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The initial synapses of the auditory system,which connect hair cells
to afferent nerve fibers, display two unusual features. First, synap-
tic transmission occurs in a multiquantal fashion: the contents of
multiple synaptic vesicles are discharged simultaneously. Second,
synaptic transmission may be tuned to specific frequencies of sti-
mulation. We developed a minimal theoretical model to explore
the possibility that hair-cell synapses achieve both multiquantal re-
lease and frequency selectivity through a cooperative mechanism
for the exocytotic release of neurotransmitter. We first character-
ized vesicle release as a four-step cycle at each release site, then
generalized the result to an arbitrary number of steps. The cyclic
process itself induces some degree of resonance, and may display
a stable, underdamped fixed point of the release dynamics asso-
ciated with a pair of complex eigenvalues. Cooperativity greatly
enhances the frequency selectivity by moving the eigenvalues
toward the imaginary axis; spontaneously oscillatory release can
arise beyond a Hopf bifurcation. These phenomena occur both
in the macroscopic limit, when the number of release sites involved
is very large, and in the more realistic stochastic regime, when only
a limited number of release sites participate at each synapse. It is
thus possible to connect multiquantal release with frequency selec-
tivity through the mechanism of cooperativity.

afferent fiber ∣ auditory system ∣ multiquantal release ∣
multivesicular release ∣ vestibular system

The principal means of intercellular signaling in the nervous
system is chemical neurotransmission, in which an electrically

excited presynaptic cell releases transmitter from an intracellular
storage site. Upon binding to postsynaptic receptors, the trans-
mitter molecules produce a postsynaptic current that can be
recorded with a microelectrode. Observations made in the pre-
sence of a reduced extracellular concentration of Ca2þ, the ion
whose entry into a presynaptic terminal initiates exocytosis, estab-
lished that transmitter release is quantal in nature. Several lines
of experimentation further demonstrated that transmitter accu-
mulates in membrane-bounded synaptic vesicles and that each
stochastic fusion of a vesicle with the surface membrane yields
a quantal postsynaptic event. Exocytosis occurs at a presynaptic
active zone that comprises an array of release sites surrounded by
hundreds of synaptic vesicles.

Synaptic transmission faces serious challenges in the auditory
system, which has evolved to process high-frequency stimuli with
great temporal precision. Our ability to localize a sound source
by detecting the interval between the arrival times of the signal
at the two ears, for example, requires a neural precision of less
than 20 μs (1). In a second example, the firing of neurons in some
animals displays significant phase-locking to stimuli at frequen-
cies approaching 10 kHz (2). The first synaptic relay of the audi-
tory pathway connects a hair cell, the sensory receptor of the
ear, to an afferent nerve fiber of the eighth cranial nerve. As if
to underscore the magnitude of the challenge facing this contact,
it displays a morphological specialization characteristic of sev-
eral sensory systems: the ribbon synapse, without which precise

transmission is impaired (3). Although the role of the synaptic
ribbon remains obscure, it is plausible that the organelle contrib-
utes to the unusual properties of neurotransmission by hair cells.

Two important qualitative features of synaptic transmission by
hair cells have yet to be explained. First, the neurotransmitter
content of multiple vesicles can be released synchronously, yield-
ing large, multiquantal postsynaptic responses (4–6). Although
this behavior might originate from prefusion of several vesicles,
it could alternatively stem from the tight coordination of vesicle
release at the synaptic ribbon. Second, in keeping with the audi-
tory system’s strategies for frequency tuning of its constituent hair
cells and neurons, vesicle release appears to be frequency-tuned
as well: When a hair-cell is stimulated by sinusoidal oscillation of
its membrane potential, the rate of vesicle fusion as a function of
stimulus frequency displays a peak (7). To explore a possible basis
of multiquantal release and frequency selectivity at synapses, we
developed a minimal model of cooperative vesicle release.

