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Abstract

Background: The use of pooled DNA on SNP microarrays (SNP-MaP) has been shown to be a
cost effective and rapid manner to perform whole-genome association evaluations. While the
accuracy of SNP-MaP was extensively evaluated on the early Affymetrix 10 k and 100 k platforms,
there have not been as many similarly comprehensive studies on more recent platforms. In the
present study, we used the data generated from the full Affymetrix 500 k SNP set together with
the polynomial-based probe-specific correction (PPC) to derive allele frequency estimates. These
estimates were compared to genotyping results of the same individuals on the same platform, as
the basis to evaluate the reliability and accuracy of pooled genotyping on these high-throughput
platforms. We subsequently extended this comparison to the new SNP6.0 platform capable of

genotyping |.8 million genetic variants.

Results: We showed that pooled genotyping on the 500 k platform performed as well as those
previously shown on the relatively lower throughput 10 k and 100 k array sets, with high levels of
accuracy (correlation coefficient: 0.988) and low median error (0.036) in allele frequency estimates.
Similar results were also obtained from the SNP6.0 array set. A novel pooling strategy of
overlapping sub-pools was attempted and comparison of estimated allele frequencies showed this
strategy to be as reliable as replicate pools. The importance of an appropriate reference genotyping
data set for the application of the PPC algorithm was also evaluated; reference samples with similar
ethnic background to the pooled samples were found to improve estimation of allele frequencies.

Conclusion: We conclude that use of the PPC algorithm to estimate allele frequencies obtained
from pooled genotyping on the high throughput 500 k and SNP6.0 platforms is highly accurate and
reproducible especially when a suitable reference sample set is used to estimate the beta values for

PPC.
Background the advent of high-throughput genotyping microarrays
Genome-wide SNP association screening has become a  such as those from Affymetrix and Illumina, a genome-
launching pad to the identification of genes or loci con-  wide scan for up to half a million genetic variants has

tributing to the susceptibility of complex diseases. With ~ become possible for even smaller laboratories which nor-
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mally wouldn't be able to afford the manpower for large
scale genotyping. In either platforms, single nucleotide
polymorphisms (SNPs) were chosen as the markers of
choice due to their abundance in the genome, their bi-
allelic nature, and because they are stably inherited from
generation to generation [1]. When studying complex
human diseases with an apparent genetic basis, genome-
wide scans used in the context of case-control association
studies have shown some success in identifying multiple
genes of small effect size that are likely to influence the
various quantitative traits observed in these diseases [2].
Association of SNPs to a phenotype is usually identified
by differences in allele frequencies of the variant between
case and control samples. While other factors such as pop-
ulation stratification, epistasis, pleiotropy and gene-envi-
ronment interactions may play a part in the phenotypic
expression of differently observed allele frequencies, cast-
ing a genome-wide net to "fish" for susceptibility genes
allows researchers to perform an un-biased initial round
of screening to obtain a list of leads for more focused anal-
ysis in follow-up studies. Such an approach, known as the
two-stage study design, has been shown to improve statis-
tical power and reduce measurement errors [3].

For a genome-wide case-control study to be able to asso-
ciate a particular genetic variant present at a frequency of
at least 5% in the population with about 80% power, the
samples that would have to be genotyped would number
in the thousands [4]. Despite the ready availability of high
throughput genotyping microarrays and the low cost per
genotype, the cost of individually genotyping thousands
of samples remain prohibitive outside of large-scale con-
sortia. To overcome the limitations of cost, time and labor
associated with large-scale individual genotyping, geno-
typing of pooled samples or the combination of SNP
Microarrays and DNA Pooling (SNP-MaP) has been uti-
lized [5]. The benefits of SNP-MaP were easy to appreci-
ate. In principle, the allele frequencies of 1000 samples
could be measured from one or a few pooled samples,
rather than from 1000 individual samples, which repre-
sented an increase in efficiency of at-least a few hundred-
fold. SNP-MaP has hence been used extensively in associ-
ation studies of complex human diseases such as schizo-
phrenia [6,7], rheumatoid arthritis [8], mild mental
impairment [9], bipolar disorder. [10], etc. Numerous
other studies have also been carried out just testing the
viability and accuracy of SNP-MaP [5,11-19].

The accuracy and validity of pooled genotyping on micro-
arrays has been extensively studied on the Affymetrix 10 k
[9,11-15] and 100 k SNP array sets [16]. The recent success
of genome-wide association studies using the Affymetrix
500 k array set has given credence to the usage of this plat-
form in individual genotyping [20]. However, the accu-
racy of this platform in allelotyping pooled DNA samples
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has yet to be extensively evaluated. While pooled genotyp-
ing on the 500 k array set has indeed been performed
[5,19], only Docherty et al. evaluated both the chips avail-
able in the array set. While the 500 k array set had been
available for two years (2005-2007) and subsequently
replaced by the even-higher throughput SNP5.0 and
SNP6.0 arrays, only two publications on pooled genotyp-
ing using these higher throughput platforms have been
released. This dearth of work could possibly be due to
some apprehension about the performance of these
higher throughput arrays due to the reduction in the
number of probes per SNP, reducing available informa-
tion thus potentially affecting the accuracy of genotype
calls [15].

The purpose of this study is to comprehensively evaluate
the ability of these higher throughput SNP genotyping
platforms to estimate allele frequencies from pooled DNA
samples. The full repertoire of 500,568 SNPs from the
Affymetrix 500 k array set is used as the basis of an un-
biased evaluation of the accuracy of pooled genotyping in
comparison to allele frequencies obtained from individ-
ual genotyping with estimated allele frequencies calcu-
lated using the PPC algorithm [21]. This comparison is
extended to the latest genotyping array from Affymetrix,
the SNP6.0 chip which screens for 1.8 million markers of
genetic variation. Secondly, we show that the accuracy of
allele frequency estimates can be improved by using an
ethnically similar reference sample data set for the PPC
algorithm. Also presented is a novel pooling strategy
which produces similar benefits to replicate pools.

