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Abstract
We introduce the Gaussian-mixture umbrella sampling method (GAMUS), a biased molecular
dynamics technique based on adaptive umbrella sampling that efficiently escapes free energy minima
in multi-dimensional problems. The prior simulation data are reweighted with a maximum likelihood
formulation, and the new approximate probability density is fit to a Gaussian-mixture model,
augmented by information about the unsampled areas. The method can be used to identify free energy
minima in multi-dimensional reaction coordinates. To illustrate GAMUS, we apply it to the alanine
dipeptide (2D reaction coordinate) and tripeptide (4D reaction coordinate).

INTRODUCTION
The free energy surfaces of biomolecular systems are characterized by a large number of local
minima (basins) [1-7]. Consequently, approaches to sampling the full surface with simulation
times accessible to present-day molecular dynamics (MD) require special methods to escape
from the free energy basins. A frequently used approach augments the physical potential by a
biasing potential. If the biasing potential is adjusted during the simulation, the probability to
explore unvisited areas increases [8-14].

Many biasing methods are based on umbrella sampling [15]. In umbrella sampling, specific
values of one or more progress variables, the “reaction coordinate”, are made more probable
by a local biasing potential. In a widely used extension of this approach, called adaptive
umbrella sampling, the biasing potential is updated during multiple simulations, until the
potential is sufficiently uniform so that the system visits all values of the reaction coordinate
(s) with equal probability [10,11]. Modern implementations of the umbrella sampling concept
include coordinate flooding [8], hyperdynamics [16] and its variant, accelerated MD [12], and
metadynamics [9,17]. All of these methods focus on escaping from free energy minima. In the
coordinate flooding method the potential is augmented by a Gaussian term that moves the
trajectory out of the current basin. This flooding potential acts on the lowest frequency principal
modes. The biasing potential in metadynamics consists of a history-dependent sum of
Gaussians that are centered on previously visited conformations. In hyperdynamics and
accelerated MD, the biasing potential is based solely on information from the underlying
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potential energy surface; in accelerated MD, values of the potential energy below a preset
threshold are augmented by a “boost” energy [12]. Related approaches for sampling free energy
surfaces can be regarded as outgrowths of thermodynamic integration [18]. Such methods often
sample a predetermined, possibly vectorial, reaction coordinate, as in adaptive biasing force
sampling [19], adiabatic molecular dynamics [20], and blue moon sampling [21,22].
Alternatively, an optimal reaction coordinate is determined during the sampling, as in the finite
temperature string method [23-26]. We compare and contrast GAMUS with conformational
flooding and metadynamics, both of which also introduce Gaussians, in Appendix A.

To obtain physical (“unbiased”) properties from one or more such biased simulations, the
statistics need to be reweighted [15,27,28]. In adaptive umbrella sampling, the reweighting is
now most commonly performed with the weighted histogram analysis method (WHAM) [27,
29-31]. In the WHAM, the probability distributions are described by histograms of a
predetermined bin size. The unbiased probability distribution is obtained by minimizing the
variance in each of the bins. In practice, both the memory and the sampling requirements
associated with binning limit the WHAM to low-dimensional (usually one or two) progress
variables. This is due to the fact that larger grids require more memory, and also more sampling
for statistical accuracy (each bin needs at least one sample). These limitations restrict the use
of biasing methods to low-dimensional systems if thermodynamic properties are desired, or if
the biasing depends on the reweighted statistics from previous biasing simulations (which is
the case in adaptive umbrella sampling, for example). We note that low dimensional sampling
might be enough, in principle, since for diffusive dynamics there exists a “perfect” one-
dimensional reaction coordinate that can reproduce the kinetics [32-35]. However, since it is
unclear if in practice one can always find such a coordinate, higher dimensional sampling
remains important. The results of the latter can also be useful in obtaining the reduction to a
one dimensional description of the free energy surface.

We propose a new adaptive umbrella sampling method, the Gaussian-mixture umbrella
sampling method (GAMUS), that significantly increases the dimensionality of systems that
can be studied. The outline of the algorithm is shown in Figure 1. The method employs a
Gaussian-mixture model to fit the probability distribution by multivariate Gaussians, and
bypasses the use of bins for the collection and reweighting of the statistics. The method avoids
areas of low probability, and will be shown to map efficiently free energy basins as a function
of progress variables involving up to four degrees of freedom. This is demonstrated by the
application of the method to the alanine dipeptide (CH3CO-Ala-NHCH3) and the alanine
tripeptide (CH3CO-Ala2-NHCH3). Although much smaller than proteins, these peptides are
good systems for test purposes, since their free energy surface as a function of the backbone
dihedral angles can be calculated directly [11,36]. Both peptides have recently been used to
test a method for the calculation of low free energy pathways between two known free energy
basins [37]. The goal of the present method is not to connect known free energy basins, but
rather to escape from free energy minima. Our test calculations show that GAMUS efficiently
explores the conformational space. During the relatively short simulations (4 ns total for each
system), many free energy basins were identified for the alanine dipeptide and the alanine
tripeptide. For the alanine dipeptide the relative free energies of these basins were correct; no
independent free energy data are available for the alanine tripeptide.

We stress that the method is designed to explore free energy basins and is less appropriate to
describe the location and free energy of the barriers. In GAMUS, the probability density, not
the free energy, is fit by the Gaussian-mixture model. We focus on the probability density,
since there exists a very efficient algorithm, the expectation-maximization algorithm [38,39],
that can be used for the fit. This algorithm determines the weight, the covariance, and the
location of all Gaussians used in the fit in an iterative manner. Fitting the probability density
means that the free energy surface, which is obtained from the logarithm of the probability
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density surface, will be less accurate (will have higher statististical errors) for regions of high
free energy. Therefore, we expect the method to be most useful for the identification of free
energy basins, and less so for barriers on high dimensional free energy surfaces. Also, while
GAMUS quickly locates basins, the convergence of the free energy of these basins takes longer.
Once the basins have been identified with GAMUS, accurate free energy differences, and
pathways with free energy profiles connecting the basins can be obtained by more specialized
methods [24-26,35,37,40,41], which require a priori knowledge of the basins.

