not represent the character of the
data. Over the full course of the experimental conditions, MPS easily supports its burden of
parameters, as attested by its AICs, and carries us from milk-toast descriptions to the jagged
profiles of Figure 12; to predictions with teeth.

All of the manipulations so far have been classic Pavlovian kinds, varying experimental
parameters that did not interact with behavior, and those only modestly (see, e. g., Schachtman,
2004, for some modern developments). Although non-contingent food presentation can leave
response-outcome associations intact (Colwill, 2001; Rescorla, 1992), all of the response-
outcome associations up to this point were adventitious. We conducted the last series of
experiments in order to complement those open-loop Pavlovian operations with closed-loop
instrumental operations having more consistent contingencies.
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Experiment 3: FR and DRO Contingencies of Reinforcement
Method

Subjects and Apparatus—Eight experienced adult homing pigeons (Columba livia), half
having served in other experiments reported in this paper, were employed. They were
maintained under the same conditions as the prior experiments. The apparatus was the same
as used before.

Procedure—Before the experiment proper, 6–7 sessions of extinction were conducted with
a 35-s ITI and 10 s trial duration; the probability of food delivery was zero (p = 0). A preliminary
series of experiments was conducted with p = .05. In these conditions, which we call FR 3 and
DRO, reinforcement contingencies were intended to vary response-reinforcement contiguity
in opposite directions. However, the low probability of exposure to those contingencies—5%
of the trials at most, usually less—gave animals insufficient exposure to the Skinnerian
contingencies: In a number of cases there was no change consistent with the direction in which
the contingencies were pushing. The probability of food was increased to p = .1, and the series
replicated.

DRO: A differential reinforcement of other behavior (DRO) schedule was operative
concurrently with baseline automaintenance contingencies, but only when food was
programmed, which happened with a probability of p = .10. If an animal pecked during the 2
s preceding the delivery of food in a DRO trial, the trial was extended for an additional 2 s
from the peck, until the pigeon had not pecked for 2 s, when food was finally delivered. All
pigeons received 18 sessions of baseline training before being moved to the experimental
conditions.

FR: A fixed ratio (FR) 3 schedule of reinforcement was operative concurrently with baseline
automaintenance contingencies, but only when food was programmed. Thus, a trial in the FR
3 condition in which food was programmed (10% of the trials) would be terminated
immediately by food delivery as soon as 3 key pecks were emitted. If 3 pecks were not emitted,
the trial ended with non-contingent food presentation.

The order of experimental conditions was determined by the mean response rate during the
last 5 sessions of baseline: Low responders were assigned first to DRO, and high responders
to FR 3. Table 8 shows the order of presentation of conditions and the number of sessions in
each condition. In analyzing the data, all trials with a reinforcer were excluded from
measurement of goodness of fit. This is because responding could have extended or shortened
the trial duration, undermining comparison. This reduced the data-base by 10%.

Results
The contingencies, even though present on only 10% of the trials (DRO) or fewer (FR, which
would end with food after 10 seconds if the FR contingency had not been met), were effective
with most of the animals. This is consistent with the results of Locurto, Duncan, Terrace, and
Gibbon (1980). The requirements were satisfied on 79% of the trials (median, with inter-
quartile range from 68 to 81 percent). The effects of the contingencies on response rates and
probabilities are displayed in Figure 13. Reinforcement contingencies clearly matter, by both
affecting the probability of entering a response state, and number of responses emitted in that
state.

Of the 24 subject by condition analyses, in 18 the MPS model exceeded our criterion for strong
evidence (see Table 9). Averaged over all subjects, the AIC advantage for the MPS model over
the Base model was 38 points. Figure 13 displays the weighted average parameters for the Base
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model (simple persistence), and for the MPS model for the key DRO-FR comparisons. Table
9 lists the individual parameters. Note that as the contingencies went from DRO to FR, all
parameters in the top panel increased in value. The increase in α indicates that the distribution
of number of responses moved from one that looked like a gamma distribution (α = 1.46) to
one that looked like a skewed normal distribution (α = 2.23; see Figure 3). The doubling of c
reflects a large increase in the mean number of responses emitted in the response state in the
FR condition. The increase in γ indicates that pecking tended to occur more often in alternative
strings of responding or quiescence, making it advantageous for the simple moving average of
the base model to place more weight on the recent history of responding in the FR conditions.