Results

Detection rates

On the Affymetrix 500 k platform, the detection rate for
the individually genotyped samples varied between 90%
and 99% (mean: 96.9%, median: 97.6%, standard devia-
tion: 2.3%). Samples which had lower detection rates
than 90% were repeated. Pooled genotyping, yielded
lower detection rates than individually genotyped sam-
ples of between 86% and 88%, likely due to the highly
heterogeneous nature of the sample. These detection rates
were nevertheless comparable with that published from
other studies working on the Affymetrix 100 k and 500 k
array sets. On the SNP6.0 platform, detection rates for
pooled genotyping were between 96% and 98% (mean:
97.1%, median: 97.0%, standard deviation: 0.7%). As no
prior-art exists for comparison, these high detection rates
could be considered as par for pooled genotyping on the
new platform.

Validation of pooling strategy

To quantify the reliability of each of the three pools in the
study groups (1, 2, and 3 in Figure 1), the allele frequency
estimates obtained from the pools were compared with
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Figure |
Pooling strategy of overlapping sub-pools.

the actual allele frequencies for the 40 samples in each of
the 3 pools. Estimated allele frequencies were calculated
using beta values obtained from the individual genotyp-
ing. Subsequently, the allele frequencies from the 3 pools
were averaged for each study group and were compared to
the averaged allele frequencies of the 60 individually
typed samples (Table 1).

For pooled genotyping on the SNP6.0 platform, the
known allele frequencies from the reference Sample Data
Set were compared with the allele frequency estimates
from each of the pool replicates. Subsequently, the esti-
mated allele frequencies were averaged within each study
group and were similarly compared with the known allele
frequencies (Table 2).

Comparing different reference samples

Allele frequency estimates obtained by using beta values
calculated from the reference 500 k Sample Data Set were
compared with those estimates obtained using beta values
calculated from samples individually genotyped in the lab
(Table 3).
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There is a marked improvement in allele frequency esti-
mates when they are calculated using beta values obtained
from different reference samples. The averaged accuracy of
the estimated allele frequencies (across cases and con-
trols) improved from 90.8% to 98.6%, while the average
error in the estimates improved by 0.06. To further con-
firm that such a difference exists when different reference
samples are used to calculate beta values, allele frequen-
cies were estimated for a second set of 60 cases and 60
controls pooled via the same strategy, using beta values
calculated from the 500 k Sample Data Set and the indi-
vidually typed samples (Table 4).

Even in the second set of pooled samples, the average
accuracy of allele frequency estimation seems to have
improved by approximately 3% while error in allele fre-
quency estimates improved by 0.05 when using the beta
values obtained from in-house genotyped samples over
those calculated from the reference sample set provided
by Affymetrix.

For the pooled samples genotyped on the SNP6.0 plat-
form, beta values calculated from the four Hapmap popu-
lations in the Sample Data Set were used to separately
estimate different sets of allele frequencies. These esti-
mates were compared with the known allele frequencies
from the respective Hapmap populations (Table 5).

Estimated allele frequencies were most highly correlated
with actual allele frequencies when the CHB Hapmap
data set was used as a reference to calculate beta values
with median absolute error of 0.036 (comparable to that
obtained on the 500 k platform). When the CEU and YRI
sample data sets were used to calculate allele frequencies
from our pooled data, the accuracy of the allele frequency
estimates were much lower (0.780 to 0.89). While the
level of accuracy of estimation was higher when all the
Hapmap samples were used (0.945, Table 5) for the
SNP6.0 platform as compared to the 500 k Sample Data

Table I: Comparing estimated and actual allele frequencies in sub-pools for 500 k platform.

Actual AF compared with: Correlation MAD error (95% CI)

Case Pool | 0.981

0.042 (0.0461-0.0463)

Case Pool 2 0.982 0.041 (0.0451-0.0453)
Case Pool 3 0.975 0.049 (0.0536-0.0540)
Average of Case Pools 0.987 0.035 (0.0389-0.0391)
Control Pool | 0.977 0.044 (0.0496-0.0499)
Control Pool 2 0.976 0.049 (0.0526-0.0529)
Control Pool 3 0.978 0.046 (0.0501-0.0504)
Average of Control Pools 0.985 0.037 (0.0411-0.0414)

Actual allele frequencies obtained from individual genotyping of the Istset of 60 case and 60 control samples were compared with estimated allele
frequencies from pooled genotyping of the same 120 samples. The comparison was carried out for samples in each of the sub-pools, and for

averaged allele frequencies across the 3 sub-pools.
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Table 2: Comparing estimated and known allele frequencies in pool replicates for SNP6.0 platform.

Known AF compared with: Correlation MAD error (95% CI)

Case Pool Replicate | 0.983 0.042 (0.0435-0.0437)
Case Pool Replicate 2 0.986 0.038 (0.0397-0.0399)
Case Pool Replicate 3 0.988 0.036 (0.0373-0.0375)
Average of Case Pools 0.989 0.035 (0.0363-0.0365)
Control Pool Replicate | 0.985 0.042 (0.0423-0.0425)
Control Pool Replicate 2 0.984 0.041 (0.0421-0.0423)
Control Pool Replicate 3 0.985 0.040 (0.0415-0.0417)
Average of Control Pools 0.988 0.036 (0.0372-0.0374)

Known allele frequencies obtained from the SNP6.0 Sample Data Set of the Hapmap CHB population were compared with estimated allele
frequencies from pooled genotyping of 160 case and 160 control samples. The comparison was carried out for samples in each of the replicate-

pools, and for averaged allele frequencies across the 3 replicates.

