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INTRODUCTION

Staphylococcus aureus has been recognized as an important
cause of human disease for more than 100 years (186). Alex-
ander Ogston first isolated Staphylococcus aureus from a sur-
gical abscess in 1880 and described the role of S. aureus in
localized infection and septicemia, including the use of animal
models of infection (233, 325). Staphylococcus aureus is recog-
nized as a cause of a wide range of infections, from minor skin
infections and chronic bone infections to devastating septice-
mia and endocarditis (44, 45, 48, 63, 99, 124, 179, 207, 218, 277,
308–311). The history of S. aureus is one of evolution and
change. The acquisition of antimicrobial resistance and chang-
ing patterns of staphylococcal disease have been common
themes in the staphylococcal literature over the past 50 years
(25). Significant events in the evolution of S. aureus have in-
cluded the development of methicillin resistance, now a prob-
lem for many hospitals around the world, and the recent emer-
gence of community strains of S. aureus that are methicillin
resistant but also harbor genes associated with increased viru-
lence (42, 43, 365). Methicillin-resistant S. aureus (MRSA)
alone (which probably accounts for fewer than one-third of all
S. aureus infections) caused more deaths in the United States
in 2005 than human immunodeficiency virus infection (esti-
mated MRSA mortality rate in 2005 of 6.3 per 100,000 indi-
viduals) and caused more invasive infections (estimated
MRSA incidence in 2005 of 31.8 per 100,000 individuals) than
other important bacterial pathogens such as Streptococcus
pneumoniae, Haemophilus influenzae, and Neisseria meningiti-
dis (36, 159).

The glycopeptide antibiotic vancomycin was first released in
1958. Subsequently, vancomycin has been the treatment of
choice for serious infections caused by MRSA, which are be-
coming increasingly common globally. For many years there
was no indication that vancomycin resistance in S. aureus was
likely to be a problem. Therefore, initial reports of reduced
vancomycin susceptibility in clinical isolates of S. aureus from
Japan in 1997 generated significant concern in the medical
community (114, 115). Since that time there has been uncer-
tainty regarding optimal laboratory detection and the clinical

relevance of reduced vancomycin susceptibility in S. aureus,
changes in Clinical and Laboratory Standards Institute (CLSI)
breakpoints for vancomycin against S. aureus, and increasing
concern regarding the efficacy of vancomycin for the treatment
of S. aureus infections. Reduced teicoplanin susceptibility in S.
aureus was reported prior to the first reports of clinical S.
aureus isolates from Japan with reduced vancomycin suscepti-
bility (189). Both the terms glycopeptide-intermediate S. au-
reus (GISA) and vancomycin-intermediate S. aureus (VISA)
have been used in the literature and in essence are inter-
changeable. However, it is clear that reduced teicoplanin sus-
ceptibility can be present in S. aureus without a clearly dem-
onstrated reduction in vancomycin susceptibility (34, 113),
whereas generally, VISA strains have demonstrated reduced
teicoplanin susceptibility (183). Because the majority of in
vitro susceptibility testing uses vancomycin, and much of the
literature uses the term vancomycin-intermediate S. aureus
(VISA) and heterogeneous VISA (hVISA), this review will use
this terminology.

Significant controversy still exists regarding the current and
future roles of vancomycin in the treatment of serious MRSA
infections. A resolution of this controversy requires a detailed
understanding of the mechanisms and clinical impact of
changes in vancomycin susceptibility in S. aureus. This review
will summarize current knowledge regarding the mechanisms
and clinical impact of reduced vancomycin susceptibility in S.
aureus.

Vancomycin-Resistant Staphylococcus aureus

After the emergence of vancomycin-resistant enterococci in
the 1980s, significant concern existed with regard the potential
for large outbreaks of vancomycin-resistant S. aureus (VRSA)
due to the acquisition of the vanA gene from enterococci (172,
363). Fully vancomycin-resistant strains of S. aureus (VRSA)
due to the acquisition of the vanA gene from vancomycin-
resistant enterococci were first reported from the United
States in 2002 (38, 47). However, to date, only nine cases of
VRSA have been reported from the United States, with two
additional cases, one from India and one from Iran; however,
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the genetics of resistance have not been verified in a second
laboratory in these cases (3, 84, 247, 292, 323). This indicates
that although this mechanism of resistance is significant, it is
not evolving or spreading rapidly. Therefore, this review will
focus on the more common and controversial area of reduced
vancomycin susceptibility in S. aureus not related to the acqui-
sition of vanA.

