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Introduction
Satellite cells are skeletal muscle stem cells responsible for 
postnatal growth and repair. These cells are activated from qui-
escence through a highly ordered program that governs their 
transient amplification and subsequent differentiation, both of 
which are regulated by the same transcription factor, MyoD 
(Rudnicki et al., 1992; Blais et al., 2005; Ishibashi et al., 2005; 
Tapscott, 2005). For instance, MyoD initiates the differentiation 
program by promoting cell cycle withdrawal and directly acti-
vating myogenin gene expression (Hollenberg et al., 1993; 
Halevy et al., 1995), the latter of which is mediated by the 
MyoD-dependent recruitment of cofactors responsible for achiev-
ing permissive chromatin architecture, including p300, PCAF, 
SWI/SNF, and p68/p72 (Puri et al., 1997a,b; Sartorelli et al., 1999; 

de la Serna et al., 2001, 2005; Dilworth et al., 2004; Simone et al., 
2004; Caretti et al., 2006); and transcriptional initiation (Deato 
and Tjian, 2007; Deato et al., 2008).

The promyogenic kinase p38- is also essential for differ-
entiation (Cuenda and Cohen, 1999; Wu et al., 2000; Bergstrom 
et al., 2002; Perdiguero et al., 2007), as it indirectly regulates 
MyoD function through phosphorylation of the chromatin-
modifying enzyme SWI/SNF (Simone et al., 2004; Serra et al., 
2007). Moreover, p38- also phosphorylates E47, an E protein that 
heterodimerizes with MyoD to promote DNA binding (Lluís 
et al., 2005); Mef2 proteins, which cooperate with MyoD as part 
of a feed-forward network (Molkentin et al., 1995; Zetser et al., 
1999; Zhao et al., 1999; Wu et al., 2000; Penn et al., 2004; 
Rampalli et al., 2007); and KH-type splicing regulatory protein 
(KSRP), an mRNA decay factor that subsequently fails to bind 

The mitogen-activated protein kinase p38- is highly 
expressed in skeletal muscle and is associated with 
the dystrophin glycoprotein complex; however, its 

function remains unclear. After induced damage, muscle 
in mice lacking p38- generated significantly fewer myo-
fibers than wild-type muscle. Notably, p38--deficient 
muscle contained 50% fewer satellite cells that exhibited 
premature Myogenin expression and markedly reduced 
proliferation. We determined that p38- directly phos-
phorylated MyoD on Ser199 and Ser200, which results in 
enhanced occupancy of MyoD on the promoter of myo-
genin together with markedly decreased transcriptional 

activity. This repression is associated with extensive 
methylation of histone H3K9 together with recruitment of 
the KMT1A methyltransferase to the myogenin promoter.  
Notably, a MyoD S199A/S200A mutant exhibits markedly 
reduced binding to KMT1A. Therefore, p38- signaling 
directly induces the assembly of a repressive MyoD tran-
scriptional complex. Together, these results establish a 
hitherto unappreciated and essential role for p38- sig-
naling in positively regulating the expansion of transient 
amplifying myogenic precursor cells during muscle growth 
and regeneration.
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pattern of differentiation-specific gene expression during satel-
lite cell–mediated muscle growth and regeneration.

Results
Impaired regeneration in p38-/ muscle is 
caused by a satellite cell deficit
To investigate the role of the mitogen-activated protein kinase 
(MAPK) p38- in myogenesis in vivo, we began by examining 
the regeneration capacity of muscle lacking the p38- gene 
(Sabio et al., 2005). These mice are viable, grow at a similar rate 
and produce comparable litter sizes to wild-type controls, and 
display no overt muscle phenotype or pathology. Importantly, 
there is no apparent compensation for the loss of p38- by up-
regulation of the expression or activity of the promyogenic  
p38- MAPK (Sabio et al., 2005).

Acute injury was induced by injection of cardiotoxin (CTX) 
into the belly of the tibialis anterior (TA) muscle. Importantly, 
we detected activation of p38- after injury of wild-type muscle 
(Fig. S1, A and B). Histological examination of sections of re-
generating muscle did not reveal an overt phenotype such as de-
layed or impaired regeneration. However, we detected a small 
but statistically significant decrease in mutant fiber size 21 d 
after injury (Fig. S1, C–H). Enumeration of total fiber number 
21 d after injury revealed a significant regeneration deficit in 
p38-/ muscle (Fig. 1 A). Wild-type TA muscle displayed a 
13% increase in the total number of fibers, whereas TA muscle 
lacking p38- displayed a 14% decrease, relative to uninjured 

to the 3 untranslated regions of myogenic transcripts (Briata et al., 
2005). Interestingly, p38- signaling also promotes satellite cell 
activation (Jones et al., 2005); however, the specific targets 
remain to be identified.

Despite the expression of functional MyoD protein during 
myoblast proliferation (Blais et al., 2005; Ishibashi et al., 2005) 
and the presence of the MyoD coactivators noted earlier together 
with an accessible noncanonical MyoD binding site (Berkes 
et al., 2004), the chromatin structure of the myogenin promoter 
exists in a repressive state (Gerber et al., 1997), thereby ensuring 
the correct temporal patterning of myogenin gene expression. 
In fact, previous studies have documented the role of MyoD 
corepressors in preventing gene expression (Mal et al., 2001, 
2006; Puri et al., 2001; Mal and Harter, 2003). However, the sig-
nals regulating these associations during the different stages of  
satellite cell activation remain to be established.

Although the promyogenic role of p38- signaling has 
been well documented, the function and mechanism of action  
of p38- during satellite cell activation has remained elusive de-
spite its more restricted expression and its activation in skeletal 
muscle (Lechner et al., 1996; Mertens et al., 1996; Boppart 
et al., 2000; Tortorella et al., 2003; Perdiguero et al., 2007; Ruiz-
Bonilla et al., 2008; Wang et al., 2008). Our results define a novel  
function for p38- during adult myogenesis, whereby its direct 
phosphorylation of MyoD assembles a repressive transcriptional 
complex containing a MyoD corepressor. Through epigenetic 
modifications of chromatin within the promoter of an important 
myogenic regulator, p38- signaling ensures the correct temporal 