Description of the Model.
Vesicle release is a cyclical stochastic process. Because a presynap-
tic terminal contains myriad vesicles but only a limited number
of release sites, our modeling centered not on the life cycle of a
vesicle, but rather on that of a release site (8, 9). For a biologically
plausible model, each site must cycle through a minimum of four
distinct states (Fig. 1). First, the site is activated by Ca2þ, which
binds to a protein such as synaptotagmin or otoferlin to initiate
exocytosis. Next, after the vesicle’s membrane has fused with
the surface membrane and transmitter has been released by diffu-
sion, the discharged site retains the complex of SNARE proteins
thatmediate exocytosis. In the third state, the recovered site is pre-
paredbya seriesof biochemical reactions to accept thenext vesicle.
Finally, the site is loaded with a new vesicle and primed for exocy-
tosis. Because there are likely to be additional configurations, we
defined the state space of the system at a given time by the possi-
bility that any of R release sites occupies any of N states.

We examined the system at two levels of detail. The more de-
tailed representation involves a master equation that treats the
sites as identical and represents a Markov process (10) defined
by the probability of a population of ni sites residing in state i
at a given time.We used this approach to conduct stochastic simu-
lations that are described in the second half of this paper. To begin,
we considered a more schematic approach that tracks the deter-
ministic evolution of the macroscopic ensemble average of the
number of sites in a given state.We defined the dynamical variable
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x ¼ hni
R

; [1]

in which the components of the vector n are the populations ni
and therefore a proportion xi of sites are in state i ∈ f1…Ng.
The dynamics of the system is governed by differential equations
of the form

_xi ¼ ki−1;ixi−1 − ki;iþ1xi; [2]

with N transition-rate coefficients ki;iþ1. Arranged in a chain,
the states interact only with neighbors and only through irre-
versible reaction steps; allowing the index to wrap around,
kN;Nþ1 ≡ kN;1, closes the chain into a ring (Fig. 1A). There is a
straightforward correspondence between these rate equations

that govern x and the master equation for n (Supplementary
Information). The loss of detail associated with the simpler
form is offset by the tractability of the resulting model: The pre-
sence of frequency selectivity can be rigorously proven in the de-
terministic framework and exhibited as a numerical result by
stochastic simulation.

TheMarkov ring model incorporates three different dynamical
processes. First, there is a background rate of transitions from
each state to the next. This step manifests itself as the linear
component of the dynamics of x. Second, we introduce an auto-
catalytic transition between the states labeled activated and dis-
charged, designated without loss of generality as states 1 and 2,
such that the rate of the transition depends on the occupancy of
those two states. This term captures the cooperativity between
release sites and provides a nonlinear contribution to the dy-
namics that affects only the two states in question. Finally, we
include as the input to our system a periodic parametric forcing
of the rate of transition to the activated state. The rate equation
for x can then be rewritten compactly as

_x ¼ ½A þ εgðx1; x2ÞBþ F sinðωtÞC�x; [3]

inwhichtheseparatecontributionsofthelinear,nonlinear,andpara-
metrically forcedcomponentsof thedynamicsareevident.The func-
tion g captures thenonlinearity, ε is its strength,F is the amplitudeof
forcingatfrequencyω,andthematricesA,B,andCareconstant.The
rate coefficients of Eq. 2 are connected to the variables of Eq. 3
through kij ≡ Aij þ εgðx1; x2ÞBij þ F sinðωtÞCij. A consequence of
Eq. 2 is that, by construction, the total number of release sites is a
conserved quantity of the dynamics, such that ∑N

i¼1 xi ¼ 1 and the
matrices satisfy uTA ¼ uTB ¼ uTC ¼ 0, with u an array of ones.

We set the rate coefficients between states 2,...,N as identical
and normalized to unity, which is equivalent to rescaling time.
The remaining transition, that between states 1 and 2, represents
the cooperative vesicle-fusion step for which the rate coefficient
k12 is

k12 ¼ k0

�
1 −

ε

ν
þ ε

ν

�
c
x1
x�1

þ ð1 − cÞ x2
x�2

�
ν
�
: [4]

Here ν is a Hill coefficient and c determines the relative contri-
butions of feedforward (c ¼ 1) and feedback (c ¼ 0). The vector
x� is the unique steady state of the linear Markov ring that arises
when the strength of the nonlinearity ε and forcing F are set to
zero; k0 is the rate coefficient of the fusion step in that linear case.
Because negative cooperativity in this model cannot lead to in-
creased frequency selectivity, we explored only positively coop-
erative interactions wherein k12 is a monotonically increasing
function of x1 and x2. The advantage of writing the nonlinearity
in the form of Eq. 4 is that the steady state of the linear problem,
x�, remains a known fixed point of the nonlinear system, facilitat-
ing the analysis of its stability.