Understanding Vancomycin Resistance: the
Staphylococcal Cell Wall

To understand the mechanisms and potential impacts of
vancomycin resistance in S. aureus, a clear understanding of
the organism’s cell wall is required. The staphylococcal cell
wall is a dynamic structure important for maintaining cell in-
tegrity and critical in host-pathogen interactions (351). The
outermost surface of S. aureus is usually covered by a polysac-
charide capsule (Fig. 1). Under the capsule lies the cell wall, a
structure composed of highly cross-linked peptidoglycan (PG)
(a complex structure composed of sugars and amino acids, also
called murein), teichoic acids, and cell wall-associated proteins
(72). The peptidoglycan is composed of glycan chains made up
of the alternating amino sugars N-acetylglucosamine and N-
acetylmuramic acid. Stem pentapeptides (L-Ala-D-iso-Gln-L-
Lys-D-Ala-D-Ala) are attached to the carboxyl group of each
N-acetylmuramic acid, and interpeptide bridges (pentagly-
cines, made up of glycine residues) connect the lysine compo-
nent of one stem peptide to the penultimate D-alanine of a
neighboring stem peptide (351). Teichoic acid chains are at-
tached to the 6-hydroxyl groups of some of the N-acetylmu-
ramic acid residues of the glycan chains and, together with the
peptidoglycan, form a multilayered network that surrounds the
S. aureus cell (161, 351). The stress-bearing murein therefore
represents a continuous macromolecule encasing the sacculus
(72). Typically, the degree of murein cross-linking in the S.
aureus cell wall is high, with bridged peptides as a ratio of all
peptide ends in the order of 80 to 90% (72, 328). The pepti-
doglycan composition from different S. aureus strains is highly
conserved, with almost identical high-performance liquid chro-
matography (HPLC) muropeptide patterns across strains, sug-
gesting that the composition is species specific (351).

By electron microscopy, the cell wall of S. aureus appears as
a thick (20- to 40-nm-thick) homogeneous structure (72). The
actual orientation of the glycan chains within the cell wall is
uncertain. Early models suggested that the glycan strands were
arranged in shell-like, parallel structures around the cell (72,
170). A recent model suggests that the glycan and oligopeptide
chains are in fact perpendicular to the plasma membrane, with
oligopeptide chains adopting a zigzag conformation to connect
adjacent glycan strands (72).

The staphylococcal cell wall also contains teichoic acids,
which represent up to 50% of the dry weight of the purified
staphylococcal cell wall (214). Ribitol teichoic acids (or wall
teichoic acids [WTAs]) are covalently linked to peptidoglycan
and decorated with D-alanine and N-acetylglucosamine resi-
dues (379). Lipoteichoic acids (LTAs) are glycerol phosphate
polymers linked to a glycolipid terminus in the cytoplasmic
membrane (186). The functions of WTAs and LTAs are still
being elucidated, with the recent generation of defined mu-
tants, strains producing reduced amounts of teichoic acids, and

strains producing altered teichoic acids providing significant
insight into their functional roles (68, 78, 163, 248, 377, 381). It
appears that many teichoic acid functions may be nonessential
and may possibly involve indirect interactions with other cell
wall components (379); however, the complete loss of LTA
leads to cell death in S. aureus (104). Lipoteichoic acids appear
to be involved in cell division (379). Some data suggest that the
teichoic acids have a role to help protect the cell envelope as a
mechanical barrier to host defense molecules and antibiotics,
and also, the positive charge of D-alanine residues repels pos-
itively charged molecules such as defensins (54, 248, 249). Wall
teichoic acids also contribute to lysozyme resistance in S. au-
reus by preventing lysozyme binding to peptidoglycan (19). The
dltABCD operon is controlled by the regulator GraRS (also
called ApsRS), which senses and responds to defensins and
other antimicrobial peptides and regulates the alanylation of
teichoic acids in response to the presence of antimicrobial
compounds, indicating that the structure of teichoic acids can
change in response to challenges (111, 180, 181). Wall teichoic
acids also have a role in attachment to host cells, with studies
demonstrating reduced nasal colonization and reduced binding
to endothelial cells in strains deficient in WTA and in strains
with reduced dltABCD-mediated alanylation of teichoic acids
(378, 380, 381).