Figure 1.  Impaired regeneration resulting from a satellite cell deficit in p38-/ muscle. (A) Enumeration of total fiber number from wild-type and p38-/  
TA muscle 21 d after CTX injury. Numbers were normalized to the contralateral TA muscle. Error bars represent ±SEM for n = 5–6. Asterisk denotes sig­
nificance (P < 0.0003). (B–H) Immunofluorescent staining for Pax7 (C and F) from wild-type and p38-/ TA muscle. Nuclei were counterstained with  
DAPI (B and E). (D and G) Pax7-DAPI merged pictures. Representative pictures are shown, with arrowheads denoting Pax7-positive nuclei. Pax7-positive sat­
ellite cells were enumerated (H). Error bars represent standard error of the means (±SEM) for n = 10. Asterisk denotes significance (P < 0.0001). (I–O) Immuno­
fluorescent staining for Pax7 (J and M) on freshly isolated single fibers from wild-type and p38-/ EDL muscle. Nuclei were counterstained with DAPI (I and L).  
(K and N) Pax7-DAPI merged pictures are shown. Representative pictures are shown, with arrowheads indicating Pax7-positive nuclei. Pax7-positive  
satellite cells were enumerated (O). Error bars represent ±SEM for n = 84 myofibers. Asterisk denotes significance (P < 0.0001). Bars, 25 µm.
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digitorum longus (EDL) muscle was examined (Fig. 1, I–N). 
Notably, we observed a 50% reduction in satellite cell number 
in both p38-/ TA (Fig. 1 H) and EDL (Fig. 1 O) muscles.

Strikingly, Myogenin protein was detected in large num-
bers of nuclei in p38-/ TA muscle, whereas it was absent in 
wild-type muscle (Fig. 2, A–F). Myogenin is typically highly 
expressed in myogenic cells entering the terminal differentiation 

contralateral TA controls. Therefore, the reduced numbers and 
sizes of fibers formed after acute injury of p38-/ muscle sug-
gested that the function of satellite cells was perturbed.

To enumerate the number of satellite cells in mutant muscle, 
we performed immunostaining on sections of undamaged TA 
muscle (Fig. 1, B–G). In addition, the number of satellite cells 
on single muscle fibers freshly isolated from the extensor 

Figure 2.  Precocious up-regulation of Myogenin in p38-–deficient muscle. (A–F) Immunofluorescent staining for Myogenin (B and E) from wild-type and 
p38-/ TA muscle. Nuclei were counterstained with DAPI (A and D). (C and F) Myogenin-DAPI merged pictures. Representative pictures are shown  
(n = 9). (G–P) Immunofluorescent staining for Pax7 (H and L) and Myogenin (I and M) in single EDL fibers from wild-type mice transfected with siRNA 
against p38- or control scrambled siRNA immediately after their isolation. Nuclei were counterstained with DAPI (G and K). (J and N) Pax7-Myogenin-
DAPI merged pictures. Representative pictures are shown. The percentage of Myogenin-expressing and Pax7-expressing myogenic precursor cells was 
determined 72 h after transfection (O and P). Error bars represent ±SEM for n = 28. Asterisks denote significance (P < 0.001). Bars, 25 µm.
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Reduced growth and precocious Myogenin 
activation in p38-/ satellite cells
To further investigate the role of p38- in satellite cells, we iso-
lated them from p38-/ muscle by FACS and examined their 
growth and differentiation characteristics. The growth rate of 
established primary cultures of wild-type and p38-/ myo-
blasts was examined by direct enumeration of cells over several 
days under growth conditions. Strikingly, cultured p38-/ myo-
blasts displayed a severe reduction in their growth rate (Fig. 3 A).

To confirm this proliferation defect, we performed Ki67 
immunostaining on these cells and observed a significant reduc-
tion in Ki67-positive p38-–deficient satellite cell–derived myo-
blasts over 72 h of culture under growth conditions (Fig. S2 A). 
In addition, we also detected elevated apoptosis in mutant myo-
blasts under growth conditions (Fig. S2 B), which could be at-
tributed to the increase in apoptosis normally observed upon 
entry into the differentiation program.

Immediately after the isolation of p38-/ satellite cells by 
FACS, we observed an almost 3.5-fold increase in the levels of 
myogenin mRNA, with no change in MyoD mRNA (Fig. 3 B). 

program and is down-regulated in mature fibers. Together, 
these results suggest that p38-–deficient satellite cells are 
defective in satellite cell maintenance and that satellite cell–
derived myogenic precursors lacking p38- are undergoing pre-
mature differentiation.

Both differentiated myofibers and satellite cells express 
p38-. To assess the role of p38- specifically in satellite cells, 
we performed siRNA knockdown of p38- in satellite cells 
cultured on single fibers isolated from wild-type EDL muscle 
(Fig. 2, G–N). Importantly, we detected a 40% increase in the 
percentage of Myogenin-expressing myogenic precursor cells 
in fibers treated with a p38-–specific siRNA compared with a 
nonspecific scrambled siRNA control (Fig. 2 O). Furthermore, 
we observed a 10% decrease in the percentage of Pax7- 
expressing cells in fibers treated with p38- siRNA (Fig. 2 P).

Collectively, the reduced numbers of satellite cells, the el-
evated numbers of nuclei containing the differentiation marker 
Myogenin, and the reduced numbers of fibers generated after acute 
injury all support the assertion that satellite cells lacking p38- dis-
play an increased propensity to initiate the differentiation program.

Figure 3.  Impaired proliferation and precocious activation of Myogenin in p38-–deficient satellite cells. (A) Proliferation analysis of wild-type and  
p38-/ satellite cells. Cells were seeded at the same density (105), and cells on separate plates were dissociated and counted every 24 h for 3 d. Error 
bars represent ±SEM for n = 3. (B and C) Real-time RT-PCR for myogenin, Myod, Myf5, Pax7, and p38- transcripts from wild-type and p38-/ satellite 
cells. RNA was extracted from satellite cells immediately after isolation (B) or after several days in culture (C). Error bars represent ±SEM for n = 7–9. 
Asterisks denote significance (P < 0.008). (D) Immunoblot analysis of Myogenin protein expression from proliferating and differentiating wild-type and 
p38-/ satellite cell–derived myoblasts. Tubulin was used as a loading control.
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and p38-, resulted in diminished Myogenin protein despite the 
invariant expression of MyoD (Fig. S2 F). Therefore, these 
results support the assertion that p38- signaling represses Myo-
genin expression.

MyoD transcriptional activity is repressed 
by p38- signaling
The activation of myogenin transcription during cell cycle with-
drawal and entrance into the differentiation program is medi-
ated by MyoD binding and transactivation (Hollenberg et al., 
1993). To investigate the molecular mechanism through which 
p38- signaling represses Myogenin expression, we assessed 
the ability of MyoD to activate myogenin transcription in 10T1/2 
fibroblasts in response to p38- activation. These cells do not 
intrinsically express MyoD, but are converted to the skeletal 
muscle lineage upon overexpression of MyoD (Davis et al., 1987), 
which makes them a useful model for studying MyoD-dependent 
gene regulation. Once again, our analysis was performed after 
24 h of differentiation, which represents the time of maximal 
MyoD binding to the myogenin promoter and maximal activa-
tion of myogenin gene expression (Fig. 4 A).

