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The angular spectrum approach is evaluated for the simulation of focused ultrasound fields produced
by large thermal therapy arrays. For an input pressure or normal particle velocity distribution in a
plane, the angular spectrum approach rapidly computes the output pressure field in a three
dimensional volume. To determine the optimal combination of simulation parameters for angular
spectrum calculations, the effect of the size, location, and the numerical accuracy of the input plane
on the computed output pressure is evaluated. Simulation results demonstrate that angular spectrum
calculations performed with an input pressure plane are more accurate than calculations with an
input velocity plane. Results also indicate that when the input pressure plane is slightly larger than
the array aperture and is located approximately one wavelength from the array, angular spectrum
simulations have very small numerical errors for two dimensional planar arrays. Furthermore, the
root mean squared error from angular spectrum simulations asymptotically approaches a nonzero
lower limit as the error in the input plane decreases. Overall, the angular spectrum approach is an
accurate and robust method for thermal therapy simulations of large ultrasound phased arrays when
the input pressure plane is computed with the fast nearfield method and an optimal combination of
input parameters. © 2009 Acoustical Society of America. �DOI: 10.1121/1.3097499�
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I. INTRODUCTION

Pressure fields generated by ultrasound therapy arrays
are typically calculated by superposing the fields produced
by individual transducer sources. Traditionally, these sources
are modeled with point source superposition applied to the
Rayleigh–Sommerfeld integral,1–3 the rectangular radiator
method,4–6 the spatial impulse response method,7–9 and other
analytically equivalent integral approaches. All of these
methods calculate the pressure at each grid point; therefore,
the simulation time is proportional to the number of array
elements multiplied by the size of the computational grid.
These simulations are relatively slow due to the large num-
ber of calculations involved. In contrast, the angular spec-
trum approach10 rapidly computes pressures in parallel
planes. This approach decomposes the diffracted wave into
plane waves via the two dimensional �2D� Fourier transform,
propagates these components in the spatial frequency do-
main, and recovers the pressure field in planes parallel to the
input plane through the 2D inverse Fourier transform.

The numerical accuracy of the angular spectrum ap-
proach has been extensively discussed for single planar ra-
diators. For example, Williams and Maynard11 analyzed the
difference between the analytical Fourier transform and the
discrete Fourier transform �DFT� in angular spectrum simu-
lations. Williams and Maynard proposed an averaging ap-
proach to reduce the aliasing error and the error induced by
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certain singularities in the spectral propagator. Orofino and
Pedersen12,13 derived a relationship between the angular
range for the decomposed plane wave components and the
sampling rate of the spectra in the spatial frequency domain.
These parameters are correlated to the spatial sampling rate,
which in part determines the accuracy of the angular spec-
trum simulation. Wu et al.14–16 derived the maximum angular
range that satisfies the Nyquist sampling criteria for the spec-
tral propagator. Wu et al. also used the analytical Fourier
transform of a rectangular radiator to eliminate the numerical
errors introduced by the DFT of the input normal particle
velocity distribution. Zeng and McGough17 compared the
performance of the spatial propagator and the spectral propa-
gator in terms of numerical accuracy and time. After identi-
fying an artifact caused by the truncation of the spatial
propagator, Zeng and McGough showed that the spatial
propagator yields more accurate simulation results once the
region containing the artifact is removed, especially for
simulations in non-attenuating media. In attenuating media,
the spectral propagator achieves similar accuracy in less
time. Zeng and McGough also showed that including attenu-
ation in angular spectrum simulations effectively reduces
aliasing errors through a spatial frequency filtering effect and
that apodizing the input particle velocity distribution
achieves the same result. Overall, the spectral propagator is
preferred over the spatial propagator for calculations in at-
tenuating media or with an apodized particle velocity source,
whereas simulations in non-attenuating media favor the spa-

17
tial propagator.
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The angular spectrum approach is also widely used for
phased array simulations. For example, the pressure fields
generated by concentric ring arrays and sector vortex arrays
have been compared with experimental results,18 and the an-
gular spectrum approach has also been applied to high inten-
sity focused ultrasound simulations.19 Zemp and Tavakkoli20

compared the sampling of the spatial and spectral propaga-
tors for phased array simulations and then derived the maxi-
mum unaliased spectral sampling rate for the spectral propa-
gator. Other important issues that impact the accuracy of
thermal therapy simulations remain unsolved; therefore,
more thorough evaluations of the angular spectrum approach
are needed.

This paper evaluates the angular spectrum approach for
calculations of time-harmonic pressure fields generated by
large ultrasound phased arrays in an attenuating medium.
First, the performance of the angular spectrum approach is
compared for input planes that consist of particle velocity
distributions and pressure distributions. Second, the effect of
the location of the input pressure plane and the size of the
window that truncates the input pressure plane are deter-
mined. Third, the impact of the numerical accuracy of the 2D
input pressure on the three dimensional �3D� output pressure
field computed with the angular spectrum approach is evalu-
ated. Finally, temperature fields are computed from the 3D
pressure fields obtained with the angular spectrum approach,
and the errors are compared. The results show that when the
input pressure planes are computed with optimal parameters
applied to the fast nearfield method, the angular spectrum
approach rapidly and accurately calculates pressures for ther-
mal therapy simulations with large ultrasound phased arrays.

II. THEORY

A. Integral approaches

In simulations of individual transducers and large ultra-
sound phased arrays, the pressure is often calculated with the
Rayleigh–Sommerfeld integral.10,21 This 2D integral is ordi-
narily evaluated with the midpoint rule,22 which is equivalent
to subdividing the transducer surface into point sources and
superposing all of the contributions.23 The Rayleigh–
Sommerfeld diffraction integral10 is

p�r,t� = j�ckej�t�
S�

u�r��
e−jk�r−r��

2��r − r��
dS�, �1�

where � and c represent the density and the speed of sound,
respectively, � is the driving frequency, k=� /c=2� /� is
the acoustic wavenumber, u is the distribution of the normal
velocity on the radiator with surface area S�, j is �−1, and
�r−r�� is the distance between the source coordinates r�
= �x� ,y� ,z�� and the observation coordinates r= �x ,y ,z�.