The main purpose of this experiment was to test the sensitivity of the MPS model to changes
in behavior brought about by the manipulation of contingencies of reinforcement, and in
particular to monitor changes in the instrumental learning parameter, πPF. Figure 13 shows
that there was a large increase in πPF under the FR contingencies, and smaller changes in some
of the other parameters (see Table 9). Trials without a reinforcer had, on the average, no effect,
as πE was very close to zero for most animals in most conditions, as was πPE. The momentum
parameter for the Base model (γ) was larger under the FR condition, suggesting greater
movement into and out of response states, while those for the MPS model (πP, and πQ) were
in line with those found in Experiment 2. The decrease in the latter under FR suggests a kind
of ratio strain: absence from the key on one trial became a better predictor of absence on the
next.

The smaller value of πPF under DRO should not be taken as an indication that the animals were
learning less; they were learning to do other things than key pecking. A smaller value of πPF
indicates that they were less likely to peck on an ensuing trial. If they received food on a trial
with a peck, the peck was removed from the reinforcer by at least 2 s, and was followed by
non-key-peck behavior. This latter was successfully reinforced, yielding the smaller tendency
to peck on the next trial than found under the FR contingency.

The impression from the first two experiments, that the power of instrumental contingencies
was weak compared to Pavlovian contingencies, now stands corrected. Where there is no
instrumental contingency, but only adventitious pairing of responding as in the first two
experiments, control by that pairing can be weak or nil. This may be due to the many instances
of pecking without presentation of food, causing the animal to place little weight on pecking
as a predictor of food. In the present experiment, FR contingencies trebled the Skinnerian
parameter πPF to from .12 to .36. Under the FR contingencies, each contingent presentation of
food moved the typical animal a third of the way to certain responding on the next trial, with
the persistence and Pavlovian parameters together halving the remaining distance. The increase
in response rates seen in the top panel of Figure 13 for FR thus arises from two factors: An
increased probability of entering a response state in that condition due to the action of the above
parameters; and a higher rate of responding once in that state, reflected by the increase in c.
The first set of conditioning factors are substantial, and consistent with the theoretical position
of Donahoe, Palmer, and Burgos (1997a); yet they are inadequate to completely explain the
large differences in rate. Differential proximity between responses and reinforcement in these
two conditions is further affecting the behavior within the response state, much as it does in
free operant schedules (e. g., Killeen, 1969). The parameter c reflects the operation of
instrumental conditioning in the response state moving more of the conditioned behavior onto
the key.

The joint role of respondent and operant conditioning demonstrated here was presaged by
Wasserman, Hunter, Gutowski, and Bader (1975) in their study of automaintained responding
in chicks, with warmth as the US/SR. Locurto, Duncan, Terrace, and Gibbon (1980) found
similar interactions, and suggested adopting "an 'interactivist' position wherein Pavlovian and
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instrumental relations are seen as independent variables which conjointly determine the
outcome of any conditioning procedure" (p. 42). It was manifest in an experiment by Osborne
and Killeen (1977), who superimposed CSs ranging from 7.5 s to 120 s on a VI schedule that
only reinforced responses spaced by 3 s (TAND[VT60, DRL3]). Even though the CS signaled
non-contingent food, it enhanced median response rates from a baseline of 25/min to 170/min
at the shortest CS, decreasing monotonically to 45/min at the longest. They successfully
analyzed within the CS with an extreme value function in the same family as the Weibull used
here. Such within-CS analysis begins to fill one of the silences of the Rescorla Wagner model
(Hanson, 1977; Miller & Barnet, 1993).

General Discussion
Momentum

The analysis of momentum, or durability of responding, has a long history marked by two
changes of paradigm. The first was the discovery of the Partial Reinforcement Extinction Effect
(PREE) by Humphreys (1939)—the paradoxical result that probabilistic reinforcement
generates more responses in extinction than does continuous reinforcement. It generated a
tremendous and continuing amount of research (Mackintosh, 1974). The second was the
renewed call of attention to momentum by Nevin and his students (Nevin & Grace, 2001;
Nevin, Mandell, & Atak, 1983; Nevin, Tota, Torquato, & Shull, 1990), under the rubric
behavioral momentum. As the case for the PREE, which it helps to explicate (Nevin, 1988),
the study of behavioral momentum has applications well beyond the animal behavior laboratory
(Nevin, 1996; Plaud & Gaither, 1996). It is most closely associated with the opposing forces
of πP and πQ, and, in extinction, with their simple difference πP−Q.