We used a luciferase reporter under the control of a  
224-bp fragment of the myogenin promoter previously shown to 
be sufficient for expression in vivo (Cheng et al., 1993; Berkes 
et al., 2004). On its own, MyoD transactivated this reporter 
10-fold in 10T1/2 fibroblasts (Fig. 4 K). Strikingly, activation 
of p38- signaling resulted in a fourfold down-regulation of 
MyoD transactivation of the myogenin promoter (Fig. 4 K).

In addition, reporter assays were recapitulated by immuno
blotting experiments, which revealed that Myogenin protein 
expression was severely diminished after activation of p38- 
signaling (Figs. 4 L and S2 G). Importantly, MyoD protein levels 
remained unchanged by MKK6EE and p38- (Fig. S2 G), 
which confirms that the effects we observed were not a result of 
alterations in MyoD expression. Therefore, these data demon-
strate that p38- signaling represses MyoD transcriptional activity, 
thereby inhibiting myogenin gene expression, which provides 
an explanation for the precocious myogenin expression ob-
served in p38-/ satellite cells.

p38- directly phosphorylates MyoD
To examine whether MyoD was a substrate for p38- phosphoryl
ation, we immunoprecipitated activated p38- from cell ex-
tracts and incubated it with recombinant MyoD in the presence 
of [32P]ATP. Incubation with the known p38- substrate ATF2 
demonstrated that p38- was indeed activated by MKK6EE 
(Fig. 5 A), which is in agreement with our phospho–p38- 
immunoblots. More importantly, incubation of full-length MyoD 
protein with immunoprecipitated, activated p38- suggested 
that MyoD was phosphorylated by p38- (Fig. S3 A).

To delineate the region of MyoD phosphorylated by p38-, 
we incubated immunoprecipitated, activated p38- with N- and 
C-terminal fragments of MyoD. Notably, only the C terminus 
of MyoD was specifically phosphorylated by activated p38- 
(Fig. 5 A). In fact, we observed similar levels of phosphoryla-
tion compared with full-length MyoD (104% ± 2% relative to 
full length). Moreover, a dominant-negative mutant of p38- 

Similarly, p38-/ satellite cell–derived myoblasts cultured 
for 1–2 wk continued to express elevated levels of myogenin 
transcript, with no significant alterations in MyoD expression 
(Fig. 3 C). We also observed decreased Pax7 and Myf5 expres-
sion in the p38-/ satellite cells analyzed immediately after 
their isolation (Fig. 3 B), and depressed levels of Pax7 in cul-
tured p38-–/- myoblasts (Fig. 3 C). Moreover, we also detected 
elevated Myogenin protein in proliferating p38-/ satellite 
cell–derived myoblasts (Fig. 3 D).

In addition, we observed slightly elevated myosin heavy 
chain (MyHC) protein expression by 24 h of differentiation in 
p38-–deficient myoblasts (Fig. S2 C). Interestingly, this trend 
fails to continue throughout differentiation, as by 48 h, MyHC 
expression was enhanced in wild-type myocytes/myotubes.

Both Myf5 and Pax7 are normally down-regulated upon 
differentiation (Megeney et al., 1996; Sabourin et al., 1999; 
Seale et al., 2000). Myogenin is normally up-regulated in myo-
genic cells after cell cycle withdrawal as the cells enter the ter-
minal differentiation program (Wright et al., 1989). Therefore, 
the markedly decreased rate of proliferation together with the 
premature expression of myogenin in growth conditions in  
p38-–deficient myoblasts supports the hypothesis that p38- 
signaling acts to inhibit the premature initiation of differentia-
tion in myogenic precursor cells.

Myogenin transcription is repressed by 
p38- signaling
To further investigate the mechanism through which p38- 
represses myogenic differentiation, we examined the effects of 
p38- signaling on myogenin transcription in differentiating 
C2C12 myoblasts. Our analysis was performed at 24 h after in-
duction of differentiation, as this represents the time of maximal 
expression of Myogenin protein (Fig. 4 A). To ensure that we 
specifically induced activation of p38-, we also forced expres-
sion of a constitutively active mutant of its upstream activator 
MKK6 (MKK6EE; Raingeaud et al., 1996; Cuenda et al., 1997) 
together with p38-. Importantly, activation of p38-, a positive 
regulator of myogenic differentiation, was not altered under 
these conditions (Fig. S2 D), which indicates that any functional 
effects on myogenic differentiation were specific to p38-.

Normally, 20% of C2C12 cells contain nuclear-localized 
Myogenin protein as assessed by immunostaining at 24 h  
after induction of differentiation (Fig. 4, B–D). To prove we 
could stimulate differentiation, we coexpressed MKK6EE with 
the promyogenic p38- MAPK. In agreement with the pub-
lished role for p38- (Cuenda and Cohen, 1999; Wu et al., 2000; 
Bergstrom et al., 2002), we detected Myogenin protein in 46% 
of these nuclei (Fig. 4, E–G). In contrast, Myogenin protein was 
detected in only 10.9% of C2C12 cells that were cotransfected 
with p38- and MKK6EE (n = 329; Fig. 4, H–J).

To further demonstrate that our results are caused by 
specific activation of p38-, we expressed only MKK6EE in 
C2C12 myoblasts. After 24 h of differentiation, we observed 
phosphorylation of p38- together with increased Myogenin 
protein (Fig. S2 E), which is consistent with the known role of 
p38- signaling in promoting myogenesis. In contrast, specific 
activation of p38-, in response to coexpression of MKK6EE 

http://www.jcb.org/cgi/content/full/jcb.200907037/DC1
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Figure 4.  Activation of p38- signaling represses MyoD activation of Myogenin transcription. (A) Schematic representation of myoblast differentiation, 
with MyoD binding to the myogenin promoter within 6–12 h of growth factor removal, and maximal MyoD transcriptional activity achieved between 12 
and 48 h. (B–J) Immunofluorescent staining for the Myc (C and I) or Flag epitopes (F), and Myogenin (D, G, and J) in C2C12 myoblasts expressing empty 
vector (B–D), MKK6EE and p38- (E–G), or MKK6EE and p38- (H–J) after 24 h of differentiation. Note the Myogenin-positive nuclei in cells containing 
activated p38- (arrows in F and G). Conversely, note the lack of Myogenin staining in cells containing activated p38- (arrowheads in I and J). Nuclei 
were counterstained with DAPI (B, E, and H). (K) Luciferase assays on 10T1/2 fibroblast extracts expressing MKK6EE and p38-, or empty vector. MyoDwt 
or MyoDmut were expressed as indicated. A diagram of the myogenin-luciferase reporter, shown above the graph, contains two canonical E-boxes (E1 
and E2), as well as the PME site, which contains the binding site for Pbx-Meis along with a noncanonical E box. Arrows indicate the location of primers for 
ChIP assays. Error bars represent ±SEM for n = 9. Asterisk denotes significance (P < 0.00002). (L) Quantification of a Myogenin immunoblot, normalized 
to MyoD protein levels, from 10T1/2 fibroblast extracts expressing MKK6EE, p38-, or empty vector. MyoDwt and MyoDmut were expressed as indicated. 
Note that the original immunoblots are shown in Fig. S2 G. MyoDmut, MyoD [S199A/S200A] mutant; MyoDwt, wild-type MyoD. Bar, 25 µm.

http://www.jcb.org/cgi/content/full/jcb.200907037/DC1


997MyoD repressor complex induced by p38- • Gillespie et al.