The paper is organized as follows. The Theory section discusses the adaptive umbrella
sampling method used here, the reweighting of statistics from the biased simulations, and the
construction of the biasing potential from multi-variate Gaussian functions. Applications of
the method to the alanine dipeptide and the alanine tripeptide are presented in the Results
section, and the conclusions are summarized in the final section. Technical details on the multi-
state acceptance ratio method used in the reweighting of the data, and the expectation-
maximization method used for the multi-variate Gaussian fit are described in the Appendices.

THEORY
Terminology and definitions

The Hamiltonian H0(X) describes a system with coordinates X. The symbol q is used to
designate a vector of collective variables (like the φ and ψ protein dihedral angles); the
dimension of q (the number of collective variables) is D. During the GAMUS procedure we
collect samples of q and estimate their weight in the canonical ensemble of H0 at temperature
T. We reweight (and subsequently fit) N samples from previous iterations of GAMUS; we
index these samples with n, so that the n-th sample of q is qn with weight wn. We follow the
standard notation and terminology for probabilities in the Bayesian statistics literature [42] and
do not discriminate between probabilities and probability densities when such distinctions are
clear from the context; we denote all probabilities with the symbol P. The probability density
of q for the Hamiltonian H0(X) at temperature T is P(q); the estimate of that same density after
the i-th iteration of GAMUS is P(i)(q) — the parenthesis in the subscript serves as a reminder
that P(i)(q) is an estimate of P(q) using all available data up to and including iteration i. The
number of Gaussians used in the mixture model is M. The m-th Gaussian, centered at μm with
covariance matrix Σm, is g(q|μm, Σm); its weight in the mixture model is πm. During the i-th
iteration of GAMUS the umbrella sampling proceeds with the Hamiltonian Hi(X), the result
of adding to H0(X) the biasing potential Vb,i(q); the canonical partition function corresponding
to Hi(X) at temperature T is Zi.

Adaptive umbrella sampling [10,11]
During the i + 1 iteration of the sampling part of the GAMUS algorithm, the system is
propagated by constant-temperature molecular dynamics (or Monte Carlo) subject to the
Hamiltonian Hi+1(X):

(1)

with Vb,i+1 the biasing potential in the (i + 1)th simulation. This biasing potential is set equal
to minus the estimated free energy (or potential of mean force) F(i)(q) from the previous
simulation [10,11]:

(2)
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For a canonical ensemble, the estimated free energy follows from:

(3)

where k is the Boltzmann constant, T the absolute temperature, and Pi(q) the estimate of the
probability distribution of q calculated after the ith simulation (Eq. 7) [18,28]. Thus, the biasing
potential enhances the sampling of q by increasing the energy of the visited regions (which,
due to Eq. 3, have a low free energy), encouraging the system to explore unvisited areas. In
the limit that the estimated free energy equals the true free energy, all possible values of q are
visited with equal probability during the sampling.

Reweighting the measured statistics
In the biasing simulations, the history of the configurations q that was visited is recorded. To
account for the use of the biasing potential, the estimate of the probability distribution P(i)(q)
is obtained by reweighting of the biased statistics from one or several previous simulations
(simulations i, i−1, etc.) Formally, the weight wn of each sample qn coming from simulation
i with biasing potential Vb,i in an unbiased simulation of the same length is [15,28]:

(4)

Zi is the partition function of simulation i:

(5)

and Z0 is the partition function of the system of interest:

(6)

Similar expressions are obtained for simulations i − 1, etc.

In standard adaptive umbrella sampling [11] the ratios Zi/Z0, Zi−1/Z0, etc., that appear in Eq.
4, (or, equivalently, Zi/Zi−1, etc.) are solved simultaneously by the weighted histogram analysis
method (WHAM) [27] in a manner that optimizes the estimates of the histograms of the
configurations. WHAM usually uses a grid to store the statistics for each configuration (each
value of the reaction coordinate). The memory limitations due to the use of large grids limit
the method to low dimensional systems (~ 1 – 3 dimensions). Several empirical observations
as well as recent theoretical analysis of the equations leading to WHAM [31,43,44] suggest
that one could avoid the need for a grid and use only the statistics of the energy to obtain
accurate estimates of the ratios of the partition functions. Although such an approach should
be viable within GAMUS, we have not tested this method in the present work. Instead, we use
the multi-state acceptance ratio method [45] to calculate the ratios of the partition functions.
The multi-state acceptance ratio method does not store the statistics on a grid, so that the
reweighting of data is not limited to low dimensions. The multi-state acceptance ratio method
can also use non-equilibrium work data as input, but in our current application we do not take
advantage of this feature. For a summary of this method, see Appendix B.
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Construction of the biasing potential
In standard adaptive umbrella sampling [11] the probability P(i)(q) (Eq. 3) is stored on a grid,
and the biasing potential is obtained from the interpolation of the associated free energies on
the grid (Eq. 2). For the interpolation a Fourier series [11] or splines [37] can be used, for
example. The use of a grid again limits the method to low (≈ 1 – 3) dimensions due to memory
constraints. To circumvent these limitations, we obtain the estimate for the probability
distribution P(i)(q) from a Gaussian-mixture model fit [39,46] using the reweighted statistics
from several previous simulations. In this fit P(i)(q) is described by a sum of M Gaussians:

(7)

where πm,i are positive constant weights. The gm,i(q) are multivariate Gaussian probability
distribution functions, centered at μm,i:

(8)

with Σm,i the symmetric real positive definite variance-covariance matrix of gm,i with
determinant |Σm,i|, and D the dimension of q. The periodic components of q (for example, the
φ or ψ backbone dihedral angles) can be treated with periodic generalizations of Gaussian
distributions, such as the von Mises, and the Fisher-von Mises distributions [47]. If the periodic
components of the distribution are localized within their period, the resulting periodic
generalization of Eq. 8 is equivalent to shifting the difference q − μm,i to the minimal image.