Nevin and associates’ work has shown that behavioral momentum is most closely associated
with Pavlovian forces, such as the relative densities of food in CS and background, and less
so with instrumental contingencies and rates of responding. Consistent with their results, Figure
5 shows that when ITI was varied, persistence in both pecking πP and quiescence πQ, and their
difference, πP−Q, increased with the Pavlovian variable of ITI-to-Trial (ITI/T) ratio; Figure 1
and Figure 9 show that when trial duration was varied, persistence in both pecking and
quiescence decreased with decreases in ITI/T; and Figure 13 shows that despite radically
different responding under DRO and FR contingencies, πP−Q was about the same in those
experimental conditions, indicating that momentum would also be about the same, echoing
Nevin’s conclusions. The influence of prior behavior on current behavior has been
demonstrated in a different paradigm by de la Piedad, Field, and Rachlin (2006), who
underscored the importance of the persistence they demonstrated for issues of rationality and
self-control, a theme most beautifully introduced to our field by James (1890a,1890b). The
current paradigm and analysis provides a new set of operations for testing and developing
behavioral momentum theory, and other more general theories of momentum and choice (e.g.,
Killeen, 1992;Roe, Busemeyer, & Townsend, 2001).

Conditioning
“Today, most contemporary theories of acquired behavior are predicated on observations
initially made to assess the Rescorla-Wagner model” (Miller et al., 1995, p. 381). The
Momentum-Pavlov-Skinner (MPS) model developed here is in that tradition; it is an “error-
correction” model, like the Rescorla-Wagner (R-W) model and its linear-learning model
forbears. Deviation from complete momentum or quiescence, and deviation from complete
conditioning or extinction, both proceed as a function of distance from asymptote. This aperçu,
however, may reflect more a limitation of imagination on our part than on the organisms’. Only
a few of the infinite number of possible models of conditioning have been evaluated.
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Does the MPS model capture learning or performance effects? It predicts response strength,
s, the probability that the animal will be in a response state, with the rate of responding in that
state given by the Weibull distribution. What the animal learns in this context relative
frequencies of food given key light, and food given both light and peck. The scheduled
probabilities of these is constant (at .1 or .05 or 0) in all these experiments; but the random
sampling of trials by responses makes the observed frequencies a continually varying estimator
of those probabilities. The strengths of the context, key, and peck state could be continuously
varying, each in their own way, with our reduction to a net strength (s, probability of entering
the response state) a synopsis of more nuanced 3-way tugs of war among these factors. Models
that keep separate accounts of these components of learning might easily trump MPS in rich
data sets such as these, despite their extra parameters, or in others where the forces are put into
strong opposition. By treating instrumental responses as stimuli to be approached in the same
manner as a lit key (Bindra, 1978), SOCR (Stout & Miller, 2007), attentional models (Frey &
Sears, 1978; Mackintosh, 1975), RET (Gallistel & Gibbon, 2000) and its refinement by Kakade
and Dayan (2002), SOP (Brandon, Vogel, & Wagner, 2003), WILL (Dayan, Niv, Seymour, &
Daw, 2006), and the artificial neural net genre (e. g., Burgos, 1997; Donahoe, Palmer, & Dorsel,
1994) may be evaluated against these data. This paradigm also provides an ideal environment
to analyze the potential progression of “learned irrelevance” (Baker, Murphy, & Mehta,
2003).

A limitation of the current analysis is its focus on one well-prepared response, appetitive key-
pecking in the pigeon. The relative importance of operant and respondent control will vary
substantially depending on the response system studied (Donahoe, Palmer, & Burgos, 1997b;
Jenkins, 1977; Timberlake, 1999). Another is that we have fit only a limited number of models
to the data--albeit more than mentioned here, including versions of SOCR (Stout & Miller,
2007), attentional models (Frey & Sears, 1978; Mackintosh, 1975), RET (Gallistel & Gibbon,
2000) and its improvement by Kakade and Dayan (2002). The models we presented in this
paper were the best of the lot. But other models might have done better; in particular ones with
attention (Mackintosh, 1975), or memory (Bouton, 1993; Wagner, 1981) as latent states. All
theories, successful and otherwise, are at best sufficient accounts of the phenomena that they
cover (Mazur, 2006), as Poincare (1905/1952) noted long ago.

The dependent variable was a standard operant response. Holland (1979) has shown that
omission contingencies have differential effects on various components of Pavlovian
conditioned responding in rats. It may be that the difference is merely greater associability of
different responses (Killeen, Hanson, & Osborne, 1978; Seligman, 1970), manifested as
differences in the pi parameters. Indeed, it maybe that in some configurations the Pavlovian
parameter goes negative, with delivery of food increasing goal approach (Timberlake, 1994)
on the next trial, competing with the measured operant. Such possibilities have yet to be
demonstrated.