To confirm that these residues were targets for phosphory-
lation by p38-, we mutated them to alanine (S199A/S200A) 
and incubated them with immunoprecipitated, activated p38-. 
Importantly, this mutant abolished any phosphorylation (Fig. 5 C). 
To confirm the specificity of phosphorylation, we also mutated 
other potential MAPK phosphorylation sites within the C termi-
nus to alanine and failed to alter the phosphorylation of MyoD 
by p38- using immunoprecipitation (IP)-kinase assays (not de-
picted). Collectively, these results indicate that p38- directly 
phosphorylates MyoD on Ser199 and Ser200.

To analyze MyoD phosphorylation in vivo, we expressed 
MyoD in the presence or absence of activated p38- and ana-
lyzed its mobility on immunoblots. We detected a slower  
migrating band in the presence of p38- signaling, which repre-
sents phosphorylated MyoD (Fig. 5 D; Tapscott et al., 1988). 

(T183A/Y185F) blocked phosphorylation of MyoD (not depicted). 
Together, these results indicate that p38- directly phosphory-
lates the C terminus of MyoD.

To identify amino acids that are phosphorylated by p38-, 
we analyzed the C terminus of MyoD by matrix-assisted laser 
desorption/ionization time-of-flight (MALDI-TOF) mass spec-
trometry after kinase reactions. Spectra from unphosphorylated 
(from empty vector control cells) and phosphorylated reactions 
are shown in Fig. 5 B. In the phosphorylated spectra, we observed 
a specific peak with the mass/charge (m/z) ratio of 1,255.69, 
which corresponded to a MyoD peptide containing phosphoryl
ated Ser199 and Ser200. The additional peaks observed are 
likely a result of background contaminants due to other com-
ponents in the reactions or inefficient immobilized metal ion 
affinity chromatography enrichment of phosphopeptides.

Figure 5.  p38- directly phosphorylates Ser199 and Ser200 within the C terminus of MyoD. (A) IP-kinase assays from 10T1/2 fibroblasts expressing  
MKK6EE and p38-, or empty vector. Extracts were immunoprecipitated with antibody reactive to the Myc tag on p38-, and incubated with the recom­
binant substrates GST–MyoD–N terminal (GST-MyoD-NT) and GST–MyoD–C terminal (GST-MyoD-CT), along with GST (negative) and GST-ATF2 (positive) 
as controls. (B) MALDI-TOF MS spectra of IP-kinase assays from 10T1/2 fibroblasts expressing empty vector or MKK6EE and p38-. The peak with an 
m/z ratio of 1,255.69 (indicated by the asterisks) represents the phosphorylated MyoD peptide. (C) IP-kinase assay from 10T1/2 fibroblasts expressing 
MKK6EE and p38-, or empty vector. Myc–p38- immunoprecipitates were incubated with the recombinant substrates GST-MyoD-CT or GST-MyoD-CT 
[S199A/S200A] containing mutated p38- phosphorylation sites. GST and GST-ATF2 were used as controls. (D) Immunoblot analysis of 293T extracts 
expressing MKK6EE and p38-, or empty vector. Wild type (wt) and mutant (mt) MyoD S199A/S200A were expressed as indicated. (E) LC-MS/MS anal­
ysis of 293T nuclear extracts expressing MyoD alone or together with MKK6EE and p38-. For relative abundance calculations, indicated MyoD peptides 
were normalized against additional MyoD peptides and -actin peptides. Representative data are shown. (F) Immunoblot analysis of S200-phosphorylated 
MyoD and total MyoD in proliferating p38-+/+ and p38-/ satellite cell–derived myoblasts. Tubulin was used as a loading control. Fold change is shown 
relative to p38-+/+ satellite cells after quantification and normalization to tubulin. Error bars represent ±SEM for n = 3. Asterisk denotes significance (P < 
0.004). CT, C terminus; NT, N terminus.
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MKK6EE, which results in activation of p38- but not p38- 
under our conditions. We failed to detect any differences in the 
association between MyoD and the myogenin promoter as a 
result of MKK6–p38- signaling (Fig. S3 B). Furthermore, 
expression of a dominant-negative mutant of p38- prevented 
the p38-–dependent increase in MyoD occupancy of the myo-
genin promoter (Fig. S3 C). These results indicate that enhanced 
occupancy of MyoD on the promoter of myogenin is a specific 
result of p38- activation.

Similar to C2C12 differentiating myoblasts, ChIP assays 
from 10T1/2 fibroblasts expressing MKK6EE, p38-, and MyoD 
showed increased MyoD occupancy on the endogenous myogenin 
promoter compared with cells expressing MyoD alone (Fig. 6 B). 
However, the MyoD mutant lacking p38- phosphorylation sites 
(S199A/S200A) abolished the p38-–dependent increase in 
MyoD occupancy of the myogenin promoter (Fig. 6 B).

We also detected increased interaction between MyoD and 
the E protein HeLa E box binding factor (HEB; Parker et al., 
2006) in vivo after activation of p38- in C2C12 myoblasts  
(Fig. S3 D). Importantly, this enhanced interaction occurred even 
though total protein levels for both MyoD and HEB remained un-
changed (Fig. S3 E). This result implies that the observed increase 
in MyoD DNA binding may be a result of an increased associa-
tion of MyoD with HEB. Together, these results demonstrate that 
phosphorylation of MyoD by p38- promotes MyoD association 
with the myogenin promoter.