Set (0.908, Table 3), this could probably just be the due to
the larger sample size (270 vs 48 in the latter).

Validation of pooled genotyping

The results of pooled genotyping should only be consid-
ered valid if the allele frequency estimates generated from
the pooled data is substantially confirmed by the average
allele frequencies of all the individuals in the pooled sam-
ples. The actual and estimated allele frequencies of all the
500,568 SNPs in the Affymetrix 500 k array obtained from
the individual and pooled genotyping of 120 samples
were compared and were found to be highly correlated
(Pearson's Correlation = 0.988). Figure 2 shows a visual
comparison of the estimated and actual allele frequencies.

We calculated absolute errors in allele frequencies
between the individual and pooled genotyping results,
and looked at the distribution of these errors (Figure 3).

While the bi-plot comparison revealed that there were still
allele frequency estimation errors of up to 0.2, studying
the distribution of errors (Figure 3) showed that despite a
high average error (mean = 0.036, median = 0.025, SD =
0.039), more than 92% (464,982) of the SNPs had their
allele frequencies estimated to within 0.1 of the actual
allele frequencies. When the data is fitted into a linear
regression model, the regression coefficient (or slope of

trend line) is 1.015, which further demonstrates the linear
relationship between the actual and estimated allele fre-
quencies.

Factors dffecting accuracy of allele frequency estimates
In individual genotyping, if a genotype cannot be
assigned for a particular SNP for any particular sample, it
is assigned as "NoCall". If a SNP is not called in the major-
ity of samples genotyped, the allele frequency averaged
across the remainder of the samples in which the SNP was
properly called would not be representative of the whole
sample population. As such, SNPs which had "NoCall" in
too many samples could potentially be considered to have
lower quality genotype calls. The genotype calling rates for
all 500,568 SNPs were analysed across the 120 genotyped
samples, and the SNPs were filtered based on number of
samples with NoCall for each SNP (Table 6).

In our data set of 120 samples, at most 45 were found with
missing genotype calls for any SNP. While the majority of
samples still had their genotypes called, the estimated
allele frequencies were not too far off from the actual
allele frequencies. The missing genotypes only started
making a difference when SNPs with missing genotypes
were excluded from the comparison of allele frequencies.
When only SNPs which had 100% calls in all individuals
were analyzed, correlation between estimated and actual

Table 3: Comparing accuracy of allele frequency estimates from different reference samples for 500 k platform (1I).

Actual AF compared with: Correlation MAD error (95% CI)

AF estimates from 500 k Sample Data Set Cases 0.909 0.079 (0.1015-0.1020)
Controls 0.907 0.079 (0.1024-0.1029)

AF estimates from individually typed samples Cases 0.987 0.035 (0.0389-0.0391)
Controls 0.985 0.037 (0.0411-0.0414)

Actual allele frequencies obtained from individual genotyping of the Istset of 60 case and 60 control samples were compared with estimated allele
frequencies of the same set 120 samples. Estimated allele frequencies were separately calculated using beta values obtained from the 500 k Sample

Data Set, and from the individually genotyped samples on the 500 k array.
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Table 4: Comparing accuracy of allele frequency estimates from different reference samples for 500 k platform (2).

Actual AF compared with: Correlation MAD error (95% CI)

AF estimates from 500 k Sample Data Set Cases 0.921 0.072 (0.0942-0.0946)
Controls 0914 0.077 (0.0998-0.1002)

AF estimates from individually typed samples Cases 0.987 0.036 (0.0389-0.0392)
Controls 0.985 0.039 (0.0422-0.0424)

Actual allele frequencies obtained from individual genotyping of the Istset of 60 case and 60 control samples were compared with the estimated
allele frequencies of the 2nd set of 60 case and 60 control samples. Estimated allele frequencies were separately calculated using beta values obtained
from the 500 k Sample Data Set, and from the individually genotyped samples on the 500 k array.

allele frequencies improved marginally, with error
improving by only 0.003. Generally, it was found that fil-
tering of these SNPs which had seemingly lower quality
showed no significant improvement in accuracy of geno-
type calls.

The complete list of SNPs was filtered based on different
minor-allele frequency cutoffs to remove non-polymor-
phic and rare SNPs. Actual and estimated allele frequen-
cies were compared and the results are listed in Table 7.

Our data showed that nearly 30% of the 500,568 SNPs
screened were not really polymorphic in the study popu-
lation. When only common SNPs were compared, the
accuracy of allele frequency estimation decreased while
average errors in allele frequencies increased by more than
0.03. While this might indicate that a large proportion of
the "accuracy" we are observing is because of non-poly-
morphic SNPs in the study population, the correlation
between actual and estimated allele frequencies still
remained above 95%, which shows how accurate the esti-

mates still are. While these results follow similar trends to
those previously reported [5,12], our data shows less per-
turbations due to rare SNPs.

Measuring reliability of allele frequency estimates

To further establish the performance of pooled genotyp-
ing, the sensitivity and specificity of the allele frequency
estimates were tested across the range of minor-allele fre-
quency cutoffs (Table 8). Sensitivity and specificity were
calculated as follows:

(1=MAFgcpa1)~(A-MAFestimate)
1-MAFgcpyql

Specificity:1-

1-MAFgctyal —~MAFestimate

Sensitivity:1-
MAFyctyal

As less common SNPs are increasingly excluded from the
comparison, the accuracy of pooled genotyping in being
able to correctly estimate allele frequencies which match
the actual allele frequencies (specificity) reduced from

Table 5: Comparing accuracy of allele frequency estimates from different Hapmap reference samples for SNP6.0 platform.