The spatial impulse response approach is an analytically
equivalent method that computes the pressure field with a
one dimensional �1D� integral. This integral evaluates the
convolution of the impulse response function of a transducer
with the time derivative of the excitation function.7 For a

rectangular piston excited with a continuous wave input, the
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pressure is proportional to the Fourier transform of the spa-
tial impulse response, which is described by24,25

p�x,y,z,t� = j�cu0ej�t�
i=1

2

�
j=1

2

� Isi,lj
�x,y,z� �2�

and

Is,l =
k

2�	 j�

2k
�e−jk�z2+s2+l2 − e−jkz�

− ��z2+s2

�z2+s2+l2

cos−1
 s
��2 − z2�e−jk�d�

− ��z2+l2

�z2+s2+l2

cos−1
 l
��2 − z2�e−jk�d�� , �3�

where � is a distance variable, s1= �x−a�, s2= �x+a�, l1=
�y−b�, and l2= �y+b�, and the � or � sign in Eq. �2� is
determined by the spatial location of the observation point
with respect to the transducer aperture.

The fast nearfield method24,25 is a 1D integral approach
for nearfield pressure calculations that converges much more
rapidly than the spatial impulse response.7 The fast nearfield
method for a rectangular piston that is uniformly excited is
derived in Ref. 24, and the fast nearfield method for a rect-
angular piston with an apodized surface velocity distribution
is derived in Ref. 25. This method achieves rapid conver-
gence by subtracting singularities, and the computation time
is reduced by exploiting repeated calculations. The fast
nearfield expression for a uniformly excited rectangular
piston24 is

p�x,y,z,t� = − 1�cu0ej�t 1

2�

s1�

−l1

l2 e−jk�z2+�2+s1
2

− e−jkz

�2 + s1
2 d�

+ l1�
−s1

s2 e−jk�z2+�2+l1
2

− e−jkz

�2 + l1
2 d�

+ s2�
−l1

l2 e−jk�z2+�2+s2
2

− e−jkz

�2 + s2
2 d�

+ l2�
−s1

s2 e−jk�z2+�2+l2
2

− e−jkz

�2 + l2
2 d�� , �4�

where the limits of integration are s1=a−x, l1=b−y, s2=
a+x, and l2=b+y, and a and b represent the half width and
the half height of the rectangular source, respectively. The
fast nearfield method achieves high numerical accuracy in a
very short time.24,25

B. Phased array beamforming

For linear simulations of therapeutic ultrasound, the
pressure field generated by a phased array is computed via
the superposition of complex pressures produced by the ar-

ray transducers according to
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p = �
n=1

N

pnAnej	n. �5�

In Eq. �5�, N is the number of transducers in the array, and pn

is the pressure generated by each transducer. An represents
the apodization weight, and 	n is the phase shift applied to
each transducer element. An ultrasound beam with a single
focus is obtained with the phase conjugation method.26 To
focus the array, a complex exponential term that equals the
conjugate of the pressure produced by each array element at
the focus is applied to that element. Therefore, the pressure
waves generated by all of the array elements achieve con-
structive interference at the focal spot. Through beamform-
ing, the pressure fields generated by ultrasound phased arrays
are maximized at selected locations.

C. Angular spectrum approach

The angular spectrum approach calculates the pressure
in a sequence of parallel planes by propagating each spatial
frequency component of the diffracted wave in the spatial
frequency domain.10 The pressure or normal particle velocity
field in an initial plane is defined as the input, and the output
from angular spectrum calculations is the pressure evaluated
in a series of parallel planes. The pressure field and the an-
gular spectrum in each plane are related through the 2D Fou-
rier transform. In a linear homogeneous medium, the propa-
gation of acoustic waves in the spatial frequency domain is
described by27

P�kx,ky,z� = P0�kx,ky,z0�Hp�kx,ky,
z� �6�

or

P�kx,ky,z� = j�cU0�kx,ky,z0�Hu�kx,ky,
z� , �7�

where 
z=z−z0, kx and ky are the transverse wavenumbers,
and kx

2+ky
2+kz

2=k2. P0�kx ,ky ,z0� is the angular spectrum of
the input pressure field p0�x ,y ,z0�; i.e., P0�kx ,ky ,z0� is the
2D Fourier transform of p0�x ,y ,z0� with respect to x and y,
and U0�kx ,ky ,z0� is the 2D Fourier transform of the normal
particle velocity on the radiator surface. P�kx ,ky ,z� is the
angular spectrum of the pressure in a plane parallel to the
source plane. The pressure field in each subsequent plane is
then obtained by applying a 2D inverse Fourier transform to
P�kx ,ky ,z� with respect to kx and ky. The spectral propagator
Hp�kx ,ky ,
z� for an input pressure plane is described by28

Hp�kx,ky,
z� =
e−j
z�k2−kx
2−ky

2
for kx

2 + ky
2 � k2

e−
z�kx
2+ky

2−k2 for kx
2 + ky

2 � k2,
� �8�

and the spectral propagator Hu�kx ,ky ,
z� for an input par-

ticle velocity distribution is represented by
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Hu�kx,ky,
z�

=�
k

j�k2 − kx
2 − ky

2
e−j
z�k2−kx

2−ky
2

for kx
2 + ky

2 � k2

k

�kx
2 + ky

2 − k2
e−
z�kx

2+ky
2−k2

for kx
2 + ky

2 � k2,� �9�

Both Hp�kx ,ky ,
z� and Hu�kx ,ky ,
z� describe propagating
waves in the region where kx

2+ky
2�k2 and evanescent waves

that decay exponentially where kx
2+ky

2�k2. The propagator
functions in Eqs. �8� and �9� are multiplied by an exponential
term17 for angular spectrum calculations in attenuating me-
dia,

S�kx,ky,
z� = e−
k
z/�k2−kx
2−ky

2
, �10�

where 
 is the attenuation coefficient for a given ultrasound
frequency. Multiplying the spatial frequency components by
S�kx ,ky ,
z� achieves equivalent attenuation of pressure
waveforms in the spatial domain.