Phosphorylation of MyoD by p38-  
directs histone H3K9 methylation of the 
myogenin promoter
The myogenin promoter is subject to regulation by histone mod-
ifications, which are dependent on the presence of MyoD (Puri 
et al., 1997a,b, 2001; Sartorelli et al., 1999; Mal et al., 2001; 
Mal and Harter, 2003; Dilworth et al., 2004; Sims et al., 2004). 
The only repressive lysine methylation modification described 
for the myogenin promoter has been the methylation of lysine 9 
on histone H3 (H3K9; Zhang et al., 2002; Mal and Harter, 
2003). To determine if methylation of H3K9 was associated 
with the negative effect of p38- on myogenin gene expression, 
we performed ChIP assays for dimethylated H3K9 in differen-
tiating C2C12 myoblasts. H3K9 methylation was detected on 
this promoter during the differentiation of control cells, likely a 
result of unsynchronized, incomplete induction of C2C12 dif-
ferentiation. To control for any effects of p38- signaling, we  
expressed MKK6EE on its own and failed to alter the methyl
ation state of this promoter (Fig. S3 F). However, levels of H3K9 
methylation were substantially increased in the presence of 
MKK6EE and p38- together (Fig. 7 A).

Furthermore, expression of MKK6EE and p38-, together 
with MyoD, in 10T1/2 fibroblasts similarly resulted in markedly 
increased H3K9 methylation of the myogenin promoter com-
pared with cells expressing MyoD alone (Fig. 7 A). Importantly, 
there was little increase in H3K9 methylation when the MyoD 
S199A/S200A mutant was used (Fig. 7 A). These data indicate 
that p38- signaling induces formation of heterochromatin at the 
myogenin promoter, which correlates with its ability to repress 
gene expression after MyoD phosphorylation.

Importantly, expression of the MyoD S199A/S200A mutant 
completely abolished detection of this slower migrating band 
(Fig. 5 D), which confirms that MyoD is phosphorylated by 
p38- in vivo.

To further validate MyoD phosphorylation in vivo, we ana-
lyzed MyoD expressed in the presence or absence of activated 
p38- by liquid chromatography tandem mass spectrometry (LC-
MS/MS). After MyoD IP, we observed a 17-fold increase in de-
tection of the MyoD phosphopeptide in the presence of activated 
p38-, with a sixfold decrease in the corresponding unphos-
phorylated peptide (Fig. 5 E). However, this phosphopeptide repre-
sented phosphorylation of Ser200, and we were unable to detect 
phosphorylation of both Ser199 and Ser200 together. This result 
is not surprising given the extreme technical difficulties in identi-
fying a dually phosphorylated peptide from a more complex 
sample by MS/MS, such as poor column retention, reduced ion-
ization efficiency, and poor fragmentation (Aebersold and Good-
lett, 2001). Therefore, we conclude that Ser200 likely represents 
the major phosphorylated residue in vivo, with phosphorylation 
of Ser199 a functionally significant but less frequent event.

To examine MyoD phosphorylation in p38-–deficient 
satellite cells, we took advantage of our LC-MS/MS observa-
tions and used a phospho-Ser200–specific antibody. Notably, 
we detected a 65% reduction in MyoD phosphorylation in mu-
tant versus wild-type satellite cells (Fig. 5 F). Together, these 
results indicate that MyoD represents a physiological target of 
p38- phosphorylation in vivo.

Phosphorylation of MyoD by p38- 
enhances promoter occupancy
To determine the role of MyoD phosphorylation, we examined 
the transcriptional activation properties of MyoD during myo-
genic differentiation. Although the MyoD S199A/S200A mutant 
transactivated the myogenin-luciferase reporter 18-fold in 10T1/2 
fibroblasts, p38- signaling failed to significantly down-regulate 
its activity (Fig. 4 K), a result recapitulated by Western analysis 
(Fig. 4 L). These results suggest that the down-regulation of MyoD 
transcriptional activity is dependent on its phosphorylation.

To examine the DNA-binding properties of p38-- 
phosphorylated MyoD, we performed chromatin IP (ChIP) as-
says from C2C12 myoblasts 24 h after induction of differentia-
tion. Using PCR primers spanning the regulatory region of the 
myogenin promoter (Fig. 4 K; Cheng et al., 1993), we detected 
binding of endogenous MyoD to the endogenous myogenin pro-
moter (Fig. 6 A), as has been described previously (Bergstrom 
et al., 2002; Berkes et al., 2004; Simone et al., 2004; de la Serna 
et al., 2005; Parker et al., 2006).

Importantly, in the presence of either p38- alone, or 
MKK6EE and p38-, the occupancy of MyoD on the myogenin 
promoter was markedly increased (Fig. 6 A), which suggests 
that p38- signaling enhanced MyoD DNA binding. To confirm 
the specificity of the ChIP, we performed PCR for the Igh en-
hancer, which contains E boxes that do not bind MyoD in vivo 
(Weintraub et al., 1994; Bergstrom et al., 2002), and detected no 
MyoD binding (Fig. 6 A).

To ensure our results were specific to activation of p38-, 
we analyzed MyoD DNA binding by ChIP after expression of 
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locus. ChIP assays on differentiating C2C12 myoblasts revealed 
increased recruitment of endogenous KMT1A to the myogenin 
promoter after p38- activation (Fig. 7 B). Importantly, this re-
sult was specific to activation of p38-, as expression of only 
MKK6EE, which results in p38- activation, precluded detection 
of KMT1A on the myogenin promoter (Fig. S3 G).

MyoD phosphorylation-dependent assembly 
of a repressive transcriptional complex
To identify the enzymatic activity responsible for methylation of 
H3K9, we examined the association of the K-methyltransferase 
KMT1A (Rea et al., 2000), which was recently shown to interact 
with and negatively regulate MyoD (Mal, 2006), with the myogenin 

Figure 6.  Phosphorylation of MyoD by p38- enhances its occupancy on the Myogenin promoter. (A) Endogenous MyoD ChIP assay on C2C12 myo­
blasts expressing p38-, MKK6EE and p38-, or empty vector after 24 h of differentiation. 10T1/2 fibroblast extracts were used as control. (B) MyoD 
ChIP assay from 10T1/2 fibroblasts expressing MKK6EE and p38-, or empty vector after 24 h of differentiation. Wild-type (wt) and mutant (mut) MyoD 
S199A/S200A were expressed as indicated. PCR was performed using primers spanning the Igh enhancer as a control. Fold changes for each condition 
relative to empty vector (C2C12) or wild-type MyoD (10T1/2) are shown below representative gels.
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To further ascertain the significance of p38- signaling 
in assembling a repressive transcriptional complex, we ex-
amined KMT1A recruitment to the myogenin promoter in 
proliferating satellite cell–derived myoblasts. Notably, KMT1A 
binding was severely attenuated in p38-–deficient myo-
blasts (Fig. 7 D), establishing a physiological role for p38- 
signaling in KMT1A recruitment during myogenic precursor 
cell proliferation.