The Gaussian-mixture model fit is performed with multiple tries of the memory-efficient
expectation-maximization (EM) algorithm [38,39] (see Appendix C). The EM algorithm
returns a locally optimal solution to the fit problem and may thus be trapped at unsuitable
stationary points (for a discussion, see, e.g., Ref. [48]). The quality of the fit can be improved
by selecting the highest likelihood solution of an ensemble of EM fits to the same data set
(where each ensemble member is a fit starting from a different initial condition).

Typically, not the entire domain of q is visited in a simulation (especially not in the first few
simulations). To avoid extrapolating the biasing potential outside the area visited in q, the
biasing potential is localized to the visited space. This localization can be achieved by using a
generalization of Eq. 7:

(9)

with γi(q) an appropriate function to describe our prior knowledge (or lack thereof) of the
possible values of q outside the already visited region of space [42,49]. Such priors can make
use of the symmetry, if any, of the collective variables [50] or any other prior information about
those variables; e.g. for angular coordinates like the backbone dihedral angles φ and ψ one
could use a uniform flat prior, or the average Ramachandran plot based on the PDB. In the
applications presented here, we use a constant γi, independent of q.
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In the biasing potential used for the first simulation (i = 0) all πm,0 except π0,0 are set to zero.
In subsequent simulations, the value of π0,i is chosen to localize the probability distribution on
the sampled points and the remaining πm,i are renormalized. In the applications presented here,
we either match the lowest probability sampled data of simulation i to π0,i or we set π0,i to a
predefined (small) value.

Using the Gaussian-mixture model fit to describe the measured probability distribution, the
force corresponding to the biasing potential to be used in Eq. 1 for simulation i is given by:

(10)

The transform of the forces back to Cartesian coordinates follows from:

(11)

with qa the components of the vector q.

SIMULATION SETUP
The simulations of the alanine dipeptide (CH3CO-Ala-NHCH3) and the alanine tripeptide
(CH3CO-Ala2-NHCH3) were performed with the CHARMM polar hydrogen parameter set
param19 [51,52], and the ACE I implicit solvent model [53] as implemented in the CHARMM
program [51]. ACE I [53] was used with a smoothing parameter of 1.6 and a solvent dielectric
constant of 78.5 [54]. It has been shown previously that these ACE I parameters give good
agreement with results from explicit solvent simulations for the alanine dipeptide [54]. In all
cases, Langevin dynamics [55] were used with a friction coefficient of 6 ps−1 and a time step
of 1 fs; SHAKE [56] was not used in the simulations.

The free energy surface of the alanine dipeptide as a function of the φ and ψ dihedral angles
was obtained by adaptive umbrella sampling using a grid spacing of 2° [11,37]. The free energy
surface of the alanine tripeptide as a function of the main chain φ1, ψ1, φ2 and ψ2 dihedral
angles was calculated from an aggregate 301 μs replica exchange simulations [57-59] using 7
replicas at 300, 348, 406, 475, 558, 657, 777, and 920 K. A total of 1.5·109 frames from these
simulations were used for the calculation of the free energy surface; the frames were 0.2 ps
apart. The surface was calculated on a four dimensional grid with a grid spacing of 10°. The
WHAM method [27] was used to reweight the statistics of the higher temperature replica
simulations to 300 K, and error estimates were obtained from a block analysis [28]. The basins
were identified by the method described in Ref. [37]. Briefly, the free energy was monitored
along 100 random vectors centered at a local free energy minimum. To minimize the effect of
noise due to the discretization from the use of a grid, insufficient sampling, and inherent
roughness in the actual surface, this monitoring was performed on a coarse-grained grid
coalescing 4×4×4×4 original grid points (corresponding to a grid with a grid spacing of 40°),
with the free energy of each coarse-grained grid point set equal to the minimum free energy
of its associated 256 original grid points. If the free energy at the center is a local minimum
for each random vector a basin has been identified; the minimum of this basin is at the center
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of the random vectors. We repeated this method for each local free energy minimum in the
original 10° grid.

In the Gaussian-mixture fit umbrella sampling (GAMUS) simulations, the probabilities as a
function of the φ and ψ coordinates (for the dipeptide) or the φ1, ψ1, φ2, and ψ2 coordinates
(for the tripeptide) were fit to the Gaussian-mixture model (Eq. 9) after each MD run of 100,000
steps. For the fit, a total of 4 + i Gaussians were used (where i is the index of the simulation);
the fits were initialized by centering the Gaussians at randomly selected sampled data points
and by setting all variance-covariance matrices to a diagonal matrix that corresponds to a width
of 10° in each dimension. The data points from all previous simulations were reweighted (Eq.
4) and included in the fits; as described in the Theory section, the multi-state acceptance ratio
method [45] was used to determine the ratio of partition functions needed for the weights of
each sampled point. The data points used for the fits were 100 fs apart, giving a total of 1000
points for each simulation. The fits were repeated twenty times using different random seeds,
and the fit with the highest likelihood was selected for the next biasing potential. This
procedure, consisting of a simulation followed by the fits, was repeated 40 times. This
corresponds to a total simulation time of 4 ns, and results in a total of 44 Gaussians for the final
fit. The first simulation was started in the C7eq (dipeptide) and (C7eq, C7eq) (tripeptide)
conformation; the subsequent simulations were restarted using the velocities and coordinates
from the last frame of the previous simulation.