To implement the angular spectrum approach, the input
pressure or normal particle velocity field is first discretized,
where the geometry of the input plane is illustrated in Fig. 1.
An L�L square plane is discretized into a grid containing
M �M points with a spatial sampling interval of �. This grid
is zero-padded to a larger N�N grid, and the angular spec-
trum of the input plane is computed with a 2D fast Fourier
transform �FFT�. The spectral propagator is then evaluated
on the larger N�N grid in the spatial frequency domain. By
extending the size of the grid to N�N �N�M�, the reso-
lution in the spatial frequency domain is increased and spec-
tral aliasing errors are diminished. The spectral sampling rate
is inversely proportional to N via 
k=2� / �N��, and the dis-
cretized transverse wavenumbers are

kx = m
k, m = − N/2 + 1 + �, . . . ,N/2 + � ,

ky = n
k, n = − N/2 + 1 + �, . . . ,N/2 + � , �11�

FIG. 1. �Color online� The discretized input plane, where the input pressure
or normal particle velocity plane is initially computed in an M �M grid and
then zero-padded to an N�N grid for angular spectrum calculations. The
spectral propagator, which is not zero-padded, is then evaluated in an N
�N grid for angular spectrum calculations.
where � is defined by
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� = 
− 1
2 when N is odd

0 when N is even.
� �12�

The parameter � compensates for the offset induced by the
odd number of grid points so that m and n are integers.

D. Error evaluations

The numerical error in the simulated pressure field is
evaluated with a root mean squared error �RMSE� defined by

RMSE =� 1

nxnynz
�
i,j,k

�pi,j,k − pref
i,j,k�2, �13�

where the superscripts �i , j ,k� represent discrete field points
in the computational grid, nx, ny, and nz describe the number
of points in the x, y, and z directions, respectively, pref is the
complex reference pressure field computed with the spatial
impulse response method, and p is the complex pressure field
computed with the angular spectrum approach, the
Rayleigh–Sommerfeld integral, or the fast nearfield method.
The RMSE is evaluated either in a 3D volume or in a single
transverse plane perpendicular to the array normal.

E. Temperature simulations

As acoustic waves propagate through a lossy medium,
mechanical energy dissipates and is converted into heat. The
power deposition is approximated by

Qp�x,y,z� =



�c
p�r�p*�r� , �14�

and the localized heat transfer in biological media is modeled
by the bio-heat transfer equation �BHTE�,29

K�2T − WbCb�T − Ta� + Qp = 0, �15�

where T=T�x ,y ,z , t� is the tissue temperature, Ta is tempera-
ture of the arterial blood, K is the thermal conductivity of
tissue, and Wb and Cb are the perfusion rate and the specific
heat of blood, respectively. Equation �15� is the steady state
BHTE, which models the temperature distribution under
equilibrium conditions. For numerical calculations, Eq. �15�
is evaluated with an iterative finite difference routine.30

III. SIMULATION RESULTS

A. Reference pressure field generated by a 32Ã32
element phased array

To evaluate the numerical performance of the angular
spectrum approach, a 32�32 element 2D planar array is
simulated and compared to a reference field. The array is
comprised of 1.8 mm�1.8 mm square transducers with a
0.5 mm kerf between adjacent elements. The structure of this
array is illustrated in Fig. 2. The array is located in the xy
plane at z=0 cm and centered at the origin of the coordinate
system. The z axis is coincident with the normal evaluated at
the center of the array aperture. The excitation frequency is
1 MHz, the speed of sound is 1500 m /s, and the attenuation
coefficient is 
=1 dB /cm /MHz. The total extent of the ar-
ray aperture is 7.31 cm�7.31 cm, which is equal to 48.7�

�48.7� for a 1 MHz excitation. The reference field is cal-
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culated with the spatial impulse response method.7 Using
1000 Gauss abscissas to compute the pressure generated by
each square element, the spatial impulse response method
calculates the total field generated by this array to an accu-
racy of 11 digits, as determined by a comparison with the
fast nearfield method evaluated with the same number of
abscissas. All simulations are performed on a 2.4 GHz Pen-
tium 4 PC �1 Gbyte random access memory� running the
Windows XP operating system. All routines are written in the
C language, compiled by Microsoft VISUAL C/C�� Version
7.0, and called by MATLAB 7.1 as MEX files.

The initial evaluations of the pressure field generated by
this 32�32 element phased array are performed in a
20.4 cm�20.4 cm�12 cm �136��136��80�� volume
with an equal transverse extent in both the x and the y direc-
tions. With a sampling interval of �=0.075 cm ��=� /2�, the
computational volume is discretized to a 273�273�161
point grid. Figure 3 shows the reference pressure field gen-
erated by this 32�32 element phased array in the y=0
plane. The array elements are phased such that a single focus

FIG. 2. A planar ultrasound phased array comprised of 32�32 square ele-
ments. The size of the array is 7.31 cm�7.31 cm �48.7��48.7� for a
1 MHz driving frequency�. The array consists of 1.8 mm�1.8 mm �1.2�
�1.2�� square transducers with a 0.5 mm kerf between adjacent elements.
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FIG. 3. Reference pressure field generated by the 32�32 element planar
array in Fig. 2, where the array is focused at �0,0 ,10� cm. The pressure,
which is normalized by the maximum amplitude, is shown in the xz plane at
y=0. The excitation frequency for the array is 1 MHz, and the attenuation

coefficient is 
=1 dB /cm /MHz.
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is produced at �0,0 ,10� cm. The pressure distribution de-
picted in Fig. 3 is normalized by the overall maximum pres-
sure amplitude in the 3D volume.

