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Abstract
Gastric motility studies are frequently conducted with anesthetized animal models. Some studies
on the same animal species have reported differences in vagal control of the stomach that could
not be explained solely by slightly different experimental conditions. A possible limitation in the
comparison between similar studies relates to the use of different anesthetic agents. Furthermore,
anesthetic effects may also limit generalizations between mechanistic studies of gastric motility
and the gastric motility of conscious animals. In the present study, we used the [13C]-breath test
following a liquid mixed-nutrient test meal (Ensure®, 1 ml) with the aim to investigate the rate of
gastric emptying in animals that were either conscious or anesthetized with either Inactin® or
urethane.

One week after determining the maximum 13CO2 concentration, time to peak [13C] recovery and
gastric half emptying time in control, conscious rats, we repeated the experiment in the same rats
anesthetized with Inactin® or urethane. Our data show that Inactin® anesthesia prolonged the time
to peak [13C] recovery but did not significantly reduce the maximum 13CO2 concentration nor
delay gastric half emptying time. Conversely, urethane anesthesia resulted in a significant slowing
of all parameters of gastric emptying as measured by the maximum 13CO2 concentration, time to
peak [13C] recovery and half emptying time.

Our data indicate that Inactin® anesthesia does not significantly affect gastric emptying while
urethane anesthesia profoundly impairs gastric emptying. We suggest that Inactin®, not urethane,
is the more suitable anesthetic for gastrointestinal research.
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Introduction
The importance of vago-vagal reflex circuits mediating gastric motor function (motility) is
well established1. The central, integrative, component of this reflex consists of the nucleus
tractus solitarius (NTS) and the dorsal motor nucleus of the vagus (DMV) located within the
medulla. Studies over the past decades have led to the generally accepted view that the
motor output of the DMV regulates gastric motility through the opposing contributions of a
cholinergic excitatory and a nonadrenergic, noncholinergic (NANC) inhibitory circuit1,2.
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However, mechanistic studies of the central control of gastric motility by the NTS and DMV
frequently employ an anesthetized animal model for in vivo physiological and
neuropharmacological studies3–8.

Anesthetic effects potentially limit generalizations between the conscious and anesthetized
animal model. Furthermore, differences occurring between similar studies may relate to the
use of different anesthetics. Both thiobutabarbital (Inactin®) and urethane are long-acting
rodent anesthetics which have seen widespread use in gastrophysiology studies due to their
presumptive sparing of autonomic function9. Cardiovascular parameters remain stable
following Inactin®10 though changes in sodium balance have been reported11. Urethane
anesthesia is presumed to spare autonomic function, although the degree of autonomic
sparing may not be complete12,13. The potential effects of anesthetic choice upon brainstem
autonomic reflexes are occasionally acknowledged in studies of gastrointestinal motility14,
considered minimal15, or are purposefully exploited16. Surprisingly, the effects upon
gastric motility of these commonly used anesthetics have not been adequately determined.

The controversy of anesthetic choice is only partially circumvented in studies of
gastrointestinal motility that are performed in the conscious, behaving animal17–21.
Commonly, these studies are based upon a single parameter of the entire gastric emptying
process such as gastric contractility17,18 or are outcome based measurements such as post-
mortem assays for gastric emptying of a meal challenge22–24. Non-invasive breath tests for
gastric emptying utilizing [13C]- isotope-enriched substrates have been validated in a
number of species including humans and rodents25–29 with the added benefit that this
technique permits safe, repeatable, measurement of gastric emptying in the same animal.

Using the [13C]-breath test, the aims of the present study were 1) to establish baseline values
of the rate of gastric emptying of a liquid, mixed-nutrient meal (Ensure®) in conscious
animals; 2) to test the hypothesis whether sustained Inactin® or urethane anesthesia
adversely delay gastric emptying rate.

Materials and Methods
All procedures were performed according to National Institutes of Health guidelines and
were approved by the Institutional Animal Care and Use Committee at the Pennington
Biomedical Research Center.

All experiments were conducted on male Wistar rats (n = 14; Harlan, Indianapolis, IN). Rats
were ≥8 weeks of age upon entrance into the experiment and were double housed in a room
maintained at 21–24°C and a 12:12-h light-dark cycle with food and water provided ad
libitum. Following acquisition of the baseline values in conscious, unanesthetized
conditions, rats were randomly assigned to receive either Inactin® or urethane. Body
weights prior to baseline measurement were recorded and tested to ensure that no significant
weight difference existed between groups.