To test the convergence of the method as a function of the number of Gaussians used for the
fits, we also performed simulations of the alanine dipeptide in which the maximum number of
Gaussians were set to 11 and 22. As before, the number of Gaussians was given by 4 + i (where
i is the index of the simulation), but no Gaussians were added after the 6th or 18th simulation.
All Gaussians were fully optimized after each run, however. In the dipeptide simulations, the
prior γ(q) (Eq. 9) was set equal to the lowest sampled probability; the actual value of γ(q) had
no influence on the results. We found empirically that the prior became more important for the
tripeptide. This is due to the fact that the volume of the 4D space (tripeptide) is much larger
than the volume of the 2D space (dipeptide); hence, extrapolation effects are exascerbated. We
minimized these effects by capping the log γ(q) to a small value (between -30 to -50); the actual
value did not have a significant impact on the results. For the reported results, min(log γ(q)) =
−30. GAMUS simulations without such caps typically had smaller values of γ(q) and
sometimes showed deep artificial minima in later runs (n > 20), and large ratios Zn/Zn−1
between the runs.

Free energy basins from the GAMUS simulations were identified with the method described
in Ref. [37]. The free energy surfaces were calculated on a 10° grid, using the Gaussian mixture
fits (Eq. 9). We note that this procedure can be easily extended to higher dimensions due to
the sparseness of the visited space [37]; grid points are only stored for the sampled space, rather
than for the entire space. The minima of the basins obtained in this way were used as the starting
points for a Monte Carlo search of the GAMUS free energy minima. Since the Gaussian mixture
fit yields an analytical expression for the free energy surface, these minima are not necessarily
at the centers of the grid points used in the procedure of Ref. [37].

RESULTS
Alanine dipeptide

Fig. 2 shows the free energy surface of the alanine dipeptide as a function of the φ and ψ dihedral
angles, as obtained by adaptive umbrella sampling using a grid spacing of 2° [11]. Five basins
are observed: C7eq at (φ, ψ) = (−79, 139) with F = 0.0 kcal/mol, αR at (-79, -39) with F = 1.0
kcal/mol, αL at (55, 49) with F = 4.6 kcal/mol, C7ax at (61, -73) with F = 3.8 kcal/mol, and h
at (63, -179) with F = 5.1 kcal/mol (angles in degrees, and all energies relative to the C7eq
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basin). The location and free energy of the saddle points S1 – S9 that separate these basins is
given in the caption of Fig. 2.

Fig. 3A shows the sampled configurations of the first four simulations (4 × 100 ps) of a typical
GAMUS run, superposed on the converged surface (Fig. 2). The effective potential of the
dipeptide for these runs, given by the difference between the converged free energy (Fig. 2)
and the GAMUS biasing potential, are given in Fig. 3B–D for the 2nd–4th biased simulation,
respectively. Since no biasing was used for the first simulation, the effective potential for the
first simulation equals the converged free energy surface (Fig. 2). In the first simulation the
system explored only the free energy minimum of the starting C7eq conformation (Fig. 3A,
blue). Since the C7eq basin is well visited in the first run, the effective potential for the second
simulation is flattened around the C7eq basin (Fig. 3B). Due to this flattening, the S1 barrier
has effectively disappeared, and the second simulation escaped along the S1 saddle point region
to the αR basin (Fig. 3A, green). Since the C7eq and the αR basins are well visited in the first
two simulations, the effective potential for the third simulation is flattened around these basins
and the S2 and S3 barrier regions are lowered (Fig. 3C). Therefore, in the third simulation the
system iterated between the first two basins and escaped to the C7ax basin via the S2 region
(Fig. 3A, red). The regions around the C7eq, αR, and C7ax basins are flattened in the effective
potential for the fourth simulation, and the S4, S6 and S7 barrier regions are also lowered (Fig.
3D), allowing the system to explore the region north of the αL basin around (φ, ψ) = (42, 88)
in the fourth simulation (Fig. 3A, black). This region corresponds to an artificial minimum in
the effective potential.

Analogous to other adaptive umbrella potential methods [11], the Gaussian-mixture fit may
introduce artificial minima and maxima in the effective potential due to extrapolations: the
Gaussian functions also extend into the areas that were not visited in any of the simulations.
These artifacts were observed in a number of the simulations (see also the grey areas in Fig.
4F, for example). Although the trajectory may spend considerable time in such artificial
minima, we found that in practice, these minima only have short-lasting effects. Generally, the
trajectory escaped from the artificial minima within a single simulation. However, the artificial
minima affect the efficiency of the calculation (by spending more than the expected time in
areas that are energetically unimportant). This averse effect can be minimized by monitoring
the simulation and restarting from a different configuration if desired, or by controlling the
value of the prior parameter γ(q), to restrict the sampling within a desired band of free energies.

After 40 simulations the system freely diffused between the various minima of the underlying
free energy surface (Fig. 3E). Fig. 3F shows the fitted free energy surface of the alanine
dipeptide after 40 fits. Comparison with the converged free energy surface (Fig. 2) showed
that the shapes of the five basins are well described by the fit. Moreover, the artificial minima
have disappeared.