Another limitation is that MPS does not address the key contribution of the R-W model and
its successors, cue competition and the partitioning of attention in the conditioning process. It
did not need to here because changes in the predictive value of key or peck change the
probability of entering the response state in the same direction: The conditionals coordinate,
rather than compete. Independent book-keeping for cue, context, and peck conditioning were
assayed in preliminary evaluation of the above models, but the experimental paradigm did not
generate enough leverage where those models might contribute in their strong suites. The
partitioning out of momentum that the MPS model permits may, for the right experimental
paradigm, provide a much clearer signal for how the Pavlovian and Skinnerian factors—or
Pavlovian and Pavlovian factors—compete; or where one differentially sets the occasion for
the other (Colwill & Rescorla, 1986; Nadel & Willner, 1980; Schmajuk, Lamoureux, &
Holland, 1998). Such qualitative tests work hand-in-hand with quantitative ones (Roberts &
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Pashler, 2000) to converge on models that are powerful, parsimonious, and in register with the
complexity of evolved processes such as learning. Although we strive for a unified theory of
behavior, the best way to achieve it may be by perfecting modules that can account for their
domain, while exchanging information with modules of other domains (Guilhardi, Yi, &
Church, 2007).

In their penetrating assessment of the R-W model, Miller, Barnet and Grahame (1995) noted
18 theoretical successes, and about as many failures. They go on to observe that newer models
are “highly complex or have their own list of failures at least as extensive as the R-W model.” (p.
381); but that each of the new models has its strengths in fixing some of the failures of R-W.
It is our hope that by embedding contemporary models in the present framework, which permits
variance due to momentum to be partitioned out, and which permits ad libitum degrees of
freedom in the data to counterpoise those required for modern complex models of conditioning
(see, e.g., Hall, 2002 for an overview), that the models themselves may compete on a higher
playing field. Dynamic analysis may also permit the refinement of experiments, and permit
reduction of the number of subjects required to answer behavioral or pharmacological questions
(Corrado, Sugrue, Seung, & Newsome, 2005; Smith et al., 2004). The MPS model is but a
second step through the door opened by Bush and Mosteller so many years ago.
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Appendix

Framing the Model
There are 8 explicit parameters in the MPS model: The response parameters α and c, the two
momentum parameters, the two Pavlovian parameters, and the Skinnerian parameters. (The
Skinnerian parameters are partially redundant with the persistence parameter, but no attempt
was made to enforce further parsimony in these already overworked data.) There are also
implicit parameters. These involve the structure of the model and how that interacts with the
parameters and data (Myung & Pitt, 1997). The directions of conditioning (the nominal signs
of the learning parameters specifying their asymptotes θ, here fixed at 0 or 1), are such
considerations. Another is the starting value of s, s0, which is estimated as the average
probability of a response over the first dozen trials of each condition, with those trials then
excluded from all indices of merit. Because the logarithmic transformation penalizes errors
exponentially as they approach maximum (e.g., predicting a response probability close to zero
and having a response occur), a floor (of probability of data given model) of 0.00001 was
placed under both the candidate and default models; it was rare for them to step on that floor
except during the iterative process of parameter estimation. All analyses were conducted in
Excel® using the Solver add-in.

Looking Ahead
In general, the linear learning model was unquestionably better than the base model of
momentum—the AIC index of merit advantage for the learning model was typically close to
100 units. What does this mean in terms of ability to predict behavior? Most readers unfamiliar
with AIC and log likelihood analysis will appreciate some other indices of merit, such as
variance accounted for by the model. However we are predicting response rates on a trial by
trial basis, not the typical averages over the last 10 sessions each consisting of scores of
observations. There is no opportunity to average out noise in the present dynamical analysis.
In light of this, predictions were not so bad: the MPS model accounted for over 10% of the
variance in response rates on the next trial in Experiment 1, even though the analysis did not
optimize goodness of fit for this variable. In the p = .05 condition, accuracy increased to 16%.

Whereas these might not seem impressive figures, nor might the advantage of the MPS model
seem impressive in that metric, most considerations of variance accounted for –coefficients of
determination—are calculated on average data, where noise has been minimized by averaging.
None, to our knowledge, reflect accuracy on a moment-to-moment, or at least trial-by-trial,
basis. Because conditions are always changing as a function of the behavior of the animal in
this closed-loop system, there is no obvious larger unit over which we could aggregate data to
improve accuracy. But there is a less-than-obvious one, described next.