Measurement of gastric emptying using [13C]-octanoic acid breath test
The liquid test meal used in this study was 1 ml of Ensure® (1.06 kcal, protein 16.4%, fat
10.1%, glucose 73.5%) combined with 5µl octanoic acid. Rats were gavaged with 1ml
Ensure® in the days prior to the experiment in order to establish familiarity to the technique
and the meal. Following an overnight fast (water ad libitum), the [13C]-breath test was
performed using procedures described previously30. Briefly, animals were placed in a 7 L
capacity metabolic chamber with a continuous flow of fresh air (0.65 l/min) in order to
maintain CO2 levels near 0.5%. Samples were automatically withdrawn and analyzed by
nondispersive Infra Red Isotope Analyzer (IRIS; Wagner Analysen Technik, Bremen,

Qualls-Creekmore et al. Page 2

Neurogastroenterol Motil. Author manuscript; available in PMC 2011 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Germany). After two baseline measurements were taken, rats were briefly removed from the
chamber and administered the test meal through a flexible polyethylene oro-gastric tube
(PE-90). During all breath tests, rats were allowed 30 min for accommodation to the
chamber before beginning the measurement. Air samples were collected at 5 min intervals
for the first 1h of testing; subsequent air samples were taken at 15 min intervals for a total
testing time of 240 min.

The [13C]-octanoic acid breath test was performed twice. The first test established the rate of
gastric emptying for the conscious rat. Rats were returned to their home cage at the
conclusion of the first 6 hr test. At 7 d after baseline measurement, rats were fasted a second
time and randomly chosen to be anesthetized with thiobutabarbital (Inactin®; Sigma, St.
Louis, MO; 100 mg/kg IP), or urethane (Sigma; 1.25g/kg IP). Following anesthesia, the rats
were maintained at 37±1°C using a feedback-controlled warming pad in the testing chamber
for 30 min before beginning the [13C]-octanoic acid breath test. After the first two breath
analysis measurements were taken, rats were gavaged with the [13C]-octanoic acid labeled
liquid meal. Following completion of the [13C]-octanoic acid breath test, anesthetized rats
were euthanized.

Using the change in 13CO2 level over baseline for each air sample, the maximum
concentration (Cmax; ‰) time to reach the maximum concentration in fractional dose/h
(Tmax) and the gastric half emptying time (T1/2) were calculated by the IRIS software. The
Results are represented as the mean±S.E.M. Statistical analysis was performed by using a
two-sample t-test and significance differences were assumed when p<0.05.

Results
In conscious male Wistar rats (n=14), the maximum concentration of exhaled 13CO2 was
61.9±3.4 (Cmax; ‰). The time to reach maximum values (Tmax) of exhaled 13CO2 was
44.8±1.9 min. The calculated T1/2 for the gastric emptying of Ensure® was 76.9±3.1 min.
Following this test, rats were randomly assigned to groups to receive either Inactin®- or
urethane-anesthesia. There were no significant differences in Cmax, Tmax or the gastric
emptying rate between group assignments.

In a separate test 7 d later Fig. 1, the Tmax of animals anesthetized with Inactin® was
significantly delayed (Table 1; p<0.05) while the values for Cmax and T1/2 were not
significantly different from conscious values (Table 1; p>0.05). Following urethane
anesthesia, Cmax, Tmax and T1/2 were all significantly delayed when compared to previous
conscious values and those observed in Inactin® anesthetized animals (Table 1; p<0.05).
These data indicate that the [13C]-octanoic acid breath test in conscious rats shows low
between-animal variability in the rate of gastric emptying of a liquid, mixed nutrient meal.
Unlike urethane, Inactin® anesthesia does not significantly depress maximum 13CO2
recovery or gastric half emptying time and indicates that it is a more suitable anesthetic for
experiments in gastric emptying and motility.