Collectively, these results establish that p38- phosphoryl
ation of MyoD results in the assembly of a repressive tran-
scriptional complex for the purpose of temporally regulating 
myogenin gene expression during the myogenic differentiation 
program. Furthermore, this suppression allows for appropriate 
expansion of the transient amplifying population of myogenic 
precursor cells during regenerative myogenesis.

Notably, we observed increased KMT1A detection on 
the myogenin promoter after ChIP assays from 10T1/2 fibro-
blasts expressing MKK6EE, p38-, and MyoD, compared 
with MyoD on its own (Fig. 7 B). Strikingly, KMT1A re-
cruitment was severely inhibited by expression of the MyoD 
S199A/S200A mutant together with MKK6EE and p38- 
(Fig. 7 B), which confirms that its recruitment is dependent on 
MyoD phosphorylation.

To investigate whether MyoD interacts with its corepres-
sor KMT1A, as has previously been described (Mal, 2006), we 
coexpressed MyoD and KMT1A in 293T cells, and were able to 
detect KMT1A by immunoblotting after MyoD IP from nuclear 
extracts (Figs. 7 C and S3 H). Moreover, we observed an almost 
70% decrease in the intensity of this interaction when the MyoD 
S199A/S200A mutant was expressed (Fig. 7 C).

Figure 7.  Phosphorylation of MyoD by p38- directs the assembly of a repressive transcriptional complex at the Myogenin promoter. (A and B) Endog­
enous H3K9-2me (A) and endogenous KMT1A (B) ChIP assays on a differentiating (24 h) C2C12 myoblast and 10T1/2 fibroblast extracts expressing 
p38-, MKK6EE and p38-, or empty vector. MyoDwt and MyoDmut were expressed as indicated for 10T1/2 fibroblasts ChIPs. (C) Nuclear extracts from 
proliferating 293T cells expressing wild-type or mutant MyoD in the presence or absence of Myc-KMT1A (or Flag-KMT1A; not depicted) were immuno­
precipitated for MyoD and immunoblotted for KMT1A. Equal exposure times are shown. Input immunoblots are found in Fig. S3 H. Fold change in the 
relative association of KMT1A with wild-type versus mutant MyoD is also shown after quantification and normalization to immunoprecipitated MyoD. Error 
bars represent ±SEM for n = 3. Asterisk denotes significance (P < 0.02). (D) Endogenous KMT1A ChIP assays from proliferating p38-+/+ and p38-/ 
satellite cell–derived myoblasts. PCR was performed on the Igh enhancer as a control. Fold changes for each condition relative to empty vector (C2C12), 
wild-type MyoD (10T1/2), or p38-+/+ (satellite cells) are shown below representative gels. Error bars represent ±SEM for n = 3. H3K9-2me, dimethylated 
histone H3 Lys9; MyoDwt, wild-type MyoD; MyoDmut, MyoD [S199A/S200A] mutant.

http://www.jcb.org/cgi/content/full/jcb.200907037/DC1
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adult myogenesis. However, in the absence of myogenin, fiber 
size is dramatically reduced, and differentiating myoblasts dis-
play aberrant gene expression patterns (Meadows et al., 2008), 
which suggests that differentiation is not proceeding optimally. 
Moreover, the contribution of the remaining myogenic regula-
tory factors to differentiation in this mutant is unclear (Meadows 
et al., 2008). Our data, together with papers documenting the role 
of Myogenin in patterning differentiation-specific gene expres-
sion through feed-forward networks with MyoD (Bergstrom et al., 
2002; Penn et al., 2004; Blais et al., 2005; Cao et al., 2006) and 
repression of specification factors (Olguin et al., 2007), suggest 
that Myogenin is indeed an important regulator of differentia-
tion, and that its suppression during proliferation is critical 
to allow for the appropriate expansion of myogenic pre
cursor cells.

We observed that p38- is expressed and active during 
both proliferation and differentiation (Fig. S5, A and B). We 
therefore hypothesize that myogenin expression is not the only 
target of p38-–mediated repression, and this may aid in the 
temporal patterning of myogenic gene expression. Moreover, 
there must be additional mechanisms to specifically target p38-  
to MyoD, and for MKK6 to activate p38- and not p38-.

For differentiation, the association between p38- and its 
scaffold JLP controls its specific activation downstream of the 
cell surface receptor Cdo (Takaesu et al., 2006; Kang et al., 2008). 
We propose the existence of a p38-–specific scaffold, which 
functions during myogenic precursor cell proliferation to spe-
cifically activate p38- by promoting its association with MKK6. 
Moreover, this p38- activation mechanism could either occur 
independently of MyoD or be a common factor that binds MyoD, 
p38-, and MKK6, such as a MyoD cofactor. Future studies aimed 
at identifying these factors will be of the utmost interest.

Recently, Perdiguero et al. (2007) and Ruiz-Bonilla et al. 
(2008) analyzed p38-–deficient muscle and obtained differing 
conclusions compared with our results. For instance, Ruiz-
Bonilla et al., (2008) concluded that regeneration occurs normally 
based on fiber size, whereas our conclusions about impaired re-
generation were based on fiber number. Moreover, when we 
examined fiber size, we observed only a very small decrease in 
p38- mutant muscle. In addition, Perdiguero et al. (2007) noted 
a fusion defect in cultured p38-–deficient myoblasts, which 
we also detected. However, Ruiz-Bonilla et al., (2008) reported 
no difference in the growth, differentiation, or gene expression 
of these myoblasts. Although the exact reasons for these dis-
crepancies is not clear, we speculate that this could be caused by 
the differences in satellite cell isolation, concentration of growth 
factors used in culture, or the use of wild-type versus hetero-
zygous mice as baseline controls.

Combining IP-kinase assays with mass spectrometry, we 
identified Ser199 and Ser200 of MyoD as novel targets of p38- 
phosphorylation. Ser200, but not Ser199, is also a phosphoryla-
tion site for the cyclin-dependent kinases Cdk1 and Cdk2 dur-
ing myoblast proliferation (Song et al., 1998; Kitzmann et al., 
1999; Tintignac et al., 2004). Moreover, Ser5 in the N terminus 
of MyoD is also a target of Cdk phosphorylation, a modification 
we do not detect in response to p38- activation. This suggests 
that our p38- phosphorylation results are unique and not simply 

Discussion
For skeletal muscle differentiation to proceed, MyoD must 
directly activate transcription of myogenin (Hollenberg et al., 
1993). However, MyoD is also required for myogenic precursor 
cell specification (Rudnicki et al., 1992), and therefore binds 
and regulates target genes in proliferating myoblasts (Blais et al., 
2005; Ishibashi et al., 2005). As a result, the signals regulating 
MyoD–cofactor interactions are crucial in defining its regula-
tion of these two distinct processes.