The conditioning predicated by the learning model has a longer provenance than over just the
next trial; a measure of accuracy that is both more informative, and more consistent with
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traditional reports of coefficients of determination, can be derived by asking how well the
imputed strength, si, predicts behavior over the next few trials. Because the learning model
posits geometric changes in performance as a function of contingencies, accuracy of prediction
should also decrease geometrically with distance into the future. Accuracy decreases because
the stochastic processes that might carry the animal over a response threshold on a trial or not,
throw a multiplicative shadow into the future. Therefore accuracy should decrease
approximately as (1-γ)n, as vicissitudes of responding and reinforcement carry the conditioning
process along an increasingly random walk. We may take advantage of this by averaging
measured responding over the next score trials, giving greatest weight to the next trial, less to
the trial after that, and so on, and using events on the current trial to project those temporally
discounted future response rates. This was accomplished by weighting the accuracy of
prediction on the next trial by 20%; adding to that accuracy on the trial after that weighted by
16%; on the trial after that by .2(.8)2, then by .2(.8)3, etc. This “forward” exponentially-
weighted moving average places half the predictive weight on the 3 trials subsequent to the
prediction, trailing off geometrically into the future. Accuracy at predicting this discounted
future in the p = .05 condition doubled, to 28% of the variance in response rates accounted for
by the MPS model. A similar doubling of the coefficient of determination was seen in spot
checks of the other conditions.

Asymptotic Responding
In this paper the conditioning process is characterized from trial to trial by a difference equation
—the strength on the prior trial, plus the probability of a response times πP and a non-response
by πQ; that is then adjusted by the probability of food times πF and no food by πE; and finally
the probability of both a response and food times πPF, or of a response and no food by πPE.
This permits continuous idealizations of acquisition and extinction.

Representation of a stochastic process by its probabilities gives a domesticated version of an
intrinsically wild process. For instance, performance is vulnerable to a “gambler’s ruin”—a
series of non-reinforced trials that leads to extinction. The probabilistic solutions do not take
this sudden-death into account, and do not allow for the recuperative strength provided by
spontaneous recovery at the start of new sessions. Nonetheless, they provide some insights to
the process. We begin by analysis of the momentum factor, and then blend it with the
conditioning factors. Here the direction toward ceiling or floor is assumed, in the conventional
manner. Conditioning enters after momentum, rather than before, as in the analysis programs.
The order of entry makes some difference in accuracy of fit.

1. Momentum
Letting p(Pi) represent the probability of responding on the ith trial, the momentum of
responding is carried forward from the last trial as:

that is, as the strength coming out of the prior trial, si, plus probability of a response, p(Pi),
times πP (the momentum-of-pecking rate parameter), times the distance to the ceiling strength
(1 − si); plus the probability of not pecking times the momentum-in-quiescence parameter
πQ times the distance to the floor of strength. The probability of pecking is approximately equal
to the strength, si, so substitute for p(Pi) and simplify to:

(A1)
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The difference in momentum parameters is gated by the distance of strength to its ceiling, to
increment response probability. This is slightly off, because there is a finite probability of being

in the response state and not pecking; but that is negligible. The variable  is the momentum
of responding that is carried forward to the next trial.

2. Pavlovian conditioning
Food occurs with probability p, so:

that is, as the status quo ante ( ), plus the probability of food times the Pavlovian parameter
πF times the distance to ceiling; plus the probability of no food times the Pavlovian extinction
parameter πE times the distance to floor. Collecting terms yields:

(A2)

When the probability of food is p = 1, the influence of πE drops out, leaving strength on a march
toward 1; and conversely where p = 0, strength decreases geometrically from one trial to the
next by the factor (1 − πE).

To predict responding on the next trial, the intervening variable  is removed by substituting
from A2 into A1. Because the parameters πP and πQ always enter as a difference, some
parsimony is achieved by writing πP − πQ as πP−Q. Then Equations A1 and A2 give:

(A3)

3. Skinnerian conditioning
Remembering that food occurs with probability p, and a peck with probability s”, the increment
to strength conferred by operant conditioning is:

Strength after Pavlovian updating, plus the probability of a response times the large
parenthetical. Inside the parenthetical is the probability of food times its rate parameter times
the distance to the ceiling; plus the probability of no food times its rate parameter times the
probability of no peck times its distance to the floor. This may be simplified to:

(A4)

Inserting A3 into this gives the final equation of prediction, too unenlightening to be written
out here—even though it is less complicated than the full solution to the R-W model
(Yamaguchi, 2006). It is simpler to evaluate A3, and then insert it into A4. A spreadsheet for
analyzing data with the present theory on a trial-by-trial basis is available from the authors.
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Special Cases
Acquisition

In the case of acquisition, where few or no responses have yet occurred, A3 provides a good
equation of prediction. Since the probability of food p is typically 1.0, it can be further
simplified to the acquisition function:

(A5)

Equation A5 can range from a classic exponential-integral learning curve (when πP−Q is of
small magnitude), through approximately linear, to an S-shaped ogive, depending on the two
parameters, the net rate of persistence (πP−Q) and the rate of acquisition (πF).