Known AF compared with: Correlation MAD error (95% CI)
AF estimated from CEU Sample Set (90) Cases 0.889 0.097 (0.1095-0.1100)
Controls 0.890 0.097 (0.1086-0.1090)
AF estimated from CHB Sample Set (45) Cases 0.989 0.035 (0.0364-0.0365)
Controls 0.988 0.037 (0.0372-0.0374)
AF estimated from JPT Sample Set (45) Cases 0.984 0.040 (0.0426-0.0428)
Controls 0.984 0.041 (0.0430-0.0432)
AF estimated from YRI Sample Set (90) Cases 0.780 0.125 (0.1567-0.1574)
Controls 0.782 0.124 (0.1550-0.1557)
AF estimated from All Sample Sets (270) Cases 0.944 0.060 (0.0796-0.0799)
Controls 0.945 0.059 (0.0789-0.0792)

Known allele frequencies from each of the four Hapmap populations (CEU, CHB, JPT and YRI) as provided in the SNP6.0 Sample Data Set, and an
average allele frequency across the four populations were compared with the estimated allele frequencies of the 160 case and 160 control samples
genotyped on the SNP6.0 platform. The estimated allele frequencies were calculated using beta values obtained from the four individual Hapmap

populations and their collated genotypes in the same data set.
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Figure 2
Bi-plot comparing actual and estimated allele fre-
quencies of a random selection of 10,000 SNPs.

96.9% to 95.1%. This somewhat confirms the results
observed in Table 7. Others have reported similar trends
in accuracy of estimated allele frequencies of more com-
mon SNPs [18], but again our data still remains very rea-
sonably accurate (specificity of 95.1%) even when
considering 60% of the most common SNPs.
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Figure 3

Frequency distribution of absolute errors in allele
frequencies between individual and pooled genotyp-

ing
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Discussion

We hereby present a comprehensive genome-wide valida-
tion of pooled genotyping on the higher throughput SNP
genotyping platforms. Using the complete Affymetrix 500
k array set as the basis of comparison, we have shown that
the reliability and accuracy of pooled genotyping is as
good as or improved over the previously tested 10 k and
100 k array sets. This comparison has been extended to
the new SNP6.0 platform, which has yet been shown to be
useful for pooled genotyping. We believe that this work
would reaffirm that SNP-MaP is still a viable alternative to
individually genotyping a large sample population.

Novel Pooling strategy

Strategies for pooled genotyping have classically followed
the path of having 3 identical replicate pools at the very
least with the intent of "averaging" out the error normally
associated with pooling [16,17,22]. The novel pooling
strategy presented in this paper does not aim to replace
the tried and tested method of replicates, but is rather pro-
posed as an alternative. While it was performed in an
attempt to evaluate the outcome of a thought experiment,
the obtained results exceeded our expectations. Our pool-
ing strategy involved the creation of 3 over-lapping pools
from 3 sub-pools of 20 samples each. Comparing the
accuracy of allele frequency estimates of each of the sub-
pools to the average obtained across all 3 sub-pools (Table
1) showed that the novel pooling strategy of overlapping
pools produced similar benefits in improved allele fre-
quency estimation as compared to doing pooled repli-
cates. As pooled replicates were not used for this part of
our study, we chose to compare the capabilities of our
overlapping sub-pools with that of pooled replicates as
reported by others. The average correlation of estimated
allele frequencies to actual allele frequencies improved by
nearly 1% when the pools in each study group were con-
sidered as a whole and averaged. The average error in the
allele frequency estimates was reduced by up to 0.01.
These improvements in allele frequency estimates
obtained from this novel pooling strategy compare well
with those obtained from our replicate pools on the
SNP6.0 platform as well as in other studies where even
more chips were used [19]. While each of the samples was
in effect replicated twice across 3 pools, they technically
could not be considered as replicates. As such, the esti-
mated allele frequencies from each of the 3 pools within
our study groups were not as highly correlated with each
other as they were with the actual allele frequencies they
were estimating. Nonetheless, we showed that when the
estimates obtained from the 3 pools were aggregated, they
were able to more accurately estimate allele frequencies to
a level comparably achieved by replicate pools [5,11,16].
This supports the fact that a sufficient number of repli-
cates can control the pooling error to give results which
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Table 6: Comparing errors in estimation of allele frequencies by filtering off uncalled SNPs.

NoCall cutoff SNPs Analysed Correlation MAD error 95% CI

- 500568 (100%) 0.989 0.031 (0.0360-0.0362)
45 500488 (99.98%) 0.989 0.031 (0.0360-0.0362)
40 500353 (99.96%) 0.989 0.031 (0.0359-0.0362)
35 500036 (99.89%) 0.989 0.031 (0.0359-0.0361)
30 499222 (99.73%) 0.989 0.031 (0.0358-0.0360)
25 497469 (99.38%) 0.989 0.030 (0.0356-0.0358)
20 493792 (98.65%) 0.989 0.030 (0.0354-0.0356)
15 485709 (97.03%) 0.989 0.030 (0.0351-0.0353)
10 466758 (93.25%) 0.990 0.030 (0.0346-0.0348)
5 415562 (83.02%) 0.990 0.030 (0.0334-0.0337)
0 198749 (39.7%) 0.993 0.028 (0.0288-0.0291)

Actual allele frequencies obtained from individual genotyping were compared with estimated allele frequencies from pooled genotyping at various

"NoCall" cutoffs.

can be very similar to those obtained from individual gen-

otyping.