An understanding of the genetic determinants and enzy-
matic control of cell wall biosynthesis in S. aureus has been
difficult. Many studies have used randomly generated mutants
of methicillin-resistant S. aureus (MRSA) strains that demon-
strate a reduction in the methicillin MIC, followed by biochem-
ical analysis, to define the genes linked to cell wall biosynthesis
(65, 66, 164, 217). A large number of genes appear to be
involved in staphylococcal cell wall precursor production (66).
Important genes include the femA, femB, femC, and femX
genes; genes encoding the penicillin binding proteins (PBPs)
(pbpA, pbpB, pbpC, and pbpD); and regulatory genes involved
in cell wall biosynthesis, such as vraSR (351). The femA, femB,
femC, and femX genes are involved in the stepwise synthesis of
the pentaglycine bridge that attaches to the lysine residue of
the stem peptide and are essential for bacterial survival (20,
278–280). The PBPs also have an important role in cell wall
synthesis. In particular, high-molecular-weight PBPs (PBP1,
PBP2, and PBP3) have a transglycosidase function (to link
N-acetylglucosamine to N-acetylmuramic acid) and a transpep-
tidase function to link the penultimate D-Ala to a glycine ac-
ceptor in the nascent cell wall (214, 256). There is significant
interest in the PBPs because of their relevance to antimicrobial
therapy (they are the target site for beta-lactam antibiotics)
and to antimicrobial resistance (PBP2a, encoded by mecA, is
responsible for methicillin resistance in S. aureus) (256). De-
spite this interest, it has been difficult to assign specific func-
tions to each PBP. PBP1 is essential but does not appear to
play an important role in the cross-linking of peptidoglycan. It
does, however, appear to be important for cell division (246,
371). PBP2 also plays an essential role in bacterial growth and
survival, and the protein has a transpeptidase (TPase) and
transglycosylase (TGase) domain (351). PBP3 does not appear
to be essential; however, mutants demonstrate altered auto-
lytic activity (254). PBP4 is the only low-molecular-weight PBP
in S. aureus; however, it does possess transpeptidase and car-
boxypeptidase activities (205). Although initial studies showed
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FIG. 1. Overview of some general cell wall characteristics of VSSA and VISA strains showing the key regulatory elements linked to
intermediate-level vancomycin resistance, as uncovered by comparative genomics and genetic studies. (A) VSSA strain in the absence of
vancomycin showing a normal peptidoglycan (PG) layer, with the production of protein A and normal capsular polysaccharide expression. Also
shown is the division septum, where cell wall growth occurs. The lipid II-linked PG precursors assemble at the division septa, and the dipeptide
moiety of lipid II is the lethal target of vancomycin. (B) VISA strain with mutations in either the graRS, vraSR, or walKR operon (or all) that might
lead to their respective regulons remaining in an activated “locked-on” or otherwise modified state. The consequence of this modification includes
cell wall thickening, decreased autolysis, reduced protein A production, increased capsule expression, increased D-alanylation of teichoic acids, and
reduced agr activity.
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a minimal impact of the deletion of the gene encoding PBP4
on cell growth and methicillin resistance (351), it was recently
demonstrated that PBP4 may play an important role in the
expression of methicillin resistance in community-associated
MRSA strains (205).

Recently, a core and accessory set of cell wall-associated
genes (the “cell wall stimulon”) has been described based on
the results of microarray transcriptional analysis experiments
after the exposure of S. aureus to cell wall-active agents (92,
168, 329, 361). These genes are predominately under the con-
trol of the two-component regulatory (2CR) system vraSR.
These cell wall synthesis genes are summarized in Table 1.

Mechanism of Vancomycin Action

After the emergence of methicillin resistance in S. aureus in
the 1960s, the glycopeptides, particularly vancomycin, became
the mainstay of therapy for serious MRSA infections. Vanco-
mycin was discovered by Eli Lilly in the 1950s, after a mission-
ary who was visiting Borneo sent a sample of dirt to a colleague
who subsequently isolated the organism Amycolatopsis orien-
talis (previously designated Streptomyces orientalis and Nocar-
dia orientalis), which was found to produce a substance that

inhibited gram-positive organisms (compound 05865) (178).
“Mississippi mud,” as it was affectionately known because of its
brown color, was used in clinical trials in the mid-1950s and
was approved for use by the U.S. Food and Drug Administra-
tion in 1958 (178).