We have established for the first time that p38- signaling 
is responsible for assembling both MyoD and KMT1A on the 
myogenin promoter in a MyoD phosphorylation–dependent 
manner, which results in methylation of H3K9 and maintenance 
of a transcriptionally nonpermissive chromatin state. These 
results are supported by the observation that deletion of a region 
of MyoD containing the p38-–targeted serine residues results 
in a sevenfold increase in endogenous myogenin expression 
(Gerber et al., 1997). Moreover, KMT1A was also shown to 
interact with and repress the transcriptional activity of MyoD 
during myoblast proliferation (Mal, 2006).

Although our results show that p38- signaling promotes 
H3K9 methylation of the myogenin promoter, we cannot ascer-
tain whether this represents the initiating event in myogenin 
repression or if it is involved in maintenance of the repressive 
state. In Schizosaccharomyces pombe, it has been documented that 
transcription can influence local chromatin structure through an 
RNAi-dependent pathway (Cam et al., 2009); however, we are 
unaware of any studies of this mechanism outside of centro-
meric heterochromatin in mammalian cells. Nevertheless, our 
data indicate that MyoD phosphorylation-dependent H3K9 
methylation is still an important event in myogenin regulation, 
and it will be very interesting to determine if similar pathways 
to those described in yeast are active in muscle to control gene 
expression through facultative heterochromatin.

To equate our results with a biological role in vivo, we 
established that in the absence of p38-, premature myogenin 
expression severely impairs expansion of transient amplifying 
myogenic precursors by forcing these cells to initiate the differ-
entiation program (Fig. S4). Subsequently, mutant cells become 
stalled as a result of low myocyte numbers available for fusion. 
In fact, we detected diminished MyHC expression in p38-/ 
myocytes, which is in agreement with a recent paper by  
Perdiguero et al., (2007).

We recently demonstrated that the satellite cell pool was 
composed of two hierarchical subpopulations: satellite stem cells 
and satellite myogenic cells (Kuang et al., 2007). It is interesting 
that the reduced numbers of satellite cells observed in p38-/ 
muscle are proposed to be caused by the premature initiation of 
differentiation in the transient amplifying satellite myogenic 
cell population. It will be interesting for future studies to address 
whether a subset of satellite stem cells can actually differentiate 
directly into myocytes independently of satellite myogenic cells 
in p38-–deficient muscle.

Although Myogenin is essential for embryonic and fetal 
myogenesis (Hasty et al., 1993; Nabeshima et al., 1993; Meadows 
et al., 2008), Knapp et al., (2006) found that it is not required for 

http://www.jcb.org/cgi/content/full/jcb.200907037/DC1
http://www.jcb.org/cgi/content/full/jcb.200907037/DC1
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under control of the phosphoglycerate kinase promoter. MyoD S199A/
S200A was generated by overlapping PCR and expressed from the phos­
phoglycerate kinase promoter. Recombinant GST proteins were generated 
by cloning respective cDNAs into the pGEX4T plasmid. The Myogenin-
luciferase reporter was a gift from S. Tapscott (Fred Hutchinson Cancer 
Research Center, Seattle, WA; Berkes et al., 2004). Flag–p38- was a gift 
from J. Han (The Scripps Research Institute, La Jolla, CA; Han et al., 1994). 
Myc- and Flag-KMT1A vectors were gifts from M. Horwitz (University of 
Washington, Seattle, WA)/T. Jenuwein (Max Planck Institute of Immunology, 
Freiburg, Germany) and A. Mal (Roswell Park Cancer Institute, Buffalo, 
NY), respectively (Rea et al., 2000; Mal, 2006).

IP-kinase assays
To extract protein from 10T1/2 fibroblasts, cells were washed twice with 
PBS containing 100 mM NaF and 1 mM Na3VO4, scraped, pelleted, 
lysed with NP-40 buffer (50 mM Tris, pH 8.0, 150 mM NaCl, 2 mM 
EDTA, 100 mM NaF, 10 mM sodium pyrophosphate, and 0.5% NP-40) 
supplemented with 10 µg/ml aprotinin, 10 µg/ml leupeptin, 10 µg/ml 
pepstatin A, 1 mM PMSF, and 1 mM Na3VO4, then clarified by centrifu­
gation as described previously (Perry et al., 2001). Myc 9E10 immuno­
precipitates were washed with NP-40 buffer and kinase buffer (25 mM 
Hepes, pH 7.6, 20 mM MgCl2, 10 mM -glycerophosphate, 2 mM DTT, 
0.1 mM Na3VO4, and 1 mM NaF). Reactions were performed in kinase 
buffer containing 25 µM cold ATP, 2.5 µg of recombinant substrate, and 
5 µCi [32P]ATP for 30 min at 30°C. Reactions were stopped with Laemmli 
protein sample buffer (100 mM Tris, pH 6.8, 20% glycerol, 4% SDS,  
2% bromophenol blue, and 200 mM DTT). Samples were separated 
by SDS-PAGE, stained with Coomassie blue, destained, washed with  
10% PEG, dried, and visualized by autoradiography. Coomassie blue–
stained blots are shown in Fig. S5 (C and D).

Mass spectrometry
IP-kinase assays were performed as described in “IP-kinase assays,” pro­
teins were digested in solution with AspN, and phosphopeptides were 
enriched by immobilized metal ion affinity chromatography and analyzed 
by MALDI-TOF MS (all steps including and following digestion were per­
formed by Custom Biologics). Resulting m/z peaks were compared with 
theoretical digest of GST–MyoD–C terminal (GST-MyoD-CT) containing 
all possible posttranslational modifications. For in vivo studies, nuclear 
extracts were prepared as described previously (Dignam et al., 1983; 
McKinnell et al., 2008). In brief, cells were swollen in Hypotonic buf­
fer (10 mM Hepes, pH 7.6, 10 mM KCl, 1.5 mM MgCl2, 0.5 mM DTT, 
and 50 mM NaF) containing protease inhibitors and lysed with a 27-
gauge needle. After centrifugation to collect intact nuclei, nuclear contents 
were extracted in 20 mM Hepes, pH 7.6, 420 mM NaCl, 25% glycerol,  
1.5 mM MgCl2, 2 mM DTT, 0.2 mM EDTA, 50 mM NaF, and protease in­
hibitors using a 28-gauge insulin syringe, then agitated for 60 min at 4°C. 
Nuclear extracts were clarified by centrifugation and dialyzed to reduce 
the concentrations of NaCl to 150 mM, glycerol to 20%, and Hepes to  
15 mM. MyoD 5.8A antibody (BD) was cross-linked to protein G  
Dynabeads (Invitrogen) using dimethyl pimelimidate (Thermo Fisher Sci­
entific) according to the manufacturer’s instructions. MyoD immunopre­
cipitates were separated by SDS-PAGE, stained with Silver (SilverQuest; 
Invitrogen) or Coomassie Blue (SimplyBlue SafeStain; Invitrogen), excised, 
digested with Trypsin (Promega), separated by online reversed-phase 
high-performance liquid chromatography with an increasing gradient of 
2–35% acetonitrile over 90 min, and analyzed using a mass spectrom­
eter (LTQ-Orbitrap; Thermo Fisher Scientific). Peptides were identified by 
searching MS/MS data against the IPI murine database (v3.38; down­
loaded January 31, 2008) using X!Tandem (Thermo Fisher Scientific), and 
probabilities were determined by PeptideProphet (Keller et al., 2002) and 
ProteinProphet (Nesvizhskii et al., 2003). Peptide abundances were nor­
malized to four different peptides on both MyoD and -actin.