Response in the Absence of Cooperativity.
Given this simple Markov ring model, we examined the influence
of the parameters on the system’s ability to resonate. Consider
the time dependence of the Markov ring in the linear case,

_x ¼ Ax; [5]

determined by the sparse N-by-N transition-rate matrix A. For
N ¼ 4,

A ¼
−k0 0 0 1

k0 −1 0 0

0 1 −1 0

0 0 1 −1

2
664

3
775: [6]
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Fig. 1. The Markov ring model expressed as a four-state diagram. A. Each
release site undergoes a cycle of irreversible, monomolecular steps:Activated,
the site initiates the fusion of a vesicle to release its contents; discharged, the
site completes the exocytotic process; recovered, the site prepares to accept
the next vesicle; and loaded, the site docks and primes a new vesicle for
release. The central cartoons depict a release site andanassociated vesicle dur-
ing the transitions between successive states. Cooperative effects in the fusion
process can take two forms: Feedforward inwhich the population of activated
sites influences the rate coefficient for the transition from activated state 1 to
discharged state 2, and feedback in which this transition is modulated instead
by the population of discharged sites. B. Positive cooperativity means that a
transition’s rate coefficient is augmented by an increase in the relevant popu-
lation, whereas negative cooperativity implies a decrease in the rate coeffi-
cient. Flow through the cycle is stabilized by either positive feedforward, in
which a larger number of activated sites increases the fusion rate coefficient,
or negative feedback, inwhich a greater number of discharged sites decreases
the rate coefficient. Negative feedforward, in which a large number of acti-
vated sites decreases the rate coefficient for fusion, exhibits an instability at
high cooperativity in which the flow becomes bistable. A large population of
activated sites remains large by allowing only a few vesicles to fuse; a small
population stays small by permitting more fusions. The case examined in this
paper involves positive feedback. For a sufficient amount of cooperative inter-
action thismodel becomes oscillatory, and in the vicinity of theoscillatory tran-
sition, a Hopf bifurcation, the model displays resonance and frequency
selectivity.
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The response characteristics of the system are defined by the N
eigenvalues λn of A. The solution to Eq. 5 is x ¼ eAtx0 for some
initial distribution x0 (10), so the eigenvalues λn represent the
complex frequencies at which the system’s eigenmodes oscillate
or decay. The quality factor, defined in terms of the eigenvalues
as Qn ¼ jℑmλn∕ℜeλnj, describes the system’s sharpness of tun-
ing and its degree of resonance. When k0 ¼ 1, the complete sym-
metry of the system implies that the steady state is x�i ¼ 1∕N. In
this instance, the eigenvalues of A, which are specified by the
equation ð1þ λÞN ¼ 1, are equally spaced in the complex plane
along a circle of unit radius about the point (−1; 0) (Fig. 2A). The
eigenvalues closest to the imaginary axis determine the maximal
quality factor Qmax.

For a general k0, the eigenvalues of A are solutions to
ðk0 þ λÞð1þ λÞN−1 ¼ k0. To understand qualitatively how the
eigenvalues are displaced from the unit circle as k0 varies, con-
sider two limits (Fig. 2A). As the rate coefficient k0 becomes very
large, states 1 and 2 are effectively unified, so the system tends to
a new system with N − 1 states and k0 ¼ 1. In the opposite limit,
as k0 approaches zero, the ring of states is broken and we are left
with a linear chain. Owing to this change in the topology of the
graph, there can be no oscillatory behavior and the imaginary
parts of all the eigenvalues must collapse onto the real axis.

The quality factor reaches amaximumofQmax ¼ tanf½ðN − 2Þ∕
2N�πg at k0 ¼ 1 and approaches zero in the limits k0 → 0 and
k0 → ∞. Although we have demonstrated the maximum in the
quality factor by a perturbation of a single element of the cyclic
chain, the maximum is global (Supplementary Information).