B. Evaluation of pressure and normal particle
velocity inputs

Although angular spectrum calculations with input pres-
sure planes �Eq. �6�� and input normal particle velocity
planes �Eq. �7�� are analytically equivalent, the numerical
errors differ. To demonstrate the difference between these
two approaches, the reference pressure field generated by the
32�32 element phased array in Fig. 2 is simulated with the
spatial impulse response method and then compared to the
results obtained with the angular spectrum approach using
input pressure and normal particle velocity planes. In each
simulation, the normal particle velocity is uniform across
each element on the array aperture. The input pressure plane
ideally extends to infinity in both lateral directions; however,
for computer simulations, the pressure field is truncated by a
20.4 cm�20.4 cm �136��136�� square window. In these
calculations, the input pressure is calculated with the fast
nearfield method using 20 abscissas for each integral. The
spatial sampling interval is �=0.075 cm ��=� /2�, and the
value N=512 specifies the number of grid points in the x and
y directions. Figure 4 shows the reference axial pressure
�solid line� and the axial pressures computed with the angu-
lar spectrum approach using an input normal particle veloc-
ity plane �dash-dot line� and an input pressure plane �dashed
line�. For these angular spectrum simulations, the input nor-
mal particle velocity and the input pressure are both calcu-
lated in the plane at z=0. The resulting 3D fields are normal-
ized by the maximum amplitude of the reference pressure.

Figure 4 shows that the output pressure fields obtained
from the input pressure and the input normal particle velocity
match the reference closely near the focus. The amplitude of
the output pressure field computed with the input pressure is
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FIG. 4. Simulated axial pressures generated by the 32�32 element planar
array in Fig. 2. The array is located at z=0 cm and electronically focused at
�0,0 ,10� cm. The reference pressure calculated by the spatial impulse re-
sponse method is indicated by the solid line, the pressure computed with the
angular spectrum approach using an input normal particle velocity plane is
represented by the dash-dot line, and the pressure computed with the angular
spectrum approach using an input pressure plane is represented by the
dashed line.
slightly larger than the reference field before the focus and
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slightly smaller than the reference field in the region beyond
the focus. The amplitude of the output pressure field com-
puted with the input normal particle velocity plane is smaller
than the reference before the focus and slightly larger than
the reference beyond the focus. Overall, the output axial
pressure computed with the input normal particle velocity
plane has a much larger error than that obtained with the
input pressure plane.

The output RMSE values obtained from angular spec-
trum calculations are evaluated and plotted in 2D transverse
planes along the z direction in Fig. 5. The RMS output errors
computed with the input pressure and the input normal par-
ticle velocity both decrease monotonically as z increases.
Figure 5 also shows that, for the combination of parameters
evaluated here, the RMS output error obtained from the input
normal particle velocity plane is about twice as large as that
obtained with the input pressure plane.

C. Optimal parameters for the input plane

When the spectral propagator Hp�kx ,ky ,
z� for an input
pressure plane described in Eq. �8� is used for angular spec-
trum simulations, the input pressure field is truncated by a
rectangular window in the x and y directions. The size of this
window and the location of the plane that contains the input
pressure field both influence the accuracy of the result ob-
tained with the angular spectrum approach. The optimal size
and location of the input pressure plane are determined from
parametric simulations of the planar phased array in Fig. 2,
where the spatial sampling interval is �=� /2, and the N
�N grid for the 2D FFT is evaluated with N=512.

To demonstrate the impact of the input pressure plane
location on angular spectrum calculations, the RMS output
errors in a 3D volume are calculated in Fig. 6 as a function of
the input pressure plane location z0. The input pressure
planes for these calculations are evaluated for z0 ranging
from 0 to 3.9 cm �26�� with an interval of 0.15 cm ���. The
input pressure is calculated with the fast nearfield method
using 20 abscissas for each integral. In Fig. 6�a�, the pressure
in the input plane is evaluated within a 7.8 cm�7.8 cm
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FIG. 5. RMS output errors for the 32�32 element array focused at
�0,0 ,10� cm evaluated in transverse planes for z ranging from 4 cm
�26.67�� to 16 cm �106.67��. The pressure is calculated with the angular
spectrum approach using an input normal particle velocity plane �dash-dot
line� and an input pressure plane �dashed line�. For this result, the input
particle velocity and pressure planes are both located at z0=0 cm and trun-
cated with a 20.4 cm�20.4 cm �136��136�� square window.
�52��52�� square window, which is slightly larger than the
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7.31 cm�7.31 cm �48.7��48.7�� array aperture. The re-
sulting RMS output error decreases for a short distance and
then oscillates between 0 and 0.02 as z0 increases. In Fig.
6�b�, the input pressure is evaluated in a 20.4 cm�20.4 cm
�136��136�� plane. The 20.4 cm�20.4 cm input pressure
plane also includes the contribution from the grating lobes
for each z0. The RMS output error in Fig. 6�b� drops sharply
when z0 increases from 0 to 0.15 cm ���, and then the error
remains small for z0��. Figure 6 shows that when a smaller
window is used, the RMS output error oscillates as z0

changes, but the output error is relatively flat for a much
larger window with z0��. In Fig. 6�a�, the minimum error
occurs at z0=0.45 cm �3��; however, the error is also small
at z0=�. In Fig. 6�b�, the error is very small for all values of
z0��. Figure 6 shows that the input pressure plane should
be at least one wavelength from the array aperture to avoid
sampling problems with evanescent waves near the array ap-
erture. Figure 6�a� also suggests that when the window that
truncates the input pressure plane is slightly larger than the
array aperture, the resulting error is sufficiently small for z0

equal to 0.15 cm ���. Thus, for either a 7.8 cm�7.8 cm or a
20.4 cm�20.4 cm window, z0=� is an appropriate input
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FIG. 6. RMS output errors obtained with the 32�32 element array evalu-
ated in 3D volumes as a function of the input pressure plane location z0. The
size of the input pressure plane is �a� 7.8 cm�7.8 cm �52��52�� and �b�
20.4 cm�20.4 cm �136��136��. The location of the input pressure plane
ranges between z0=0 and z0=3.9 cm �26�� with an increment of 0.15 cm
���.
pressure plane location for the 32�32 element array. For
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smaller input pressure planes, selecting z0=� successfully
prevents the truncation of grating lobes that could otherwise
occur with larger values of z0.