Vancomycin is an inhibitor of cell wall synthesis in S. aureus
and other gram-positive organisms. While beta-lactam antibi-
otics inhibit cell wall synthesis by binding to the transpeptidase
active site of penicillin binding proteins, vancomycin acts by a
completely different mechanism. It binds to the C-terminal
D-Ala-D-Ala residue of the peptidoglycan precursor and forms
a stable, noncovalent complex, which prevents the use of the
precursor for cell wall synthesis (Fig. 1) (259). Vancomycin
inhibits late-stage peptidoglycan biosynthesis and acts outside
the cytoplasmic membrane, which results in the intracellular
accumulation of UDP-linked MurNAc-pentapeptide precur-
sors (272, 273). The vancomycin complex involves a number of
hydrogen bonds between the peptide component of vancomy-
cin and the D-Ala-D-Ala residue (5, 15). Any process that
interferes with vancomycin binding to D-Ala-D-Ala residues in
the cell wall will decrease the potency of the drug. The addition
of “false” binding sites (e.g., a D-Ala-D-Ala-containing ligand)
to a bacterial culture containing vancomycin leads to compe-
tition between binding sites and a reduction of vancomycin
activity (4). The main location for cell wall synthesis in S.
aureus is the division septum and not the whole-cell membrane
(245, 255). This means that vancomycin has to diffuse to the tip
of the division septum to bind to peptidoglycan precursors at
this location, and the distance of this diffusion varies depend-
ing on the cell cycle, where a longer septum exists later in the
cycle (Fig. 2) (245).

DEFINITIONS

A number of methods are available to determine vancomy-
cin susceptibility in S. aureus, including methods to determine
vancomycin MICs that use a relatively low inoculum and tech-
niques to detect heteroresistance, which tend to rely on a
higher inoculum and prolonged incubation. The standard
method for hVISA detection is the population analysis profile
(PAP) (see below); however, a number of surrogates for the
detection of hVISA are also available, such as the macro-
method Etest (MET). The definition of VISA is more straight-
forward, as it is defined based on a standard vancomycin MIC,
while the definition of hVISA is more difficult and not well
standardized.

Vancomycin-Intermediate Staphylococcus aureus (VISA)

The Clinical and Laboratory Standards Institute (CLSI;
formerly NCCLS) defined resistance breakpoints for MIC
and disc diffusion testing of vancomycin against S. aureus
over 20 years ago (346). Initial breakpoints were as follows:
susceptible at a vancomycin broth MIC of �4 �g per ml,
intermediate at a vancomycin broth MIC of 8 to 16 �g per
ml, and resistant at a vancomycin broth MIC of �32 �g per ml.
Subsequently, in 2006, the CLSI redefined vancomycin break-
points as follows: susceptible at a vancomycin broth MIC of �2
�g per ml, intermediate at a vancomycin broth MIC of 4 to 8
�g per ml, and resistant at a vancomycin broth MIC of �16 �g

TABLE 1. Genes involved in cell wall biosynthesis in S. aureusa

ORF Gene Function

Core genes
SACOL1066 fmt Autolysis and methicillin resistance-

related protein
SACOL1777 htrA Putative serine protease
SACOL1897 prsA Putative protein export protein
SACOL1932 sgtB Transglycosylase domain protein
SACOL1943 vraS Sensor histidine kinase
SACOL1944 Conserved hypothetical protein
SACOL1945 Conserved hypothetical protein
SACOL1956 Conserved hypothetical protein
SACOL2116 murZ UDP-N-Acetylglucosamine 1-

carboxylvinyl transferase 2
SACOL2302 lytR Transcriptional regulator, putative
SACOL2352 tcaA Teicoplanin resistance-associated

protein
SACOL2435 Conserved hypothetical protein
SACOL2436 Conserved hypothetical protein
SACOL2518 Conserved hypothetical protein
SACOL2571 Conserved hypothetical protein