The Effect of Cooperativity.
We next examined a minimal model in which the Markov ring is
locally enhanced by cooperativity that takes the form of a feed-
back or feedforward step (Fig. 1). Although negative feedforward
can lead to bistability, we are concerned here with oscillatory in-
stabilities, which can occur in this model only through positive
feedback. When nonlinearity in the form of Eq. 4 is introduced,
multiple attractors may arise. Fixed points occur as those solu-
tions to a νth-order polynomial equation, for which the xi are non-
negative and sum to one. Because it is the only fixed point to exist
for all parameter values, we termed x� the central fixed point.
Although we were aware of attractor sets other than x� and could
not rule out their significance, during our numerical simulations
we encountered none that significantly influenced the behavior of
the system in the parameter range of interest.

In order to explore the behavior of the fixed point x� as we
varied the parameters, we constructed the linearized stability
matrix. When the strength of cooperativity ε increases from zero,
the matrix B and function g begin to play a role. For N ¼ 4,

B ¼
−k0 0 0 0

k0 0 0 0

0 0 0 0

0 0 0 0

2
664

3
775;

gðx1; x2Þ ¼ −
1

ν
þ 1

ν

�
c
x1
x�1

þ ð1 − cÞ x2
x�2

�
ν

:

[7]

Consider a small perturbation around the central fixed point,
x ¼ x� þ Δx. The character of the response to the perturbation
is determined by the eigenvalues of the stability matrix in an
analogous way to the role the eigenvalues of A play in Eq. 5.
The stability matrix or Jacobian, which is

J ¼
−k0ð1þ cεÞ −ð1 − cÞε 0 1

k0ð1þ cεÞ ð1 − cÞε − 1 0 0

0 1 −1 0

0 0 1 −1

2
664

3
775; [8]

includes a supradiagonal entry J12 that depends purely on the
nonlinear coupling term (Supplementary Information). Moreover,
J12 depends exclusively on the coupling to x2; during positive
feedforward, for which c ¼ 1 and coupling occurs through x1
alone, this off-diagonal component vanishes. The structure of
the matrix J during feedforward accordingly does not differ from
that of the linear, noncooperative Markov ring studied in the pre-
vious section, and feedforward cannot enhance the quality factor
beyond that achieved in the noncooperative case.

We next concentrated on the positive-feedback mechanism
by setting c ¼ 0. We examined the ðk0; εÞ plane to study the char-
acter of the fixed point x�. As cooperativity grows owing to an
increase in ε from zero, the eigenvalues of J approach the imag-
inary axis, thereby enhancing resonance. In conspicuous con-
tradistinction to the noncooperative case, the trajectories of the
eigenvalues as a function of increasing ε demonstrate large in-
creases in the quality factor (Fig. 2B). If ε continues to increase,
the system eventually undergoes a supercritical Hopf bifurcation
as a complex-conjugate pair of eigenvalues crosses the imaginary
axis. Immediately before the bifurcation, the system offers the
benefits of proximity to a critical point (11–13); at the bifur-
cation, the quality factor diverges. Beyond the bifurcation, the
fixed point becomes unstable and the system produces limit-cycle
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Fig. 2. Properties of the linear Markov ring for models of four different
sizes. A. The arrows show the motion of the system’s eigenvalues as the rate
coefficient k0 varies. Increasing (solid lines) or decreasing (dotted lines) k0

from a value of one always reduces the quality factor and eventually moves
the eigenvalues away from the imaginary axis. In the limit k0 → ∞, an N-state
system becomes a system with one less state, represented here by the joining
of the end of each solid arrow to the origin of an adjacent arrow of a dif-
ferent color. The limit k0 → 0moves the eigenvalues onto the point (−1; 0). B.
Stability analysis shows the effect on the fixed point x� of increasing feedback
while k0 ¼ 1 remains constant. Increasing cooperative interactions by raising
ε in Eqs. 3 and 4 boosts the quality factor, eventually pushing a conjugate pair
of eigenvalues across the imaginary axis at a Hopf bifurcation (filled circles).
The constant eigenvalue at the origin corresponds to the conservation of the
number of release sites.
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oscillations. In those situations in which a purely real eigenvalue
crosses the imaginary axis, a pitchfork bifurcation occurs in the
absence of oscillations.