To demonstrate the influence of the size of the input
pressure plane window on the RMS output error, the angular
spectrum calculations are evaluated for a 6 cm�6 cm �40�
�40�� input pressure plane and a 7.8 cm�7.8 cm �52�
�52�� input pressure plane located at z0=�. The resulting
axial pressures are shown in Fig. 7. The input pressure plane
extent specified by L=6 cm �40�� is smaller than the
7.31 cm�7.31 cm array aperture, so the resulting pressure
field �dash-dot line� deviates from the reference by a signifi-
cant amount, especially in the region around the focus. When
the extent of the input pressure plane is specified by L
=7.8 cm �52��, the axial pressure �dashed line� closely
matches the reference pressure �solid line� in Fig. 7.

Figure 8 shows the RMS output errors evaluated in a 3D
volume, where the input pressure planes are truncated by
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FIG. 7. Axial pressures simulated with the angular spectrum approach using
input pressure planes that are truncated by square windows of different
sizes. The reference pressure is indicated by the solid line, the output pres-
sure computed with the angular spectrum approach using a 6 cm�6 cm
�40��40�� input pressure plane is represented by the dash-dot line, and the
axial pressure computed with the angular spectrum approach using a
7.8 cm�7.8 cm �52��52�� input pressure plane is represented by the
dashed line. The solid line and the dashed line are nearly coincident, which
indicates that L=7.8 cm �L=52�� is sufficiently large for the 7.31 cm
�7.31 cm phased array in Fig. 2.
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square windows with sizes ranging from L=6 cm �L=40��
to L=20.4 cm �L=136��. For all of the results shown in Fig.
8, the input pressure plane is located at z0=�. The two mark-
ers in Fig. 8 indicate the values of L evaluated in Fig. 7,
where the circle denotes L=6 cm �L=40�� and the solid
mark denotes L=7.8 cm �L=52��. In Fig. 8, the errors
monotonically decrease as L increases. The errors are larger
when the window size is smaller than the 7.31 cm
�7.31 cm array aperture, and the errors are smaller when
the window size is larger than the array aperture. Figure 8
suggests that only a moderate reduction in the output error is
achieved for values of L�7.8 cm. Furthermore, in Fig. 7, the
results for L=7.8 cm are nearly coincident with the refer-
ence. If L�7.8 cm is used, the truncation of the pressure
wavefront causes an increase in the RMS output errors. An
input pressure plane with L�7.8 cm consistently produces
small errors. However, there is a trade-off between the accu-
racy and the efficiency of these calculations for larger L. On
the one hand, accurate results are achieved when large values
of L are used, and larger input pressure planes are often
necessary for array simulations that also include grating
lobes, as in Fig. 3. On the other hand, L should be as small as
possible because the computation time and computer
memory required are proportional to the number of grid
points, which is determined by the value of L when � is
fixed. Figure 6 indicates that the minimum error is achieved
at z0=0.45 cm �z0=3�� and that the error at z0=0.15 cm
�z0=�� is acceptably small, and Fig. 8 suggests that L
=7.8 cm �L=52�� is optimal for the 32�32 element planar
array in Fig. 2.

D. Evaluation of input and output errors

In angular spectrum calculations that use the spectral
propagator Hp�kx ,ky ,
z�, the input pressure is typically
simulated with analytical integral approaches, and the angu-
lar spectrum simulations then evaluate the output pressure in
a 3D volume. For these simulations, fast and accurate calcu-
lations of the input pressure are desirable. This motivates
numerical evaluations of the errors associated with the input
pressure that impact the error in the computed 3D pressure
output.

Using the spatial impulse response method as the refer-
ence, two analytical integral methods are compared for simu-
lations of the input pressure: the Rayleigh–Sommerfeld inte-
gral and the fast nearfield method. The accuracy of these
methods is determined by the number of abscissas used in
evaluations of the integrals in Eqs. �1� and �4�, respectively.
As demonstrated in Ref. 24, the fast nearfield method
achieves higher accuracy with fewer abscissas relative to
other single integral approaches for simulations of single
transducers. This result also holds for phased array simula-
tions. To demonstrate the change in the RMSE in the input
pressure plane as the number of abscissas increases, the pres-
sure field is computed in a 7.8 cm�7.8 cm �52��52��
plane at a depth of z0=0.15 cm �z0=��, where 7.8 cm �52��
is the optimal value of L determined in the previous section
for the phased array in Fig. 2. With a spatial sampling inter-

val of 0.075 cm �� /2�, the input pressure plane is discretized
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to 105 points in both the x and the y directions. The RMSE
values are evaluated for the input pressure computed with the
Rayleigh–Sommerfeld integral using 2�2 to 10�10 abscis-
sas and with the fast nearfield method using two to ten ab-
scissas. The results are plotted in Fig. 9, where the errors
from both methods decrease as the number of abscissas in-
creases. The RMSE for the input pressure obtained with the
Rayleigh–Sommerfeld integral approach is 0.216 for 2�2
abscissas, and the error decreases to 0.006 for 10�10 ab-
scissas. In contrast, the RMSE for the input pressure ob-
tained with the fast nearfield method is 0.076 for two abscis-
sas, and the error quickly decreases to 0.0004 with only four
abscissas. In Fig. 9, errors less than or equal to 0.0004 are
coincident with the horizontal axis when the values in the
range shown are plotted on a linear scale.