Co-IP
MyoD-KMT1A co-IPs were performed as described for in vivo mass spec­
trometry, except that gels were transferred for Western blotting rather 
than stained.

ChIP assays
Protein–DNA complexes were cross-linked with a final concentration of 1% 
formaldehyde using a 10× fixation buffer (50 mM Hepes, pH 8.0, 1 mM  
EDTA, 0.5 mM EGTA, 100 mM NaCl, and 11% formaldehyde) for 10 min  
at room temperature. Reactions were quenched with 125 mM glycine for 4–5 
min, and cells were harvested as described earlier (see “IP-kinase assays”)  
and resuspended in buffer to lyse nuclei (40 mM Tris, pH 8.0, 1% Triton 

caused by p38- or MKK6 activation of Cdk1 or Cdk2, fol-
lowed by their phosphorylation of MyoD.

Notably, p38- can be localized to the membrane of dif-
ferentiated muscle fibers by interacting with 1-syntrophin 
(Hasegawa et al., 1999), a component of the dystrophin glyco-
protein complex. In the absence of the dystrophin glycoprotein 
complex, such as that seen with Duchenne muscular dystrophy, 
1-syntrophin fails to localize to the sarcolemma. We would 
therefore predict that this would also result in mislocalization of 
p38- in dystrophic muscle, which could affect its activation 
state, and have detrimental consequences on the pathology of 
this disease. To what extent dysregulated p38- signaling con-
tributes to the loss of muscle fibers in Duchenne muscular dys-
trophy is a question of significant therapeutic relevance.

Materials and methods
Mice and satellite cell isolation
All experiments were performed in accordance with the University of 
Ottawa Animal Care Committee regulations. Mice lacking p38- have been 
described previously (Sabio et al., 2005). To induce activation of satellite 
cells in vivo, 4–5-wk-old age- and sex-matched p38-+/+ and p38-/ 
mice (C57BL/6 background) were injected with 25 µl of 10 µM CTX  
(Latoxan; Seale et al., 2004) into the TA muscle and examined 21 d later, 
both in a blind manner. TA muscles from both the injected and contra­
lateral control leg from each mouse were fixed in 4% PFA and subsequently 
processed by a professional pathology laboratory at the University of  
Ottawa in a blind manner. Specifically, TA muscles were lined up and 
bisected at the same site between muscles, embedded in paraffin, cross 
sectioned away from the cut site, and stained with hematoxylin and eosin 
according to standard pathology protocols. Slides were returned to us, 
and images were acquired at room temperature using a microscope (Axio­
skop) with a 10× 0.3 NA Plan-Neofluar (0.17 mm coverslip) objective 
(Carl Zeiss, Inc.), and full TA cross sections were reconstructed using Pho­
toshop (Adobe), all in a blind manner. For fiber number counts, fibers 
across the entire cross section were counted in a blind manner. For fiber 
area measurements, three random fields from each muscle were analyzed 
using ImageJ software (National Institutes of Health), also in a blind man­
ner. All injured muscles were compared directly with their respective un­
injured contralateral TA. Error bars were calculated using ±SEM, and 
significance was measured using the Student’s t test for fiber number 
analysis and Welch’s t test for fiber size data. Satellite cell–derived primary 
myoblasts were isolated from 4–6-wk-old age- and sex-matched p38-+/+ 
and p38-/ mice by FACS, gating on the 7-integrin–positive, CD31/
Sca1/CD45-negative population as described previously (Kuang et al., 
2007). Isolation of satellite cells on intact myofibers from EDL muscle was 
performed as described previously (Rosenblatt et al., 1995). In brief, EDL 
muscle was partially dissociated with 0.2% collagenase I in DME at 35°C 
for 30–60 min, and single fibers were isolated by trituration using flame-
polished Pasteur pipettes of varying bore widths, then immediately fixed 
in 4% PFA (Kuang et al., 2007).

Cell culture and transfections
C2C12 myoblasts and C3H10T1/2 fibroblasts were maintained in DME 
with 10% FCS and 1× penicillin/streptomycin. Cells were transfected using 
the calcium phosphate protocol as described previously (Perry et al., 
2001). 24 h after transfection, cells were switched to differentiation media 
(DME, 2% horse serum, and 1× penicillin/streptomycin) for another 24 h, 
and subsequently harvested. Satellite cell–derived primary myoblasts were 
cultured in Ham’s F10 media supplemented with 20% FCS, 1× penicillin/
streptomycin, and 2.5 ng/ml basic FGF, and were differentiated in DME 
supplemented with 5% horse serum and 1× penicillin/streptomycin. siRNA 
knockdown experiments were performed on intact EDL myofibers as de­
scribed previously (Holterman et al., 2007).

Plasmids
MKK6EE (S207E/T211E) was generated by overlapping PCR and cloned 
into an HA-pcDNA3 vector. Mouse p38- was isolated and cloned into a 
Myc-pcDNA3 vector. This cloning was performed by R. Perry (York Univer­
sity, Toronto, Canada). MyoD cDNA (Davis et al., 1987) was expressed 
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primers and Superscript II enzyme (Invitrogen). RT-PCR reactions and analy­
sis were performed as described previously (Ishibashi et al., 2005).

Online supplemental material
Fig. S1 shows reduced fiber size after regeneration in p38-–deficient 
muscle. Fig. S2 shows reduced proliferation and elevated apoptosis in 
p38-–deficient satellite cells. Fig. S3 shows mechanistic effects of p38- 
phosphorylation. Fig. S4 shows a model demonstrating the biological 
role of p38- in regulating entry into the myogenic differentiation pro­
gram. Fig. S5 shows p38- activity and expression during differentia­
tion. Online supplemental material is available at http://www.jcb.org/ 
cgi/content/full/jcb.200907037/DC1.
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