Phase Diagram of Bifurcations.
To chart the qualitative behavior of the Markov ring, we deter-
mined the locations of the bifurcations in ðk0; εÞ space. The eigen-
values of the central fixed point of an N-state model are deter-
mined by the roots of an Nth-order polynomial in λ:

½k0 þ ðk0 − εþ 1Þλþ λ2�ð1þ λÞN−2 − k0 ¼ 0. [9]

In general, different eigenvalues cross the imaginary axis for dis-
tinct sets of parameter values. We are interested in the first such
crossing, when all but one of the eigenvalues are stable. One of
the roots is always λ ¼ 0 owing to the conservation of the number
of release sites. To determine the remaining N − 1 roots, we di-
vided the left hand side of Eq. 9 by λ. We sought additional λ ¼ 0
roots and thus found that pitchfork bifurcations occur when the
parameters satisfy εPB ¼ 1þ ðN − 1Þk0 (Fig. 3). The Hopf bifur-
cations, which reflect solutions for which λ is purely imaginary,
occur for N ¼ 4 along the line

εHB ¼ 1

4
½8þ 5k0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0ðk0 þ 8Þ

p
�: [10]

Synchronous Release and Frequency Selectivity.
Upon introducing cooperativity in the fusion step, we expected to
see highly correlated and hence synchronous release. We wished
to study this phenomenon, along with the anticipated frequency
selectivity of the Markov ring’s response, both in the macroscopic
limit and in the presence of intrinsic noise owing to the finite
number of release sites. In order to measure the system’s input-
output relation, we first specified two details: how an external
input couples to the system, and how the frequency selectivity
of the output is quantified. We applied a small, periodic, para-
metric forcing at frequency ω and amplitude F. We depicted
the formation of the activated state as linearly dependent on
the periodic force, which in terms of vesicle release corresponds
to a varying cytoplasmic Ca2þ concentration. The matrix C in
Eq. 3 therefore assumes the form

C ¼
0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 −1

2
664

3
775: [11]

The output consists of vesicle-fusion events, which are tran-
sitions between states 1 and 2 of the Markov ring, that occur
at times tj. With respect to the phase of the input, ωt, the relative
phases of the fusion events are θj ¼ ωtj (modulo 2π). We com-
puted the steady-state probability distribution PðθÞ of event
phases in the macroscopic limit by numerically solving differential
Eq. 3 and noting that the time-dependent fusion rate is given
by x1ðtÞk12ðtÞ. For the stochastic regime in which a finite number
R of release sites participate, we developed a time-dependent Gil-
lespie simulation (14) that allowed us to sample the distribution
PðθÞ (Supplementary Information). Output that is uncorrelated to
the input leads to a uniform PðθÞ. When the output is phase-
locked to the input, PðθÞ exhibits a highly peaked distribution.
The extent of phase-locking can be characterized by the vector
strength or synchronization index,

V ¼
����
Z

2π

0

eiθPðθÞdθ
����; [12]

which has the property of being equal to zero for phase-
uncorrelated output events and equal to one only when the events
always occur at exactly the same phase of the periodic input.

The degree to which events occur in bursts, in a synchronized
manner analogous to multivesicular release, can be assessed
from the distribution of interevent intervals. The probability that
an event jþ 1 occurs with a time delay τ after an event j can be
written compactly as Pð1ÞðτÞ. In general, we may consider the
delay between events separated by m − 1 other events, with dis-
tribution PðmÞðτÞ. For a Poisson process, the waiting-time distri-
bution, Pð1ÞðτÞ, is an exponential, and the delays between larger
separations are determined through the process’s Markov
property: PðmÞðτÞ ¼ ∫ τ

0Pð1Þðτ − τ0ÞPðm−1Þðτ0Þdτ0. Coordinated re-
lease becomes apparent in deviations from these distributions.

Results from Simulations.
In the absence of cooperativity, release is essentially a Poisson
process. By contrast, cooperativity greatly enhances the nearly
synchronous release of multiple vesicles (Fig. 4A). By using
the freedom to rescale time, we can choose the model system’s
intrinsic frequency. For a synapse with R ¼ 20 release sites and an
intrinsic frequency of 100 Hz, as an example, the probability of
releasing four or more vesicles during a 50 μs period increases by
a factor of 400 in the presence of cooperativity. As observed ex-
perimentally, multiquantal release occurs in the absence of stimu-
lation (F ¼ 0) and independently of whether the stimulation is
periodic or otherwise (4).