Figure 10 demonstrates the influence of the number of
abscissas used for input pressure calculations on the 3D an-
gular spectrum results. In Fig. 10, the horizontal axis con-
tains the number of abscissas for input pressure calculations
with the Rayleigh–Sommerfeld integral and the fast nearfield
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FIG. 9. RMSE values in the input pressure plane plotted as a function of the
number of abscissas. The input pressure plane is located at z0=0.15 cm
�z0=�� and truncated by a 7.8 cm�7.8 cm �52��52�� window. The input
pressure is computed with the Rayleigh–Sommerfeld integral using 2�2 to
10�10 abscissas and with the fast nearfield method using two to ten ab-
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FIG. 10. RMSE values for 3D pressure field outputs plotted as a function of
the number of abscissas used for input pressure calculations. The input
pressure is calculated with the Rayleigh–Sommerfeld integral using 2�2 to
10�10 abscissas and with the fast nearfield method using two to ten ab-
scissas. The errors obtained from both methods approach the same limiting
value, but the fast nearfield method achieves convergence with far fewer
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method, and the vertical axis contains the output RMSE val-
ues in the 3D pressure field computed with the angular spec-
trum approach. The output RMSE approaches a limiting
value of 0.004 when the fast nearfield method with three or
more abscissas calculates the input pressure. When the input
pressure is calculated with the Rayleigh–Sommerfeld inte-
gral, the output error asymptotically approaches the same
value. The saturation of the RMSE in Fig. 10 indicates that
there is a lower limit for the output error in angular spectrum
calculations that is determined by the grid size, the grid spac-
ing, and the location of the input pressure plane. Moreover,
Fig. 10 shows that the fast nearfield method requires far
fewer abscissas to achieve the minimum output error. There-
fore, the fast nearfield method is a much more efficient ap-
proach for calculating the input pressure.

E. Temperature simulations

In thermal therapy simulations, the power deposition is
generally modeled by Eq. �14�. The resulting power deposi-
tion provides the input to the BHTE,29 which simulates the
temperature distribution. To determine the influence of the
angular spectrum simulation parameters on the calculated
temperature, the bio-heat transfer model in Eq. �15� is
evaluated for the 32�32 element planar array in Fig. 2,
which generates a single focus at �0,0 ,10� cm. In these
simulations, the temperature field is computed in a 7.8 cm
�7.8 cm�12 cm �52��52��80�� volume, where the
boundaries of the computational grid are maintained at
37°C, the blood perfusion is 8 kg /m3 /s, the thermal conduc-
tivity is 0.55 W /m / °C, and the specific heat of blood is
4000 J /kg / °C. The goal of each simulation is to elevate the
temperature at the focus to 43°C for hyperthermia cancer
therapy31 or for targeted drug delivery.

The temperature fields are calculated with power depo-
sitions as inputs, and the power depositions are obtained
from the pressure fields calculated with the angular spectrum
approach. The results from three types of inputs are com-
pared for these angular spectrum calculations: �1� an input
normal particle velocity plane, �2� an input pressure plane
obtained from the Rayleigh–Sommerfeld integral, and �3� an
input pressure plane obtained from the fast nearfield method.
The reference temperature distribution is computed from the
power deposition calculated with the spatial impulse re-
sponse method. In these simulations, the input particle veloc-
ity plane is coincident with the array surface at z0=0,
whereas both of the input pressure planes are located at z0

=0.15 cm �z0=��. The extent of each input pressure plane is
7.8 cm�7.8 cm �52��52��, and the computational grid is
discretized with a sampling rate of �=0.075 cm ��=� /2�. An
N�N grid with N=512 is used in all angular spectrum cal-
culations. The power deposition corresponding to the refer-
ence pressure is normalized such that the resulting reference
temperature field has a maximum value of 43°C. The power
depositions obtained from the angular spectrum simulations
are normalized by the same factor.

The resulting axial temperature field evaluated along the
array normal is shown in Fig. 11. In this figure, the solid line

represents the reference, the dash-dot line is obtained from
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the angular spectrum approach using an input normal particle
velocity plane, the dotted line with “+” markers is obtained
from the angular spectrum approach using an input pressure
plane computed with two abscissas applied to the fast
nearfield method, and the dashed line is obtained from the
angular spectrum approach using an input pressure computed
with 2�2 abscissas applied to the Rayleigh–Sommerfeld in-
tegral. Figure 11 shows that when the angular spectrum cal-
culation is performed with an input normal particle velocity
plane, the largest errors are in the focal zone, and the simu-
lated axial temperature field deviates from the reference by
as much as 0.40°C, where the maximum target temperature
rise is 6°C. When the input pressure for angular spectrum
calculations is computed with the Rayleigh–Sommerfeld in-
tegral using 2�2 abscissas, the largest deviations in the
simulated temperature field are again located in the focal
zone, and the maximum axial temperature difference is
0.45°C. When the input pressure is computed with the fast
nearfield method using two abscissas, the axial temperature
field closely matches the reference, and the maximum axial
temperature difference is 0.027°C, which is more than an
order of magnitude smaller than the maximum axial tem-
perature errors computed for the other two methods. Figure
11 shows that the temperature obtained from the reference
and the temperature obtained from the results of the angular
spectrum approach are almost indistinguishable when the in-
put pressure is computed with the fast nearfield method using
two abscissas. However, if the input pressure for the angular
spectrum simulation is computed with the Rayleigh–
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FIG. 11. Axial temperatures computed with the BHTE for power deposi-
tions calculated with the angular spectrum approach using different input
planes. The pressures are generated by the 32�32 element planar phased
array in Fig. 2, which is electronically focused at �0,0 ,10� cm. The tem-
perature obtained from the reference power deposition is indicated by the
solid line, the temperature obtained from the power deposition calculated
with the angular spectrum approach using the input normal particle velocity
plane is indicated by the dash-dot line, the temperature obtained from the
power deposition calculated with the angular spectrum approach when the
input pressure is computed with the Rayleigh–Sommerfeld integral using
2�2 abscissas is represented by the dashed line, and the temperature ob-
tained from the power deposition calculated with the angular spectrum ap-
proach when the input pressure is computed with the fast nearfield method
using two abscissas is represented by the dotted line with “+” markers. The
result obtained with the angular spectrum approach where the input pressure
is computed with the fast nearfield method is nearly coincident with the
reference temperature field, whereas the other simulated temperature fields
contain noticeable errors.
Sommerfeld integral approach using 2�2 abscissas or with
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the input normal particle velocity, the simulated temperature
contains noticeable errors. As shown in Fig. 10, the output
errors in the 3D pressure field are the same when the input
pressure is computed with the Rayleigh–Sommerfeld integral
using 7�7 abscissas or with the fast nearfield method using
two abscissas. In addition, the simulated 3D temperature
fields demonstrate that the temperature distribution obtained
from the angular spectrum approach using the input normal
particle velocity plane underestimates the temperature field
everywhere and that the temperature distribution obtained
from the angular spectrum approach combined with the
Rayleigh–Sommerfeld calculation using 2�2 abscissas
overestimates the temperature field everywhere. In contrast,
the temperature distribution obtained from the angular spec-
trum approach when the input pressure is computed with the
fast nearfield method closely matches the reference tempera-
ture throughout the 3D volume. This suggests that the fast
nearfield method is the preferred method for computing the
input pressure in angular spectrum calculations, especially
for thermal therapy simulations with large ultrasound phased
arrays.