Table I lists the location and the minimum of the free energy of the basins as identified by the
Gaussian-mixture fit. The C7eq basin was identified after the first simulation, the αR basin after
the second, the C7ax basin after the third, the αL basin after the fifth, and the h basin after the
eigth simulation. Once a basin had been identified, the location of the minimum of the basin
normally did not change much during subsequent fits; however, there are exceptions (e.g. αL
changed from (59,61) to (56, 46) degrees, with the latter in significantly better agreement with
the converged results of (55, 49) degrees (Table I)). All final Gaussian-mixture fit minima
differ by a few degrees from the converged minima, with the largest deviations of 12° and 20°
occurring for the C7eq and the h basin, respectively. The deviations are due to the relative
flatness of the basins near the minima. In all cases, the free energy difference on the converged
surface between the converged minimum structure and the GAMUS minimum structure is less
than 0.1 kcal/mol. The relative free energies of the basins converged more slowly than their
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locations. After 8 fits, when all the basins had been identified for the first time, the maximum
and the average unsigned errors were 1.2 kcal/mol and 0.52 kcal/mol, after 10 fits 0.7 kcal/mol
and 0.3 kcal/mol, and after 40 fits 0.2 kcal/mol and 0.06 kcal/mol, respectively. In addition to
the free energy estimates at specific angles shown in Table I, we can define the free energy of
a state by integrating the normalized probability over the shaded area in Fig. 2. The free energy
differences (in kcal/mol) of these states between the GAMUS and the converged free energy
for iteration 10 of GAMUS are: C7eq: 0.04; αR: 0.1; C7ax: 0.7; αL: 0.4; h: 0.7, and for iteration
40 of GAMUS: C7eq: 0.05; αR: -0.03; C7ax: 0.09; αL: 0.09; h: 0.2.

To test the convergence of the method as a function of the number of Gaussians functions used
for the fits, we repeated the analysis for simulations in which the maximum number of
Gaussians were set to 11 and 22. As before, the number of Gaussians was given by 4 + i (where
i is the index of the simulation); in the tests, no Gaussians were added after the 6th or 18th

simulation, but all Gaussians were fully optimized after each run. Again, we used a total of 40
simulations of 100 ps each; previously, this resulted in a total of 44 Gaussians for the last fit.
Fig. 4A,C,E show the isocontours of all Gaussians used in the last fits. These contours are
projected onto the free energy surface as obtained from the last simulation; they show where
the Gaussian functions tend to localize. Fig. 4B,D,F show the differences between these
calculated free energy surfaces and the converged free energy surface; the top graphs (Fig.
4A,B) are for the fit with 44 Gaussians, the middle (Fig. 4C,D) for the fit with 22 Gaussians,
the bottom graphs (Fig. 4E,F) for the fit with 11 Gaussians.

Fig. 4 shows that the differences between the fit and the converged free energy surface were
mainly located in the areas of high free energy (≳ 10 kcal/mol): in the fitted surface the free
energy of these regions was underestimated. This means that the effective potential of the
dipeptide, given by the difference between the converged free energy and the biasing potential,
was flat around the basins but remained high around the true high barriers (Fig. 4B,D,F). Thus,
the trajectories were diffusive around the basins but avoided the high barrier areas (see also
Fig. 3E), explaining the efficiency of the method in locating the free energy basins (no time
was wasted in the areas of high free energy). The errors in the high barrier regions were large
(several kcal/mol). This is becase we fit the probability density, rather than the free energy, so
that we can use the very efficient expectation-maximization algorithm [38,39] for the fit. Since
the free energy is obtained from the logarithm of the probability density, large statistical errors
will occur for areas of low probability (high free energy). As expected, the performance of the
method increased with the number of Gaussians used for the fit: the quality of the free energy
surface and the free energy difference map is better for the fit with 44 Gaussians than for the
fits with 22 or 11 Gaussians. The general location of the Gaussians is similar for the three fits
(Fig. 4A,C,E). A comparison of Fig. 4A,C,E shows that the additional Gaussians are mostly
used to fine tune the geometrical shape of the basins.

We also calculated the free energy profiles along the minimum free energy pathways (MFEPs)
for the C7eq ↔ C7ax transition obtained on he converged surface. Here, the MFEPs are defined
as the steepest descent pathways on the free energy surface [37]. There are four MFEPs
connecting these basins [37]:

(12)

(13)

Maragakis et al. Page 9

J Phys Chem B. Author manuscript; available in PMC 2010 April 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(14)

(15)

other paths have higher energies (see the caption of Fig. 2 for the location of the basins and
saddle points). In Fig. 5 the free energy profiles along these pathways are shown for the final
fit using 11 Gaussians (light grey), 22 Gaussians (grey), 44 Gaussians (dark grey) and for the
converged free energy surface (black); in each case, the profiles were calculated along the same
pathways (the MFEPs on the converged surface). Fig. 5 shows that the fits identify the position
of the basins, and their relative free energies (especially when more Gaussians are used). For
the barrier region, however, larger deviations occur between 0.5-1 kcal/mol (for S1 − S2 and
S4 − S7) and 2 kcal/mol (S3 using 11 Gaussians).

Alanine tripeptide
Table II presents the minima of the free energy basins of the alanine tripeptide as a function
of the main chain φ1, ψ1, φ2, and ψ2 dihedral angles, as obtained from replica exchange
simulations of aggregate duration 301 μs. The energies are relative to the global free energy
minimum of the alanine tripeptide, which is the (C7eq,C7eq) conformation at (φ1, ψ1, φ2, ψ2) =
(− 75, 135, −75, 135) (the apparent mismatch with the C7eq conformation of the alanine
dipeptide is due to the different grid spacing used in determining the free energy surface). As
observed before [37], the (φ1, ψ1) angles are mostly independent of the (φ2, ψ2) angles of the
alanine tripeptide: the relative free energies are generally a sum of the energies of the
corresponding basins in the alanine dipeptide. It is interesting to note that the observed
independence gives support to the use of “build-up” procedures, in which the accessible
conformational space is built from the conformational space of small fragments [60]. In total,
25 basins were identified; it is possible that some very high (≳ 10 kcal/mol) free energy basins
were missed due to insufficient sampling.