On the timescale set by the mean interevent interval, which is
much smaller than the period of stimulation, external forcing has
no effect on cooperative or noncooperative release. Stimulation
plays a role only on the timescale set by the period ω−1 of forcing.
Even on this much longer timescale, however, cooperative inter-
action has an effect. The presence of an external force dictates a
certain degree of phase synchrony from any system. Cooperativity
raises the phase synchrony of the response (Fig. 4B) and does so
in a frequency-selective manner (Fig. 4C), even when the system
is overwhelmed by intrinsic noise owing to a small number of
release sites.

The maximal increase in the vector strength as a function of
cooperativity depends on the magnitude of intrinsic fluctuations.
Finite-size effects, which blur the macroscopic dynamics and
dull the precision of phase-locking, have two sources. Both the
number of steps N in the cycle and the number R of release sites
affect the maximal vector strength and the sharpness of frequency

10.1
1

ε

2

3

4

Unstable Oscillating

Stable
0.5

1.5

1

k0 (log scale)

Fig. 3. Stability diagram of the central fixed point in a four-state system. The
oscillating region of the diagram corresponds to at least one eigenvalue with
a positive real part and a nonzero imaginary part. In the unstable region, at
least one of the eigenvalues is positive and real, with zero imaginary part.
The boundary separating the stable and oscillating regions represents a line
of Hopf bifurcations; the normalized frequencies of the oscillations born
there are indicated at three locations. Selecting a specific point along the line
of Hopf bifurcations near which to operate tunes the resonance of the system
to a specific frequency. A triple point occurs at (k0 ¼ 1∕3, ε ¼ 2).
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dependence. This effect is apparent as a decrease in vector
strength owing to finite values of R (Fig. 4C).

Discussion
Inspired by the vesicle-release machinery of auditory synapses, we
explored a minimal model of a biological oscillator involving a
locally enhanced Markov ring with one nonlinear, cooperative
step. By introducing a cooperative step in the form of positive
feedback, we were able to explain and connect two previously un-
related observations: multiquantal release, which we associate
with temporal synchronization of transitions through the coop-
erative step; and the frequency selectivity of synchronized release
in response to external forcing.

There are numerous models of biological oscillators, many of
them based on genetic networks (15, 16). Some involve a time
delay and negative feedback (17, 18), whereas others employ a
repressive cycle, or rock-paper-scissors mechanism (19). The
oscillating quantity is typically the rate of production of a target
protein, which in our model is analogous to the rate of fusion
events. Further similarities break down, however, because the
site-based model that we present here fixes the total number
of release sites, whereas the equivalent conservation law usually
does not apply in genetic or biochemical networks. The constraint
on state space imposed by a fixed population of release sites
modifies the dynamics subtly but importantly. For instance, the
common negative-feedback mechanism—which resembles nega-
tive feedforward in the current formulation—no longer elicits
oscillation. It is also worth bearing in mind that the role of oscilla-
tion in the Markov ring considered here is not to establish an
autonomous rhythm but instead to constitute a resonant filter
in a sensory system.

The form taken by the coupling of external stimulation to the
Markov ring is highly model-dependent. In the macroscopic
limit and for a variety of coupling schemes, the system driven
by a periodic stimulus develops chaotic behavior. Parametric forc-
ing of the system can drive it into an unstable region—a likely
outcome inasmuch as the system is intentionally poised near
an instability—and engender chaos. Of many possibilities, we
chose a simple forcing that captures the essentials of Ca2þ cou-
pling at the synapse and avoids chaos. In any case, noise shifts the
critical behavior (20), making it necessary to study the system in
the stochastic, finite-size case.