Extinction
In extinction p = 0, and A3 simplifies to:

(A6)

which appears as Equation 8 in the text. Equation A6 assumes that πPE is smaller, and extinction
decrements can be handled by πE; this has been the case for all of the data analyzed here, and
setting πPE to zero is a parsimonious way to simplify the Equation.
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Figure 1.
Data from Experiment 1. Top Panel: average number of responses per trial (dots) for each
subject., ranging from Pigeon 106 (top curve) to Pigeon 105 (bottom in condition 20). Open
symbols represent data from Perkins and associates (1975). Bottom panel: Average probability
of making at least one response on a trial averaged over pigeons; bars give standard errors.
Unbroken lines in both panels are from the MP model, described later in the text.
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Figure 2.
Moving averages of the number of responses per 5-s trial over 25 trials from one representative
subject and condition (Pigeon 98, first condition, 40 s ITI).
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Figure 3.
The relative frequency of trials containing 0, 1, 2, … responses. The data are from all trials of
the first condition of Experiment 1. The curves are drawn by the Weibull response rate model
(Equation 1). The parameter s is the probability of being in the response state; the complement
of this probability accounts for most of the variance in the first data point. The parameter α
dictates the shape, from exponential (α = 1) to approximately normal (α ≈ 3) to increasingly
peaked (α ≈ 5). The parameter c is proportional to the mean number of responses on trials in
the response state, and gives the rank order of the curves in Figure 1 at condition 20.
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Figure 4.
The cumulative frequency of trials containing 0, 1, 2, … responses. The data are from all trials
of the last condition of Experiment 1. The curves are drawn by the Weibull response rate model
(Equation 1), using the distribution function, rather than the density.
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Figure 5.
The average parameters of the Base and MP models for Experiment 1. The first four conditions
are identified by their ITI, with the first and second exposure to the 40s ITI noted
parenthetically. The same Weibull parameters, c and α, were used for both models. In the last
condition, the probability of hopper activation on a trial was reduced from .1 to .05, with ITI
= 40. The error bars delimit the SEM.
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Figure 6.
Moving averages of the number of responses per 5-s trial over 25 trials from three representative
“statrats”, characterized by the average parameters of real pigeons in the first condition, 40 s
ITI. The only difference among these three panels is the random number seed for Trial 1.
Compare with Figure 2.
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Figure 7.
The marginal probability of ending a run of quiet trials. The unfilled symbols are for individual
animals, and the filled circles represents their average performance. The hazard function
represented by filled squares comes from simulations of the model.
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Figure 8.
The average probability of responding as a function of the number of trials since reinforcement,
from the p = .05 condition. The number of observations decrease by 5% from one trial to the
next, from hundreds for the first points to 10 for the last displayed. The curve comes from
Equation 8, using parameters πP−Q and πE fit to these data.
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Figure 9.
Data from Experiment 2. Top Panel: average response rate (dots) for each subject. Open circles
gives average rate, and squares represent data from Perkins and associates (1975). Bottom
panel: Average probability of making at least one response on a trial averaged over pigeons;
bars give standard errors. Unbroken lines in both panels are from the MPS model.
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Figure 10.
The average parameters of the Base and MPS models for Experiment 2. The conditions are
identified by their trial duration, with the first and second exposure to the 10s ITI noted
parenthetically. The same Weibull parameters, c and α, were used for both models. The error
bars delimit the SEMs. πPF is traced by a dashed line, and πPE by a dotted line.
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Figure 11.
The average probability of responding as a function of the number of trials since reinforcement,
from the CS 5 s condition of Experiment 2, pooled over subjects. The number of observations
decrease by 5% from one trial to the next, from 485 for the first point to 29 for the last displayed.
The curve comes from Equation 8, using parameters πP−Q and πE fit to these data.
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Figure 12.
The average probability of responding as a function of the number of trials since the start of
the CS 10 s condition of Experiment 2, pooled over subjects, and represented as a 7-trial moving
average (circles). The hatch marks indicate trials on which one (plotted at p = 1/6) or two
(plotted at p = 2/6) pigeons happened to have received food. In no cases did the same trial end
with food for more than two pigeons. The smooth curve comes from MPS, setting p = .06, with
all other parameters fit to these data. The jagged curve comes from the same equation with the
same parameters, but uses the obtained relative frequency of food as given by the hatch marks.
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Figure 13.
Data from Experiment 3. Top Panel: average response rate (dots) for each subject. Bottom
panel: Average probability of making at least one response on a trial averaged over pigeons;
bars give standard errors. Lines in both panels are from the MPS model.
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Figure 14.
The average parameters of the Base and MPS models for the DRO and FR contingencies of
Experiment 3. The same Weibull parameters, c and α, were used for the response distributions
of both models. The error bars delimit the SEMs.
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Table 1