IV. DISCUSSION

A. Simulations with other arrays

The simulation results from Sec. III were also validated
with two other planar arrays driven by a 1 MHz continuous
wave source. The first was a 14.45 cm�14.45 cm �96.67�
�96.67�� planar array containing 50�50 square elements.
The size of each element was 2.4 mm�2.4 mm �1.6�
�1.6��, and the kerf between adjacent elements was
0.5 mm. The first array was electronically focused at
�0,0 ,12� cm. The computational grid for this array extended
from 6 cm �40�� to 18 cm �120�� in the z direction. The
second was a 4.55 cm�4.55 cm �30.33��30.33�� planar
array containing 20�20 elements. The size of each element
was 1.8 mm�1.8 mm �1.2��1.2��, and the kerf between
adjacent elements was 0.5 mm. The second array was elec-
tronically focused at �0,0 ,8� cm. The computational grid for
the second array extended from 3 cm �20�� to 12 cm �80��
in the z direction. The sampling rate in the x, y, and z direc-
tions was �=� /2 for both arrays. Angular spectrum simula-
tion results computed for these arrays consistently demon-
strated that smaller errors were achieved with the input
pressure plane than with the input normal particle velocity
plane. Results also showed that the smallest errors were ob-
tained when the input pressure plane was located a short
distance from the array and that z0=0.15 cm �z0=�� pro-
duced acceptably small errors. The largest errors were con-
sistently obtained when the input pressure plane was coinci-
dent with the array aperture �z0=0�. For the 20�20 element
array, the optimal value of L was 4.8 cm �32�� or 1.056
times the lateral extent of the array aperture, and for the 50
�50 element array, the optimal value of L was 14.7 cm
�98�� or 1.017 times the lateral extent of the array aperture.
In general, the optimal input plane size is between 1 and 1.1
times the lateral extent of the array aperture when the input

pressure plane is located at z0=�.
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Other focal patterns were simulated with the 32�32 el-
ement planar array in Fig. 2, including a pressure field with a
steered focus at �0,3 ,10� cm and a pressure field with a
mode32 consisting of two symmetric foci. These pressure pat-
terns are of interest for thermal therapy applications because
most tumors are much larger than the size of a single focal
spot. The location of the input pressure plane and the size of
the truncating window had similar influence on both the off-
axis focal pattern and the multiple-focus pattern. The tem-
perature fields for the 32�32 element planar array with a
steered focus and multiple focal spots were also simulated
with the BHTE after the pressure was computed with the
angular spectrum approach. The error in the temperature dis-
tributions was again very small when the input pressure was
calculated by the fast nearfield method in a plane located one
wavelength from the array aperture, where the truncating
window was slightly larger than the array aperture.

A 38�38 element spherical-section array33 with square
elements was also simulated with the angular spectrum ap-
proach. The opening angles in both lateral directions were
equal to 60°. Each element in this array was 0.24 cm high
and 0.24 cm wide. The array was geometrically focused at
12 cm. The pressure generated by this spherical-section array
was also obtained with the angular spectrum approach. As
for each of the results presented in previous sections, accu-
rate results were obtained when the input pressure was cal-
culated by the fast nearfield method in a plane truncated by a
window slightly larger than the array aperture and located
one wavelength from the nearest point on the array aperture.

B. The size and location of the input pressure
plane

The location z0 and the extent L of the input pressure
plane determine the accuracy of the calculated pressure field.
As demonstrated in Fig. 6�b�, when a sufficiently large L is
used, consistently small errors are achieved for any z0��. In
contrast, Fig. 6�a� shows that when an intermediate value of
L is used, the error oscillates as z0 varies. In this case, the
input pressure plane should be closer to z0=�. When z0=�
and L=7.8 cm �L=52�� for the array in Fig. 2, the computed
axial pressures are coincident with the reference pressure.
Figures 7 and 8 show that an input pressure plane with L
=7.8 cm is sufficient for this array when z0=�. A larger input
pressure plane is required to capture the wave energy when
z0 is larger because the pressure wavefront in the correspond-
ing input plane is broader. However, larger input pressure
planes require more computer memory and computation
time.