Estimating Allele Frequencies

Individual genotyping classically produces genotype calls
for each sample from which an average allele frequency
can be calculated. However, in pooled genotyping, the
microarray software is unable to assign a genotype due to
the heterogeneous nature of the pooled sample, and the
unequal hybridization to the various probes. As such, an
algorithm to estimate allele frequencies from probe inten-
sities was necessitated. To account for the unequal allelic
amplification in pooled genotyping, relative allele signals
(RAS) used together with a k-correction to improve accu-
racy of estimates was used initially [23]. This algorithm
was extensively validated on the Affymetrix 10 k microar-
rays by various groups [9,11-15]. This relatively simple
and yet accurate method of allele frequency estimation
made it highly popular among researchers. So, even when
anew algorithm (polynomial-based probe-specific correc-
tion or PPC) which improved on the highly popular RAS/
k-correction method was proposed and was shown to give
the best estimates of allele frequency from pooled geno-
typing on the Affymetrix 10 k platform [21], the tried and
tested algorithm prevailed with its usefulness further
extended to the Affymetrix 100 K microarray set [16], as
well as the 500 K microarray set [5,19]. The main criti-

cisms of the PPC algorithm were the time consuming
computation in Perl and R, and the need for all 3 geno-
types in the reference samples limiting the number of
SNPs analysed [19]. Our group felt that with the rapid
advancements in computing technology in recent years,
the former criticism should not prevent usage of the more
accurate PPC algorithm, even when considering the large
volumes of data generated by the Affymetrix 500 k array
set. The second criticism may not really be valid depend-
ing on the sample data set used to train the algorithm.

Choice of Reference Data Set Affecting Accuracy of Allele
Frequency Estimates

Regardless of the method used to estimate allele frequen-
cies from the probe intensity data of pooled genotyping,
the necessity of a set of reference samples is paramount. In
most situations, allele frequency data from reference sam-
ples (usually from an appropriate Hapmap population)
are used as a benchmark to compare the allele frequency
estimates against. While the issue of reference samples
was brought up [13] in the context of differential hybrid-
ization of heterozygous SNPs affecting accuracy of estima-
tion of allele frequencies from pooled genotyping, no
follow-up studies have been done in an attempt to quan-
tify these differences. We have showed in this paper that
the choice of reference samples does impact the accuracy
of allele frequency estimates.

Table 7: Comparing errors in estimation of allele frequencies by filtering off rare SNPs.

MAF cutoff SNPs Analysed Correlation MAD error 95% ClI

1% 405478 (81%) 0.982 0.031 (0.0433-0.0435)
5% 355095 (70.94%) 0.976 0.032 (0.0449-0.0452)
10% 306552 (61.24%) 0.969 0.032 (0.0449-0.0452)
15% 260485 (52.04%) 0.961 0.031 (0.0439-0.0442)
20% 218147 (43.58%) 0.949 0.030 (0.0425-0.0428)

Actual allele frequencies obtained from individual genotyping were compared with estimated allele frequencies from pooled genotyping at various

minor allele frequency cutoffs.
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MAF cutoff SNPs Analysed Specificity Sensitivity
Median 95% Cl Median 95% ClI

0% 500568 (100%) 0.969 (0.9535-0.9538) 03811 (0.4812-0.4886)
1% 405478 (81%) 0.958 (0.9438-0.9441) 0.832 (0.6226-0.6269)
5% 355095 (70.94%) 0.954 (0.9405-0.9408) 0.859 (0.7442-0.7464)
10% 306552 (61.24%) 0.952 (0.9388-0.9392) 0.879 (0.8030-0.8046)
15% 260485 (52.04%) 0.951 (0.9382-0.9386) 0.896 (0.8412-0.8425)
20% 218147 (43.58%) 0.951 (0.9383-0.9387) 0.909 (0.8676-0.8687)

Actual allele frequencies obtained from individual genotyping were compared with estimated allele frequencies from pooled genotyping. Sensitivity
and specificity calculations were made at various minor allele frequency cutoffs.

Our initial comparison of the accuracy of allele frequency
estimates from pooled genotyping on the 500 k platform
revealed that using a genetically homogeneous reference
sample set, such as one from a particular ethnic group,
produced estimated allele frequencies which were more
accurate than using a more heterogeneous one. While our
use of the same set of samples for individual and pooled
genotyping provided a better indication of the capabilities
of the 500 k platform in allelotyping, it might be thought
that such a result would be expected given that the same
samples were used for both. Our results from the first
individual vs pool comparison (Table 3) were confirmed
in the second comparison of actual and estimated allele
frequencies (Table 4) from a completely different set of
pooled samples, where we showed a similar high level of
accuracy of the estimates.

This difference can be possibly attributed to availability of
samples with all 3 genotypes for SNPs in the reference
sample set. For the RAS method of calculating allele fre-
quencies, the presence of heterozygous samples together
with both homozygotes, allow the calculation of the k-
correction which helps improve the accuracy of allele fre-
quency estimates. Similarly, for PPC, the heterozygous
samples allow the derivation of second-degree polynomi-
als which increased accuracy of estimated allele frequen-
cies by accounting for unequal hybridization efficiencies
of different SNPs [21]. So a reference sample data set with
a greater proportion of SNPs with heterozygous samples
would, in theory, produce better allele frequency esti-
mates than one with fewer SNPs with heterozygous sam-
ples. Furthermore, a genetically heterogeneous
population should have more SNPs with heterozygous
members. The 500 k Sample Data Set had 72.7%
(364,140) of all SNPs with homozygous and hetero-
zygous samples, while our individually typed samples had
63.3% or 316,623 SNPs with all 3 genotypes represented
in the sample population. The difference in number of
SNPs with all 3 genotypes between the two sample data
sets reflects their heterogeneity; while the 500 k Sample
Data Set was made up of representatives from the four

major Hapmap populations, our own set of individually
types samples were all ethnic Chinese. However, while
this difference is expected given the ethnic differences in
the two sample sets, the disparity in accuracy of allele fre-
quency estimates produced by them is not. When our
individually typed samples were used to estimated the
polynomials (beta values) for PPC, the estimated allele
frequencies were closer to the actual allele frequencies by
more than 3% (mean difference in allele frequency of up
to 0.05) when compared to the estimates obtained from
the 500 k Sample Data Set (Table 3 and Table 4). These
results indicate that a greater proportion of SNPs with 3
available genotypes in the reference sample set does not
necessarily improve accuracy of allele frequency esti-
mates. It could be that the SNPs which are or are not var-
iable in the study population may not necessarily be the
same as those in the reference population; as such varia-
bility (presence of homozygous and heterozygous sam-
ples for any particular SNP) of those SNPs in the reference
population is not helpful in improving accuracy of esti-
mated allele frequencies.