What consequences might our model have for understanding
the auditory synapse?Cooperative effects have previously been in-
voked to explain the dynamics and statistics of synaptic release in
other systems. For example, negative cooperativity has been sug-
gested to render release in hippocampal synapses more reliable by
decreasing the standard deviation of the number of vesicles re-
leasedbyanactionpotential (21).Thepositive cooperativity exam-
inedhere readily explains themultiquantal release characteristic of
hair cells (4–6).More specifically, the large excitatory postsynaptic
currents observed electrophysiologically could result from the es-
sentially synchronous fusion of two to perhaps ten synaptic vesicles
at adjacent release sites (Fig. 4). Positive cooperativity might arise
because the fusionofa first vesicle releases somecytoplasmic factor
that triggers the exocytosis of one or more nearby vesicles. Alter-
natively, as the membrane of a vesicle fuses with the presynaptic
membrane, the flow of vesicle proteins or lipids into the presyn-
aptic membrane—or perhaps a consequent change in the tension
or fluidity of thatmembrane—might foster the fusion of additional
vesicles. The cyclic nature of vesicle processing at release sites
additionally lends itself to frequency tuning, an effect greatly en-
hanced by cooperativity. The observed sensitivity of the rate of
exocytosis to the frequency of stimulation (7) would be expected
of a cooperative release system operating near a Hopf bifurcation
that would confer frequency selectivity (Fig. 3). The performance
of the system depends straightforwardly on a few parameters,
offering points for modulation by efferent control. This model
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Fig. 4. The effects of cooperativity on release statistics. A. The probability of
release of two vesicles in quick succession is illustrated by plotting Pð1ÞðτÞ,
which is elevated from its basal state (Blue, Orange: ε ¼ 0) by the addition
of cooperativity (Red, Purple: ε ¼ 1.7). The effect is independent of external
periodic forcing of amplitude F, demonstrated by the fact that the purple and
orange lines (F ¼ 0.5) are identical to their blue and red counterparts (F ¼ 0).
In the noncooperative case, Pð1ÞðτÞ follows the exponential distribution ex-
pected of a Poisson process, as seen by the straight line on this log-linear plot.
Stochastic simulation was performed with ω ¼ 1.1, R ¼ 20, k0 ¼ 0.55, and
ν ¼ 5, placing the cooperative system in the stable region near a Hopf bifurca-
tion.B. Theprobability of releaseof four vesicles inquick succession, illustrated
by Pð3ÞðτÞ, shows even greater elevation owing to cooperativity. The dashed
lines show Pð3ÞðτÞ based on Pð1ÞðτÞ if the release process were Markovian.
Thenoncooperative case satisfies theMarkov condition,whereas the coopera-
tive case does not. (C) Phase synchronization in the presence of a periodic sti-
mulus is enhancedby cooperativity. Theeffect of forcing (Red, Blue) visible inC
but not in A and B stems from a separation of timescales: the waiting time
between events is dominated by delays smaller than 0.1, much less than
the period 2π of the forcing. The deviations of the red and blue distributions
from the uniform distributions shown in purple and orange, which constitute
evidence of phase synchrony, are quantified by the vector strength defined by
Eq. 12. The sharper the peak, the greater the vector strengthD. The frequency
dependence of synchronization is summarized by the vector strength calcu-
lated from a series of simulations, such as that in C, in which the stimulus fre-
quencyωwas varied for a constant force F ¼ 0.5. The response in the presence
of cooperativity is shown in solid black, surrounded by 95% confidence inter-
vals in gray. Traces of subharmonic resonances of the macroscopic limit are
visible in the solid green lineat frequencies of 0.3 and less. Thenoncooperative
case is portrayed with dashed lines. As indicated by the overlapping of the
dashed black and dashed green lines, the macroscopic limit and finite-size si-
mulations agree in the linear noncooperative case. The presence of intrinsic
fluctuations limits the maximal synchrony achievable in the cooperative case.
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establishes the foundation for future experimental exploration of
frequency dependence at the synapse. For a more precise quanti-
tative description of synaptic function, the model could be
embellished with additional features such as reversible or determi-
nistic transitions and a two-dimensional geometric arrangement of
release sites. The statistics of multiquantal events and synaptic
dynamics, including frequency selectivity, could then be fit to
the model.

Along with the influence and stability of all the fixed points, the
properties of the macroscopic limit might also be investigated in
the continuum limit of large N. It is interesting from the math-
ematical point of view that this continuum limit corresponds to a
modified version of the inviscid Burgers’ equation (22); viscosity
would arise if reversible components were added to the system.

Whether this limit might shed light on the analysis of synaptic
dynamics remains a matter for future investigation. The possible
existence of traveling shock waves around the ring and its even-
tual connection with the frequency selectivity of the dynamics
also deserves consideration.
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