C. The spatial sampling rate

The spatial sampling interval � is an important param-
eter in angular spectrum simulations. Undersampling in the
spatial domain leads to aliased spectra in the spatial fre-
quency domain. In Fig. 5, the large errors produced by the
input normal particle velocity plane or the input pressure
plane located at z0=0 are largely due to aliasing. In the
phased array model evaluated here, the normal particle ve-

locity distribution on each transducer element is represented
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by a 2D rect function. The discontinuities at the edge of each
element and at the edge of the array aperture introduce high
spatial frequency components that are inherently aliased.
Thus, the normal particle velocity field encounters some
sampling difficulties that cause aliasing. In contrast, the
changes in the input pressure distribution are less abrupt. In
fact, the angular spectra for the input pressure plane sampled
by �=� /2 and � /4 are similar, while the angular spectra for
the input particle velocity plane sampled by �=� /2 and � /4
differ by a significant amount due to aliasing.

For either the normal particle velocity or the input pres-
sure, the output error is reduced by decreasing the spatial
sampling interval. By decreasing � from � /2 to � /4, the
maximum RMSE for the result obtained from the input par-
ticle velocity plane is reduced from 0.084 in Fig. 5 to 0.035,
and the maximum RMSE for the result obtained from the
input pressure is reduced from 0.044 to 0.005. The RMSE
values in Fig. 10 are also reduced by decreasing �. However,
smaller values of � increase the computation time and the
amount of computer memory required, and as shown in Figs.
7 and 11, � /2 sampling is sufficient for angular spectrum
simulations of the 32�32 element planar array when the
input pressure is computed with the fast nearfield method
using appropriate values for L and z0.

D. The spectral sampling rate

The spectral sampling interval 
k describes the reso-
lution of the angular spectrum. If the angular spectrum is
undersampled, wrap-around errors will appear in the recon-
structed spatial field. The spectral sampling interval is deter-
mined by the relationship 
k=2� / �N��, where increasing N
enhances the angular resolution of the angular spectrum and
reduces wrap-around errors for a fixed value of �. In the
simulations presented here, the spectral propagator is evalu-
ated within a 512�512 grid. The input pressure plane is
discretized to 113 points in the x and the y directions and
then zero-padded on a 512�512 grid before the 2D FFT is
performed. If no zero-padding is used, the RMSE for the
simulated pressure in the 113�113�161 grid is about 37
times higher than the result obtained from the 512�512
�161 grid. However, as indicated earlier, N=512 is suffi-
ciently accurate for the results presented here. Further in-
creases in N will result in an unnecessary increase in the
computation time and the amount of computer memory.

The numerical error can be especially large for simula-
tions in non-attenuating media, as demonstrated in Ref. 17.
An angular restriction technique15 that applies a lowpass fil-
ter to the spectral propagator can eliminate some of the high
spatial frequency components in the angular spectrum that
contribute to the numerical error. However, the numerical
simulations shown here are evaluated in an attenuating me-
dium, so the excessive high spatial frequency spectra are
filtered out by the attenuation term in Eq. �10�. The angular
spectrum simulations in this paper produce accurate results
without angular restriction, which is not needed for simula-

17
tions in attenuating media.
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E. Computation time

The angular spectrum approach computes pressures in
parallel planes by propagating fields in the spatial frequency
domain. This method reduces the computation time signifi-
cantly compared to conventional integral approaches, which
compute the pressure at individual field points and superpose
the results. The pressure field in a 7.8 cm�7.8 cm�12 cm
volume is discretized to a 105�105�161 grid when the
spatial sampling rate is �=0.075 cm. To compute the pres-
sure field generated by the 32�32 element planar array in
Fig. 2 in this 3D grid, the Rayleigh–Sommerfeld integral
calculation in Eq. �1� is completed in 46.15 min if each in-
tegral is evaluated with 2�2 abscissas. In contrast, the an-
gular spectrum approach with N=512 only uses 2.12 min to
compute the pressure in the same grid, where 0.52 min of
this time is spent computing the 105�105 point input pres-
sure plane with the fast nearfield method using two abscis-
sas. In comparison, the Rayleigh–Sommerfeld integral with
7�7 abscissas computes the input pressure plane in
2.84 min and achieves similar accuracy, so the total calcula-
tion time for a 3D pressure field with the angular spectrum
approach is 4.44 min. Based on this analysis and the results
presented in previous sections, the fast nearfield method is
preferred for calculations of the input pressure plane in an-
gular spectrum simulations.

V. CONCLUSION

The angular spectrum approach is a computationally ef-
ficient method for simulating 3D pressure fields generated by
large ultrasound phased arrays comprised of hundreds or
thousands of elements. The results show that the input pres-
sure plane produces more accurate simulation results than
the input normal particle velocity plane in angular spectrum
computations. In addition, for angular spectrum calculations
performed with an input pressure plane, the largest errors are
obtained when this plane is coincident with the array aper-
ture, and much smaller errors are obtained when this plane is
located one wavelength away from the array aperture. Fur-
thermore, the error in the simulated pressure field decreases
as the extent L of the input pressure plane increases. When L
reaches a sufficiently large value, the error in the simulated
pressure field becomes very small. The optimal value of L is
between 1 and 1.1 times the lateral extent of the array aper-
ture. Results also show that the output errors from angular
spectrum computations asymptotically approach a limiting
value as the number of abscissas used for input pressure
plane calculations increases. To achieve this error limit in the
computed 3D pressure field, fewer abscissas are required by
the fast nearfield method than the Rayleigh–Sommerfeld in-
tegral approach for input pressure plane calculations due to
the rapid convergence of the fast nearfield method. Evalua-
tions of angular spectrum results in bio-heat transfer simula-
tions demonstrate that the angular spectrum approach com-
bined with the fast nearfield method achieves much smaller
errors than the angular spectrum approach combined with the
Rayleigh–Sommerfeld integral approach or angular spectrum
calculations with an input normal particle velocity plane.

Thus, the angular spectrum approach is an accurate and ro-
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bust method for thermal therapy simulations with large ultra-
sound phased arrays when the input pressure is computed
with the fast nearfield method in a plane located one wave-
length away from the array and truncated by a window
slightly larger than the array aperture.
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