Conditions of Experiment 1

Order ITIa Pb Sessions

1 40 s .1 20–21

2 20 s, 80 s .1 21–23

3 80 s, 20 s .1 20–22

4 40 s .1 21–23

5 40 s .05 24–29

Note: Half the subjects experienced the extreme ITIs in the order 20 s 80 s, half in the other order.

a
ITI is Inter-trial Interval

b
p is the probability of the trial ending with food.
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Table 2

The Momentum/Pavlovian model with events mapped onto direction and rate parameters

Event Representation

Peck P: (+/−)πP

No Peck (Quiet) Q: (+/−)πQ

Food F: (+/−)πF

Empty/Ext. E: (+/−)πE

Note: The parentheticals indicate whether the learning process is driving behavior up (positive entails that θ = 1) or down (negative entails that θ =
0); the rate parameters themselves are always positive.

J Exp Psychol Anim Behav Process. Author manuscript; available in PMC 2010 October 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Killeen et al. Page 48

Ta
bl

e 
3

Pa
ra

m
et

er
 v

al
ue

s o
f t

he
 B

as
e 

an
d 

M
P 

m
od

el
s f

or
 th

e 
da

ta
 o

f E
xp

er
im

en
t 1

, a
nd

 o
f t

he
 M

PS
 m

od
el

 fo
r t

he
 p

 =
 .0

5 
co

nd
iti

on
.

B
#a

Pa
rb

20
40

1
40

2
80

.0
5

B
#

Pa
r

20
40

1
40

2
80

.0
5

98

γ
.0

2
.0

3
.0

5
.0

2
.0

8

10
7

γ
.0

2
.0

5
.0

5
.0

1
.0

4

c
8.

78
6.

93
5.

31
7.

77
5.

90
c

8.
56

8.
20

7.
47

8.
69

8.
00

α
3.

00
2.

08
1.

55
2.

30
1.

76
α

2.
57

2.
20

2.
11

2.
22

2.
00

P
.0

0
.0

2
.0

4
−.

01
.2

7
P

.0
6

.0
0

.0
4

.0
0

.0
6

Q
−.

02
−.

03
−.

05
−.

01
−.

19
Q

−.
03

−.
04

−.
06

−.
01

−.
05

F
.0

0
.0

5
.0

3
.2

2
.0

0
F

.2
9

.2
7

.1
2

.3
0

.3
0

E
.0

0
.0

0
.0

0
.0

0
.0

1
E

−.
02

.0
0

.0
0

−.
01

.0
0

PF
.2

0
.0

0
.1

3
.0

0
.0

0
PF

.0
0

.0
0

.0
0

.0
0

.0
0

PE
.0

0
.0

0
.0

0
.0

0
−.

08
PE

.0
0

.0
0

.0
0

.0
0

−.
04

10
5

γ
.0

5
.0

4
.1

1
.1

0
.1

2

11
3

γ
.0

2
.0

5
.0

4
.0

3

c
5.

69
5.

12
7.

18
7.

49
5.

74
c

6.
90

5.
45

4.
79

6.
45

α
1.

56
1.

31
2.

13
2.

33
1.

62
α

2.
51

2.
22

1.
76

2.
46

P
.0

4
.0

5
.1

9
.6

1
.3

2
P

.0
2

.0
6

.0
6

.6
8

Q
−.

04
−.

04
−.

24
−.

15
.0

2
Q

−.
02

−.
06

−.
04

.1
2

F
.0

3
.0

0
.5

6
.3

3
.3

4
F

.0
0

.1
4

.0
0

−.
06

E
.0

0
.0

0
.0

3
−.

10
−.

30
E

.0
0

−.
01

.0
0

−.
16

PF
.1

4
.0

4
.3

4
.0

0
.0

0
PF

.0
5

.0
0

.0
0

.0
0

PE
.0

0
.0

2
−.

04
.0

0
.2

8
PE

.0
0

.0
0

−.
01

.0
0

10
6

γ
.0

5
.0

2
.0

7
.0

2
.1

2

11
9

γ
.0

1
.0

1
.0

3
.0

2
.0

6

c
12

.7
1

13
.8

8
13

.2
9

14
.3

5
12

.4
0

c
8.

12
7.

17
6.

41
7.

78
6.

76

α
3.

54
4.

49
3.

55
4.

25
2.

36
α

3.
17

2.
92

2.
49

2.
30

2.
44

P
.0

5
.1

0
.1

8
.1

7
.3

0
P

.2
1

.2
8

.0
4

−.
01

.4
8

Q
−.