We believed that SNP variability was related to the ethnic-
ity of the samples in the reference data set. While com-
plete reference sample data sets from different ethnicities
were not easily available for the 500 k platform, complete
data for all 270 Hapmap samples was made available by
Affymetrix when the SNP6.0 was released. This allowed us
to compare the accuracy of allele frequencies from our
pooled genotyping calculated using beta values from the
four major Hapmap populations against the allele fre-
quencies of those very populations. While we have yet to
do individual genotyping on the SNP6.0 platform, such a
comparison would still be valid as we have already shown
that our Singapore Chinese samples are similar to the
Hapmap Han Chinese (CHB) population (unpublished
data). Our results (Table 5) confirmed our suspicions that
the ethnicity of the reference data set is indeed important;
higher levels of accuracy were observed when allele fre-
quencies were estimated from beta values calculated using
a reference population of similar ethnicity. While the
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accuracy of estimation improved when the four Hapmap
populations were considered as a whole as compared to
the 500 k Sample Data Set, this could have been due to the
greater number of samples (270 vs 48) in the reference set.
While the CEU and YRI data sets had significantly more
informative SNPs with all 3 genotypes called (66.31% and
72.47% respectively), the CHB population data set still
managed to produce better estimates of allele frequency
with a relatively lower (55%) proportion of such SNPs.
Neither the increased numbers in the CEU, YRI and com-
bined data sets over the CHB or JPT reference data sets,
nor the availability of heterozygous samples with both
homozygotes improved the accuracy of allele frequency
estimates. While we believe that the differences in accu-
racy of allele frequencies when using the different refer-
ence sample sets may be due to the rather disparate
variability between the various Hapmap populations
[24], the most important property of the reference sample
set which would affect accuracy of allele frequency esti-
mates is its ethnic background and whether it shared this
with the study population.

The importance of a reference sample set which is geneti-
cally homogeneous with the study population in genome-
wide association studies using pooled genotyping, might
be taken to mean that if researchers are studying a popu-
lation for which reference genotyping data is not available
(most likely outside the 4 main Hapmap populations),
they would need to perform a round individual genotyp-
ing so as to generate a set of reference data which they can
use for subsequent pooling experiments. This greatly
detracts from the benefits offered by pooled genotyping as
a more economical and more efficient way of performing
an initial whole genome scan as part of an association
study. However, this is where genotyping repositories, as
suggested by various authors [12,13], would come in use-
ful, in providing complete reference data sets of popula-
tions not currently covered in the International Hapmap
Project.

Validation of Pooled Genotyping on High Throughput
Platforms

In this paper, we reinforce the capabilities of SNP-MaP as
an alternative to individual genotyping of hundreds or
thousands of samples in a genome-wide case-control
association study. While pooled genotyping had been pre-
viously validated on the smaller scale Affymetrix 10 k and
100 k array sets, similarly detailed analysis had not been
done on the 500 k or newer SNP genotyping platforms.
Previous validation studies have shown accuracies of
pooled genotyping on the 10 k platform ranging from
0.923 [11] to 0.987 [13] and from 0.971 [16] to 0.983
[17] on the 100 k array set. While pooled genotyping
seemed immensely popular using the relatively lower
throughput 10 k and 100 k genotyping platforms,
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researchers did not seem equally enthused with the newer
improved efficiency SNP genotyping chips [15]. This
could have been due to the apprehension about the 'trade-
offs' associated with trying to squeeze more probes onto a
microchip. While both the 10 k and 100 k chips had 40
probes for each SNP, the 500 k and SNP6.0 arrays had it
reduced to 24 and 6 per SNP respectively, with certain
SNPs being represented by an extra 4 and 2 probes respec-
tively.

Nonetheless, validation of pooled genotyping was indeed
carried out on the 500 k arrays with estimation accuracies
ranging from 0.926 [5] to 0.983 [19]. While Wilkening et
al. used only 40% of the SNPs, (SNPs found on the Nsp |
chip of the 500 k array set), Docherty et al. evaluated the
performance of almost all the SNPs (> 90%) in the array
set. Building on Docherty et al.'s work, we chose to base
our study on the full repertoire of 500,568 SNPs. The high
level of accuracy we have shown (Pearson's Correlation =
0.988) is comparable with that obtained by others. The
estimated allele frequencies show minimal variability
from the actual allele frequencies (mean error = 0.036),
and is similarly comparable to previous studies. Despite
the apprehension about pooled genotyping on the 500 k
platform, we have shown that allelotyping of pooled sam-
ples on this platform is both reliable and accurate. These
results add to the work done by others to further affirm
that pooled genotyping is extremely viable on this higher
throughput platform.

We took this analysis one step further by focusing on the
currently available ultra high-throughput SNP genotyping
SNP6.0 platform and the 906,600 SNPs it covered (the
other 946,000 probes on the SNP6.0 chip were for the
detection of copy number variations which are outside the
scope of this paper). Estimated allele frequencies from our
pooling experiment highly represented those from our
selected reference data set (Pearson's Correlation = 0.989,
mean error = 0.035). Despite the reduction in intensity
data available per-SNP, the SNP6.0 platform seems
equally well suited as its predecessors for SNP-MaP.
Although our allele frequency estimates from pooled gen-
otyping on the SNP6.0 platform were based on individual
genotyping data of Hapmap CHB samples instead of the
samples in the pools (which we used in our validation on
the 500 k platform), we are still highly confident of its rel-
evance due to the ethnic similarity of Hapmap CHB and
our Singapore Chinese samples.