Table II shows the location and free energy of the minima of the basins as identified in a typical
sequence of GAMUS simulations. Four basins were identified after 10 simulations (1 ns), and
8 after 40 simulations (4 ns). The identified basins are the basins with the lowest free energy,
and the location of the basins closely corresponds to those identified by the replica exchange
simulations. Since the replica exchange simulations used a grid spacing of 10°, basins overlap

perfectly for distances less than . Although the GAMUS simulations correctly
identified the location of the lowest free energy basins, the relative free energies of the basins
generally differed from those of the replica exchange simulations. For the lowest basins
((C7eq,αR), (αR,C7eq), and (αR,αR)) these deviations were less than 1 kcal/mol after 40
simulations; for the highest basins ((C7eq,C7ax) and (αL,C7eq)) the deviations were several kcal/
mol after 40 simulations. In addition, GAMUS yields 2 artificial minima after 40 simulations
due to the extrapolation in the fitting procedure (Table II).

Since the GAMUS simulations depend on random numbers (in the Langevin dynamics and in
the fitting procedure), different basins are found in different runs. We performed two additional
sets of 40 GAMUS simulations starting in the (C7eq, C7eq) configuration but with different
random seeds. The first additional set of simulations identified 11 basins to within 19 degrees
on average from the basins identified by replica exchange: the 9 basins identified after iteration
40 in Table II, plus the minima (αR, C7ax) and (C7ax, C7ax); in addition, it identified 4 artificial
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minima. The second additional set of simulations identified 11 basins to within 23 degrees on
average from the basins found by replica exchange: the 9 basins identified after iteration 40 in
Table II, plus the minima (αR, C7ax) and (h, C7eq); in addition, it identified 1 artificial minimum.
Of all possible pairings of the 7 artificial minima found in the 3 sets of 40 GAMUS simulations,
in only one instance is the distance between the two elements of a pair less than 60 degrees.

We have observed that the subset of common minima that GAMUS obtains in multiple
independent runs with different random seeds tend to agree with the lowest free energy minima
that result from a costly established, method, such as replica exchange or adaptive umbrella
sampling. Although it is inconsistent with the purpose of an efficient exploration of a free
energy surface, one might consider an ensemble of sequences of GAMUS simulations of certain
duration, each starting from different random seeds or from different initial conditions.
Following a classification of all the minima obtained at the end of each GAMUS sequence,
one can cluster the common minima and approximate a probability of finding each minimum
in this ensembles as the ratio of the number of sequences that found this minimum over the
number of sequences in the ensemble. If this probability is very close to 1, the minimum is
safely considered a real minimum of the underlying free energy landscape. If this probability
is considerably less than one, the minimum is questionable.

CONCLUSION
We introduced GAMUS, an adaptive umbrella sampling method that uses Gaussian-mixture
models of the density to escape free energy basins in high dimensional systems. We
implemented the method for dihedral angles and analyzed its performance for the alanine
dipeptide and alanine tripeptide. For the alanine dipeptide, the location and shape of all five
basins were quickly identified; the accurate assessment of the relative free energies took
slightly longer. For the tripeptide, the location of several low basins were quickly established,
but only approximate relative free energies were obtained. In each case, a few (1-2) artificial
basins were identified as well. Since the location of these minima changes from run to run, the
location of the true basins can be established by repeating the calculations multiple times using
different random number seeds.

The method requires little computer memory and avoids areas of high free energy, so that we
expect it to be useful for the location of free energy basins in complex biomolecular systems.
Although in the present example we only tested the sampling of basins in two and four
dimensions, it is known [39] that Gaussian mixture models can extend to a few more
dimensions. In analogy to related developments to the metadynamics methodology [61], it
should be possible to use multiple GAMUS simulations in a Hamiltonian replica exchange
simulation.

Although GAMUS helps expand the number of correlated coordinates that can be sampled
simultaneously, it does not address the question of which reaction coordinates to use when
those coordinates are not obvious. In problems where conformational change involves hinge-
bending type motions, the choice of coordinates is relatively well defined and sampling may
be easier with GAMUS than with previously available methods, because the total number of
relevant coordinates is limited so that being able to include more of them should help. GAMUS
has essentially the same limitations as other sampling methods: if the time required to sample
the space is such that convergence can be achieved, good results can be obtained in
multidimensional problems; if not, not.
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Appendix A
The metadynamics [9,17] and GAMUS methods have common characteristics and a few clear
differences. Both methods have as one major objective the escape from free energy minima,
and do so by the use of a Gaussian mixture model. The difference between the methods is three
fold. First, in metadynamics the Gaussian mixture models the free energy surface, while in
GAMUS the Gaussians mixture models the probability density. Second, GAMUS employs a
fitting procedure for the Gaussians at predefined stages where all Gaussians are evaluated based
on all available data; in metadynamics, a single new Gaussian is added to the mixture model
at predefined time intervals. Third, and most importantly, GAMUS optimizes the covariance
and the weight of the Gaussians, while metadynamics uses identical Gaussians with identical
weights. By optimizing the covariance and weight of the Gaussians, GAMUS is less dependent
on initial conditions and can more efficiently fill the basins. To illustrate this difference, we
will use the simple analogy of filling a house with balls. While the metadynamics method
would use the same size ball to fill up all the rooms (including bookshelves and open cabinets),
GAMUS would use spherical and ellipsoidal balls of different sizes and with different
orientation to maximize the coverage of available volume with as few balls as possible. We
expect that GAMUS’ flexibility to fill up basins is even more important for high dimensional
systems, especially when those basins have non-uniform shapes.