06
−.

07
−.

14
−.

07
−.

16
Q

−.
05

−.
07

−.
04

−.
01

−.
17

F
.0

0
.0

0
.2

7
.2

7
.5

4
F

.9
0

.6
5

.3
1

.2
3

.5
0

E
.0

1
.0

3
.0

0
−.

02
−.

03
E

−.
02

−.
03

.0
0

.0
0

.0
0

PF
.1

9
.4

3
.1

6
.1

0
.0

0
PF

−.
02

.0
0

−.
01

.0
0

.0
0

PE
.0

0
−.

01
−.

01
.0

0
−.

01
PE

.0
9

.1
7

.0
0

.0
0

−.
04

J Exp Psychol Anim Behav Process. Author manuscript; available in PMC 2010 October 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Killeen et al. Page 49
a B

# 
is

 B
ird

 n
um

be
r.

b Pa
r i

s p
ar

am
et

er
: γ

 th
e 

ra
te

 c
on

st
an

t f
or

 th
e 

co
m

pa
ris

on
 B

as
e 

m
od

el
; c

 th
e 

W
ei

bu
ll 

ra
te

 c
on

st
an

t; 
α 

th
e 

W
ei

bu
ll 

sh
ap

e 
co

ns
ta

nt
; a

nd
 th

e 
re

m
ai

ni
ng

 le
tte

rs
 in

di
ca

te
 th

e 
ra

te
 c

on
st

an
ts

 b
ro

ug
ht

 in
to

 p
la

y 
on

 tr
ia

ls
w

ith
 (P

) o
r w

ith
ou

t (
Q

) a
 re

sp
on

se
; w

ith
 (F

) o
r w

ith
ou

t (
E)

 fo
od

; a
nd

 th
e 

Sk
in

ne
ria

n 
in

te
ra

ct
io

n 
te

rm
s P

F 
an

d 
PE

.

J Exp Psychol Anim Behav Process. Author manuscript; available in PMC 2010 October 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Killeen et al. Page 50

Ta
bl

e 
4

In
di

ce
s o

f m
er

it 
fo

r t
he

 m
od

el
 c

om
pa

ris
on

 o
f E

xp
er

im
en

t 1

B
#

M
et

ri
ca

20
40

1
40

2
80

.0
5

98

C
D

0.
03

0.
06

0.
17

0.
06

0.
19

A
IC

9
−1

32
29

11
5

B
IC

−1
7

−1
8

15
20

97

10
5

C
D

0.
07

0.
02

0.
17

0.
13

0.
16

A
IC

57
72

16
2

10
5

37
5

B
IC

38
55

13
4

91
35

2

10
6

C
D

0.
17

0.
03

0.
18

0.
05

0.
19

A
IC

47
40

69
5

21
7

B
IC

22
17

46
−1

4
19

3

10
7

C
D

0.
04

0.
09

0.
14

0.
05

0.
11

A
IC

10
1

40
13

18
88

B
IC

82
34

2
8

70

11
3

C
D

0.
04

0.
07

0.
30

0.
03

A
IC

12
27

38
24

B
IC

−7
10

19
9

11
9

C
D

0.
02

0.
01

0.
02

0.
07

0.
07

A
IC

57
40

8
29

87

B
IC

25
17

−1
4

19
69

G
rp

C
D

0.
06

0.
05

0.
16

0.
06

0.
14

A
IC

47
36

54
35

17
6

B
IC

24
19

34
22

15
6

a Th
e m

et
ric

s o
f g

oo
dn

es
s o

f f
it 

fo
r t

he
 m

od
el

s a
re

 th
e c

oe
ff

ic
ie

nt
 o

f d
et

er
m

in
at

io
n,

 th
e A

ka
ik

e i
nf

or
m

at
io

n 
cr

ite
rio

n,
 an

d 
th

e B
ay

es
ia

n 
in

fo
rm

at
io

n 
cr

ite
rio

n.
 V

al
ue

s o
f t

he
 la

st
 tw

o 
gr

ea
te

r t
ha

n 
4 

co
ns

tit
ut

e s
tro

ng
ev

id
en

ce
 fo

r t
he

 M
PS

 m
od

el
.

J Exp Psychol Anim Behav Process. Author manuscript; available in PMC 2010 October 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Killeen et al. Page 51

Table 5

Conditions of Experiment 2

Order Trial Duration Sessions

1 10 s 13

2 5 s, 20 s 13

3 20 s, 5 s 13

4 10 s 14

Note: Half the subjects experienced the extreme trial durations in the order 5 s 20 s, half in the other order.
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