In the 10 kand 100 k arrays, relative allele signal data was
readily available thus allowing the use of the RAS method
to estimate allele frequencies together with the k-correc-
tion to account for unequal hybridization. While such
data was directly unavailable for the 500 k data, various
authors [12,15] provided scripts or formulae to extract
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this information from the raw intensity data. In the three
generations of SNP chips, both PM (Perfect Match) and
MM (Mis-Match) probes were present, thus allowing rela-
tive signal intensities to be calculated. However, with the
newer SNP6.0 chip only PM probes were available, prob-
ably due to the increased coverage of genetic variants.
With the availability of only PM signal intensities (instead
of RAS signals), PPC was the only method for estimating
allele frequencies from pooled genotyping data using only
the PM probes while still accounting for unequal hybridi-
zation. Prior to this study, PPC had only been validated
on the 10 k platform [19,21]. Following our validation of
pooled genotyping on the 500 k array set using PPC for
allele frequency estimation, the current ascertainment of
the performance of the SNP6.0 array in SNP-MaP would
be the first on such a high density microarray.

Previous studies [5,12,18] have suggested that high esti-
mates of reliability of pooled genotyping are inflated by a
variety of factors such as quality of genotype calls for cer-
tain SNPs, and rare or non-polymorphic SNPs. Both these
factors were examined to evaluate their relationship with
the accuracy of allele frequency estimates. We discovered
(Table 6) that SNPs with missing genotype calls in the ref-
erence data set did not affect accuracy of estimated allele
frequencies derived from beta values calculated from the
reference samples unlike mentioned previously [12].
Excluding SNPs which were rare in the reference sample
set (minor allele frequency < 5%) did cause accuracy of
allele frequency estimates to reduce slightly to 0.976
(Table 7); however, this difference is minor, unlike what
was reported before [5], and should not be taken as an
indication that the high levels of accuracy observed were
in fact due to non-polymorphic SNPs in the populations.
As a measure of the performance of allele frequency esti-
mation, sensitivity and specificity were calculated for sub-
sets of SNPs following various minor allele frequency cut-
offs. The high specificity (95.4%, Table 8) of allele fre-
quency estimates of common SNPs (minor allele fre-
quency > 5%) indicates that Type I errors in the
approximation of true allele frequency are low while not
really compromising on the sensitivity of the test (sensi-
tivity = 85.9%).

Regardless of how we compared our pooled estimates of
allele frequencies with the actual allele frequencies
obtained from our individually typed samples and known
allele frequencies from Hapmap CHB samples, the allele
frequency estimates that we obtained proved to be
extremely reliable. With reliability and validity improve-
ments over that previously demonstrated on 10 k, 100 k
and 500 k arrays, we have shown that both the 500 k and
SNP6.0 platforms perform well in pooled genotyping.

While we have showed that pooled genotyping allows the
estimation of allele frequencies which are highly accurate
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compared to the actual allele frequencies, it cannot be
used to completely replace individual genotyping; the
availability of actual genotype data as obtained from indi-
vidual genotyping allows a more detailed analysis and
understanding of the genomic variability in the sample
population, and also permits linkage and haplotype anal-
ysis within the population. Furthermore, while the geno-
typing of pooled samples introduces errors, and the errors
due to pooling are usually minimal, and random errors
due to the array itself can be corrected for by having mul-
tiple pooled replicates [22], systematic errors due to the
array itself might go unnoticed unless individual genotyp-
ing is done. Therefore, pooled genotyping would be best
suited when relative instead of absolute allele frequencies
are desired, such as in case control association studies.
Even then, pooled genotyping should always be followed
up by individual genotyping, such as in a two-stage study
design [3], so as to validate the observations from the
pooled estimates.

Conclusions

In this study, we have successfully shown that pooled gen-
otyping is a reliable and accurate method of performing a
truly genome-wide scan by analysing the performance of
the complete repertoire of SNPs on the Affymetrix 500 k
high throughput genotyping platform. Using this compar-
ison as the basis, we showed that SNP-MaP is highly via-
ble on the latest even-higher throughput SNP6.0
platform. We believe that newer, even higher density SNP
microarrays will be amenable to pooled genotyping fol-
lowing the strategy outlined. The accuracy of allele fre-
quency estimates was shown to be improved by using the
PPC algorithm and by using a reference population data
set of similar ethnicity to the study population for the cal-
culation of beta values for PPC. Lastly, a novel pooling
strategy was explored, and was found to provide similar
benefits as that observed in others' replicate pools.

Methods

Samples

The DNA samples used in this study were collected from
ethnic Chinese participants as part of an on-going retro-
spective cross-sectional study on allergic diseases in Singa-
pore (unpublished data) following standard protocols for
informed consent. Approval to conduct the study was
obtained from the National University of Singapore Insti-
tutional Review Board (NUS-IRB Reference Code: 07-
023). Genomic DNA was extracted from buccal cells
obtained from a mouthwash in 0.9% saline solution. In
short, the buccal cells were pelleted and lysed; DNA was
extracted using the phenol-chloroform phase-separation
technique [25], purified by two washes in ethanol, with
the DNA pellet resuspended in reduced Tris-EDTA buffer.
Samples were quantified in triplicate on the Nanodrop
(ND-1000). Samples which fell within a 1% error margin
in the replicate measurements were subsequently diluted
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to 50 ng/ul, according to the requirements in the assay
manual.