Discussion
In the present study we have shown that Inactin® anesthesia does not significantly change
gastric emptying rate compared to conscious animals. Conversely, urethane anesthesia
significantly delays gastric emptying. Our data suggest that Inactin® is an acceptable long-
acting anesthetic for studies of gastric emptying and motility which may extend to
physiological studies of gastrointestinal functions. Conversely, urethane anesthesia inhibits
gastric emptying significantly and may not be suitable for some gastrointestinal
physiological studies.
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Our conclusions are based upon the following lines of evidence. The sensitivity of our
[13C]-breath test data from conscious animals is in general agreement with measures of
gastric emptying reported for a similarly formulated liquid enteral meal31. Specifically, the
time to peak 13CO2 level following the administration of [13C]-octanoic acid was nearly
identical. Unfortunately, gastric half emptying time was not reported by those authors, thus
limiting further comparisons. In our previous [13C]-breath test study30 we reported Tmax
and T1/2 values for gastric emptying in surgically naïve animals fed a solid meal that
contained the same molar amount of [13C]-octanoic acid. Similarly to our observations of
liquid gastric emptying, the sensitivity of our [13C]-breath test for solid emptying was also
in general agreement with published reports27. Comparison of our previous findings with
our present data reveals that gastric emptying for a solid meal was approximately 50%
slower, which is appropriate due to the differences in the transpyloric flow of liquid or solid
meals32,33

Special attention must be paid to pulmonary sufficiency when utilizing the [13C]-breath test.
Suppressed respiration as a result of anesthesia would predict a reduction in 13CO2
expression throughout the [13C]-breath test. Inactin® anesthesia does lead to an increase in
CO2 blood gas values, though oxygen tension remains similar to conscious rats34 while
respiratory function is considered stable under urethane anesthesia35,36. In our study both
groups of anesthetized animals had calculated CO2 production levels (mmol/h*cm2) that
were not significantly different from those of conscious controls (data not shown).
Therefore, it is unlikely that diminished respiratory rates under urethane anesthesia account
for the delay in gastric emptying seen during the [13C]-breath test.

One consequence of urethane anesthesia is a rapid elevation of blood glucose levels37,38.
This hyperglycemia is only observed when urethane is administered intraperitoneally rather
than intrarterial or subcutaneously36. Hyperglycemia inhibits gastric emptying of both
liquid and solid meals39,40 due, in part, to reduced antro-pyloric coordination39 and a
reduction in gastric tone that is proposed to involve the activation of nitric oxide- and VIP-
containing neurons41. Conversely, studies of Inactin® anesthetized rats that include blood
glucose data do not indicate any change in blood glucose concentration42,43. Therefore, our
data suggest that urethane is a less desirable long-acting anesthetic than Inactin® for in vivo
studies of gastric motility due the potential confounding variable of hyperglycemia.

In summary, the use of any anesthetic regimen duly raises concerns regarding the
interpretation of physiological data. Our data from Inactin® anesthetized rats suggests that,
unlike urethane anesthesia, the components of gastric emptying necessary for the delivery of
the [13C]-labeled test meal into the duodenum (e.g., gastric contractions, antropyloric
coordination, duodenal feedback) more closely resemble those of the conscious animal. Our
study also demonstrates the applicability of the enteral delivery of a mixed-nutrient test meal
to study pre- and post-prandial gastric physiology and pathophysiology in an anesthetized
animal model. This will permit more detailed mechanistic studies directed at the actions of
feeding-associated regulatory peptides and the central control of gastric reflexs.
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Figure 1.
The within-subjects [13C] fractional dose curves for animals administered the breath test. A.
animals without anesthesia (conscious) or following Inactin anesthesia 7 d later (n=7) or B)
conscious animals that received urethane anesthesia 7 d later (n=7).
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Table 1

Gastric emptying parameters of [13C]-octanoate labeled Ensure prior to, and following anesthesia with either
Inactin or urethane

Conscious, prior
to Inactin

Inactin Conscious, prior
to Urethane

Urethane

Cmax (‰) 59.4±5.0 56.7±4.6 59.7±6.3 36.9±2.2*,#

Tmax (min) 44±3 51±2✪ 45±3 54±2*

T1/2 (min) 77±5 92±7 76±3 117±8*,#

✪
significantly different from conscious values prior to inactin anesthesia (p<0.05).

*
significantly different from conscious values prior to urethane anesthesia (p<0.05).

#
significantly different from inactin anesthesia (p<0.05).
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