The conformational flooding method [8] that preceded metadynamics used a single Gaussian
biasing potential to escape from the current free energy minimum. In conformational flooding,
the potential acts on the lowest frequency principal components only. These collective
eigenmodes are obtained from a principal component analysis of short MD runs; the latter
analysis corresponds to fitting a single multi-dimensional Gaussian to the probability density
in configuration space. In order to avoid extrapolation errors, the strength and width of the
Gaussian biasing potential are determined by a user-defined parameter. Although
conformational flooding adapts the covariance of the (single) Gaussian biasing to the local
probability density, it is clearly different from GAMUS: the latter biases the probabilities with
a mixture model of multiple Gaussians that are iteratively fit to all available data of a sequence
of simulations.

Appendix B
In the multi-state acceptance ratio method [45], the work Wij associated with switching a system
at configuration q, Hamiltonian Hi and temperature Ti to the state with configuration q,
Hamiltonian Hj and temperature Tj is measured as:

(16)

Using Crooks fluctuation theorem [62], the likelihood of measuring the work Wij given that
the switch is in the i to j direction equals:

(17)

where Fij is the free energy difference between simulation i and j. Ultimately, we will obtain
the ratio of partition functions (needed in Eq. 4) from the optimal estimate of this free energy
difference:
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(18)

Using Bayes’ theorem [63], the probability of measuring a switch in the i to j direction, given
that the work equals Wij, can be expressed as a Fermi-function [64-66]:

(19)

where Mij = kT ln(ni→j/nj→i), and ni→j and nj→i are the number of forward and reverse switches,
respectively. Rather than using only two simulations for our estimate of the free energy
difference (or, equivalently, the ratio in partition functions, Eq. 18), we use the work data for
all possible switches between all states. Assuming that the data is independent, the likelihood
of observing forward switches from all states i to every other state j is given by [45]:

(20)

The optimal estimate for the free energy differences are obtained from the maximization of the
likelihood p(all i → all j). Since all derivatives of the likelihood are available in closed form,
this optimization can be done efficiently by the Newton-Raphson algorithm [45].

Appendix C
The memory-efficient implementation of the expectation maximization algorithm to fit
Gaussian mixture models on sampled data qn (n = 1, …, N) with weights wn has been described
by Bowers et al [39] (see also Baggenstoss [46]) and is summarized below. This algorithm
determines the weights πm, centers μm, and variance-covariance matrices Σm of the M Gaussians
through iterations of the equations below. In the expectation (E) step we estimate the probability
that the m-th component of the mixture model at iteration k generates the n-th sample:

(21)

With the definition of:

(22)

in the maximization (M) step, we formally obtain the weights, centers, and variance-covariance
matrices from:
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(23)

(24)

(25)

where N is the total number of sampled points from the various simulations that are included
in the fit. The weights wn of configuration qn correspond to Eq. 4:

(26)

where j is the index of the simulation in which configuration qn was sampled.

To increase the accuracy of the estimation, all arithmetic is performed in the log-domain and
only the right Cholesky factor of the variance-covariance matrix is evaluated in the
implementation of the mixture model [46]. To minimize round-off errors, this Cholesky factor
is updated with a row-wise economy QR factorization [39] based on a Givens rotation [67].
We further imposed constraints on the variance-covariance matrix [46], such that the Gaussians
would not shrink to less than one degree in any direction. These constraints avoid overfitting
that could otherwise result from the collapse of a multi-dimensional Gaussian to a single data
point.
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Figure 1.
The diagram outlines the adaptive umbrella sampling scheme of GAMUS. The Gaussian
mixture model (GMM; top right) receives weighted samples of a set of collective variables and
estimates the probability density of those variables. The umbrella sampling (bottom) uses the
estimate of this density to bias the sampling of unexplored regions. The reweighting method
(top left) combines the most recent samples from the umbrella sampling with samples from
previous iterations of GAMUS and updates the weight of each sample.
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Figure 2.
Converged free energy surface of the alanine dipeptide as a function of the φ and ψ dihedral
angles. The surface was obtained by exhaustive adaptive umbrella sampling [11,37]. Each
isocontour is separated by 1 kcal/mol; the minimum value of the surface is set to zero. The 5
free energy basins are highlighted. The location (φ, ψ) and free energy of the minima of the
basins is C7eq (-79, 139) 0.0, αR (-79, -39) 1.0, αL (55, 49) 4.6, C7ax (61, -73) 3.8, and h (63,
-179) 5.1 kcal/mol. The location and energies of the saddle points are: S1 (-105, 35) 3.4, S2 (5,
-71) 7.0, S3 (9, 91) 7.2, S4 (65, -7) 5.9, S5 (-103, -119) 4.3, S6 (67, 123) 5.7, S7 (55, -133) 5.5,
S8 (121, 139) 9.3, and S9 (121, -51) 10.0.
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Figure 3. Gaussian-mixture umbrella sampling of the alanine dipeptide
A. The samples of the first four simulations of the Gaussian-mixture umbrella sampling
overlayed on the converged free energy surface of Fig. 2. The blue, green, red, and black dots
denote the samples from simulations 1 – 4 respectively.
B-D. The effective potential on the dipeptide for simulations 2 (B), 3 (C) and 4 (D), given by
the difference between the converged free energy and the biasing potential.
E. The samples from simulation 40 overlayed on the converged free energy surface of Fig. 2.
F. Free energy surface from the Gaussian-mixture fit after 40 simulations. This fit used a total
of 44 Gaussians and all data points sampled in the 40 × 100 ps simulations. Each isocontour
is separated by 1 kcal/mol; the minimum value of the surface is set to zero.
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Figure 4. Gaussian-mixture umbrella sampling of the alanine dipeptide using 44, 22, and 11
Gaussian functions
A, C, E. Isocontours of all Gaussians of the mixture-fit obtained after 40 simulations, over-
layed on the free energy surface. The isocoutours of the Gaussian gi with mixing coefficient
πi are plotted such that πigi(φ, ψ) = exp(−20). A. 44, C. 22, E. 11 Gaussians.
B, D, F. Free energy difference between the converged free energy surface (Fig. 3A) and the
fitted surface. Each isocontour is separated by 1 kcal/mol. The filled gray areas show negative
values of the plot, the white areas show positive values. The fitted free energy surfaces are
within 1 kcal/mol in the areas of the dominant minima and are lower than the converged free
energy surface on the barriers. B. 44, D. 22, F. 11 Gaussians.
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Figure 5.
Free energy profiles along the minimum free energy pathways for the alanine dipeptide. The
shape of the MFEPs correspond to those on the fully converged free energy surface (Eq. 12-15)
[37]; the free energy profiles on this surface are shown in black. The profiles along these
pathways after 40 GAMUS simulations are shown in light grey (using 11 Gaussians), grey
(using 22 Gaussians) and dark grey (using 44 Gaussians for the fit).
A. MFEP 1.
B. MFEP 2.
C. MFEP 3.
D. MFEP 4.
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TABLE II