Samples were subsequently stratified into case and con-
trol groups according to their disease status as determined
by ISAAC-derived questionnaires [26] and skin-prick test
for common allergens in Singapore. As all the samples
used were collected in the same sampling frame, they are
all assumed to have the same level of genetic heterogene-
ity. A total of 560 case and control samples were used for
the subsequent genotyping experiments. Firstly, 60 case
and 60 control samples were selected for individual geno-
typing on the 500 k platform. These same 120 samples
were also analysed in the first round of pooled genotyp-
ing. A separate set of 60 case and 60 control samples were
used in the second round of pooling on the same plat-
form. Lastly, 160 case and 160 control samples were used
for the pooled genotyping on the SNP6.0 platform.

Pooling

A novel pooling strategy, involving over-lapping sub-
pools to form a larger pool, was used for pooled genotyp-
ing on the 500 k platform. Twenty samples from either the
case or control group of samples were pooled in equal
quantities of DNA to form a single sub-pool. This was
repeated twice further to produce a total of 3 sub-pools (A,
B and C in Figure 1) making up 60 samples in each of the
study groups. Three pools of 40 samples (1, 2, and 3 in
Figure 1) were created from these 3 sub-pools by merging
them as follows: A+B, A+C, B+C. The 3 pools of 40 sam-
ples each were subsequently re-quantified on the Nano-
drop to ensure accuracy of pooling prior to being
genotyped. This pooling strategy was employed in the
genotyping of the first two sets of 60 case and 60 control
samples. In total, 240 samples were analysed by pooled
genotyping on the 500 k platform.

For pooled genotyping on the SNP6.0 platform, 160 case
and 160 control samples were pooled in equal quantities
of DNA to form a single pool for each study group. The
pooled samples were re-quantified to ensure accuracy of
pooling prior to genotyping. A total of 320 samples were
analysed by pooled genotyping on the SNP6.0 platform.

Genotyping

For genotyping using the 500 k array set, individual and
pooled DNA samples were similarly processed according
to the protocol outlined in the GeneChip Mapping 500 k
Assay Manual. The assay chips were washed and stained
on the Fluidics Station 450, and were scanned on the
GeneChip Scanner 3000 7G. Raw data was exported from
the GeneChip Operating Software v1.4 (GCOS) for sepa-
rate analysis of individual and pooled genotyping. In
total, 120 chip pairs (Nspl and Styl) were used for individ-
ual genotyping of 120 samples. Six chip pairs were used
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for pooled genotyping of the same 120 samples which
were individually genotyped. Subsequently, 6 more chip
pairs were used for pooled genotyping of the second set of
120 samples on the 500 k array platfrom. For the SNP6.0
arrays, while the protocol was similar, genotyping was
outsourced to Origen Laboratories Pte Ltd in Singapore.
Both the case and control pooled samples were genotyped
in triplicate. In total, 6 chips were used for pooled geno-
typing of 320 samples on the SNP6.0 platform.

Genotype calling for individually typed samples

The CEL files generated by GCOS were processed using
the BRLMM algorithm as implemented in the Genotyping
Console v2.1, and genotypes were called using the default
settings. The exported genotypes, in the two-letter format
(AA, AB and BB) were converted to allele frequencies of
the A allele (1.0, 0.5 and 0O respectively) via a Perl script to
simplify subsequent analysis in R [27].

Reference Sample Data Sets

The Mapping 500 k Sample Data Set is made up of thir-
teen trios (5 HapMap CEPH trios, 5 HapMap Yoruban
trios and three other non-HapMap trios) and 9 unrelated
HapMap Asian samples [28]. The Genome-Wide Human
SNP Array 6.0 Sample Data Set, on the other hand, is
made up of all the 270 Hapmap samples consisting of 30
CEPH trios, 30 Yoruban trios, 45 unrelated Han Chinese
samples and 45 unrelated Japanese samples [29]. These
reference data sets are made up of raw probe intensities
(-CEL files) and genotype calls (.CHP files).

Allelotyping for pooled samples

The genotype call files together with the probe intensities
of the individually typed samples were processed via Perl
and R scripts to calculate the three polynomials (or beta
values) required by the PPC algorithm. The 500 k and
SNP6.0 Sample Data Sets obtained from Affymetrix were
also similarly processed to calculate a separate set of beta
values. Allele frequencies were subsequently estimated
from the probe intensities of the pooled genotyping data
following the PPC algorithm as outlined by Brohede et al.,
2005 [21]. Separate allele frequency estimates were
obtained using the beta values calculated from the indi-
vidual genotyping and the different Sample Data Sets.

Statistical Analysis

Pearson's correlation coefficient was calculated to deter-
mine "correlation" as a measure of accuracy between
actual and estimated allele frequencies. The error in the
estimation of allele frequencies was the absolute differ-
ence between actual and estimated allele frequencies.
Median absolute deviation (MAD) was used as a more
robust estimator of dispersion of errors than standard
deviation or variance. A 95% confidence interval of the
distribution of errors was used as an interval estimate of
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spread of estimation errors. All other statistical analyses
and data manipulations were carried out in Microsoft
Excel, Affymetrix Power Tools [30], R and via Perl scripts.
The Perl and R scripts used in this study were modified
from those published by Brohede et al., 2005, and are
available in Additional file 1.

Availability and Requirements
Operating system(s): Platform independent

Programming Language(s): Perl, R scripting
Licence(s): GNU General Public Licence
Restriction(s): No restrictions to use by non-academics.
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Script.zip containing the following Perl and R scripts Scripts.txt — All
R scripts, including usage of Perl scripts call.p — Perl script to process
genotype calls (500k data set) extractfields.p — Perl script to extract
range of columns from data file extractprobes.pl — Perl script to proc-
ess probe intensities (SNP6.0 data set) field.p — Perl script to extract
single column from data file int.p — Perl script to process probe inten-
sities (500k data set) relint.pl — Perl script to process relative inten-
sities (SNPG6.0 data set) sepprobe.pl — Perl script to separate probe
intensities (SNP6.0 data set)

Click here for file
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