Location and free energy of the free energy basin minima of the alanine tripeptide. Shown are the (φ1, ψ1, φ2,
ψ2) dihedral angles (in degrees) and the free energy (F) for those specific angles relative to the free energy at the
minimum of the (C7eq, C7eq) basin (in kcal/mol). Distances between the basins identified by GAMUS and the
replica exchange simulations are given in degrees.

Basin Simulation (φ1, ψ1, φ2, ψ2), F Distancea

(C7eq, C7eq) REXb (-75, 135, -75, 135), 0.0±0.0

10 (-89, 158, -76, 129), 0.0 28

20 (-90, 140, -87, 147), 0.0 23

30 (-93, 151, -84, 145), 0.0 28

40 (-99, 144, -86, 148), 0.0 31

(C7eq, αR) REXb (-75, 135, -75, -45), 1.1±0.0

10 (-81, 151, -77, -47), 0.4 17

20 (-92, 148, -67, -55), 2.8 25

30 (-83, 144, -65, -57), 2.3 20

40 (-84, 138, -80, -52), 1.8 13

(C7eq, αL) REXb (-65, 125, 55, 35), 4.3±0.0

40 (-74, 125, 57, 38), 7.0 10

(C7eq, C7ax) REXb (-75, 135, 65, -75), 3.7±0.0

20 (-78, 126, 63, -68), 5.9 12

30 (-100, 134, 61, -48), 7.4 37

40 (-101, 136, 62, -71), 6.7 26

(C7eq, h) REXb (-155, 145, 65, 175), 5.9±0.1

(αR, C7eq) REXb (-75, -45, -85, 135), 1.2±0.0

10 (-106, -57, -94, 148), -2.3 37

20 (-105, -54, -95, 149), -1.4 36

30 (-103, -52, -96, 150), 0.2 34

40 (-84, -46, -120, 147), 1.2 38

(αR, αR) REXb (-75, -45, -75, -45), 2.5±0.0

10 (-89, -31, -84, -42), 3.9 22

20 (-82, -30, -73, -47), 3.2 17

30 (-85, -30, -75, -47), 4.8 18

40 (-83, -29, -72, -45), 2.2 18

(αR, αL) REXb (-75, -45, 55, 45), 5.6±0.0

(αR, C7ax) REXb (-75, -45, 65, -75), 4.7±0.0

(αR, h) REXb (-75, -45, 65, 175), 6.1±0.1

(αL, C7eq) REXb (55, 45, -85, 135), 4.7±0.0

40 (58, 33, -105, 134), 8.4 24
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Basin Simulation (φ1, ψ1, φ2, ψ2), F Distancea

(αL, αR) REXb (55, 55, -75, -35), 5.8±0.1

(αL, αL) REXb (55, 45, 55, 25), 7.9±0.2

(αL, C7ax) REXb (55, 75, 65, -85), 7.8±0.2

(αL, h) REXb (55, 55, 55, 155), 9.6±0.5

(C7ax, C7eq) REXb (65, -65, -75, 135), 3.9±0.0

20 (63, -68, -86, 127), 7.2 14

30 (63, -69, -98, 125), 7.9 25

40 (64, -67, -83, 129), 7.1 10

(C7ax, αR) REXb (55, -85, -75, -35), 3.6±0.0

20 (55, -79, -92, -35), 7.0 18

30 (55, -79, -82, -35), 7.4 9

40 (57, -77, -89, -33), 7.5 16

(C7ax, αL) REXb (55, -65, 65, 25), 7.4±0.1

(C7ax, C7ax) REXb (55, -75, 65, -65), 7.3±0.1

(C7ax, h) REXb (45, -65, 65, 115), 7.8±0.2

(h, C7eq) REXb (65, 175, -85, 135), 5.3±0.0

20 (61, 140, -86, 128), 8.4 36

(h, αR) REXb (65, -165, -75, -45), 6.1±0.1

(h, αL) REXb (75, -175, 55, 55), 8.5±0.3

(h, C7ax) REXb (55, 175, 55, -65), 8.1±0.2

(h, h) REXb (75, 145, 55, -155), 8.9±0.3

GAMUS Artificial Minima:

(αR, ?) 20 (-83, -48, -125, 150), 1.0

(αR, ?) 30 (-87, -46, -131, 148), 0.8

(C7eq, ?) 30 (-92, 124, -125, 145), 0.7

(?, ?) 30 (-120, 152, -119, 124), 2.8

(αR, ?) 40 (-75, -50, -149, 162), 1.4

(C7eq, ?) 40 (-87, 138, -131, 149), 1.0

a
Since the bin size in the replica exchange simulations was 10° (see text), basins overlap perfectly for distances less than  degrees.

b
From the replica exchange simulations (in bold).
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