Additional genes
SACOL0033 mecA Penicillin binding protein 2A
SACOL0636 mvaK1 Melavonate kinase
SACOL0693 tagA Putative teichoic acid biosynthesis

protein
SACOL0743 bacA Bacitracin resistance protein
SACOL1161 murI Glutamate racemase
SACOL1279 upps Undecaprenyl pyrophosphatase

synthetase
SACOL1396 fmtC Autolysis and methicillin-resistant-

related protein
SACOL1490 pbpB Penicillin binding protein 2
SACOL2116 murZ UDP-N-Acetylglucosamineenolpyruvate

transferase
SACOL2540 srtA Sortase A
SACOL1194 pbpA Penicillin binding protein 1
SACOL1932 sgtB Monofunctional glycosyltransferase

a Based on data from references 168, 329, and 361. ORF, open reading frame,
based on the S. aureus COL locus tag (SACOL).
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per ml (Table 2) (53). Hence, the current definition for VISA
is an S. aureus isolate with a vancomycin broth MIC of 4 to 8
�g per ml. Other terminology, such as S. aureus with reduced
vancomycin susceptibility (SA-RVS), has also been used to
describe these strains and is summarized in Table 2. The ra-
tionale for changing breakpoints was an increasing association
between a vancomycin MIC of 4 �g per ml and vancomycin
treatment failure and also the increased detection of hetero-
resistant strains (346). However, the change in breakpoints will
not help detect heteroresistant strains with a vancomycin broth
MIC of �2 �g per ml. Additionally, given the potential for
differences in the vancomycin MIC results based on the meth-
odology used (263, 291), a vancomycin broth MIC using ref-
erence methodology such as CLSI broth microdilution should
be used as the definitive test for the definition of VISA.

Heterogeneous Vancomycin-Intermediate Staphylococcus
aureus (hVISA)

The definition and optimal laboratory detection of hVISA
remain uncertain. Essentially, an hVISA isolate is an S.

TABLE 2. Summary of terminology for strains of S. aureus with
reduced vancomycin susceptibility referred to in clinical

case reportsd

Glycopeptidea

susceptibility
classification

Broth microdilution (�g/ml)

CLSIb prior
to 2006

CLSI after
2006 EUCASTc

Susceptible (VSSA) �4 �2 �2
Intermediate (VISA) 8–16 4–8 No longer included

in definition
Resistant (VRSA) �32 �16 �4

a Most often defined with reference to vancomycin, but some authors use
“VISA” and “GISA” to indicate the presence of a class effect.

b NCCLS before 2005.
c New EUCAST breakpoints (released 20 May 2009) no longer define a VISA

category and have reduced the resistant breakpoint to �4 �g per ml.
d S. aureus with reduced susceptibility (SA-RVS) is defined as follows: (i)

MIC of �4 �g per ml (91, 306) or (ii) area under vancomycin concentration-
kill curve of �0.9 of the AUC of type strain Mu3 (124). hVISA is defined as
follows: (i) VSSA strain that upon subculture stably produces subcolonies
with MICs in the VISA/VRSA range at a frequency of �1 � 106 according to
the population analysis profile (PAP) (114); (ii) AUC ratio of �0.9 of the
AUC of type strain Mu3, referred to as PAP/AUC (48, 118, 155); or (iii)
modified high-inoculum Etest read at 48 h (193, 194).

FIG. 2. Model depicting the site of vancomycin activity in the division septum and the changes associated with the VISA phenotype. The
path of vancomycin to its lethal target (lipid II) should be through the division septum. In vancomycin-intermediate cells (Vanr), the rate
of diffusion of vancomycin molecules to the septal tip is decreased, lowering the effective concentration of antibiotic that reaches the
lipid-linked peptidoglycan precursor (lipid II) at the site of cell wall synthesis, per unit time, and therefore tilting the balance in favor of
continued cell wall synthesis. This model implies that vancomycin efficiency varies during the cell cycle, as the path from the outside of the
cell to the lethal targets is shorter when the septum starts to be formed and longer when septum synthesis approaches completion. (Adapted
from reference 245 with permission.)
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aureus isolate with a vancomycin MIC within the susceptible
range when tested by routine methods (previously a vanco-
mycin broth MIC of �4 �g per ml and now a vancomycin
broth MIC of �2 �g per ml) but where a proportion of the
population of cells are in the vancomycin-intermediate
range (113). Typically, the resistant population is present at
a frequency of �10�5 to 10�6, hence the difficulty in the
detection of this resistance phenotype using CLSI methods
where an inoculum of 5 � 104 CFU per well (broth MIC) or
1 � 104 CFU per spot (agar dilution) is used (53). The
relative proportion of the population of cells that are resis-
tant to vancomycin at 4 �g per ml can vary from strain to
strain so that there is a spectrum from vancomycin-suscep-
tible S. aureus (VSSA) to VISA (Fig. 3). The accurate de-
tection of this phenotype requires a vancomycin population
analysis profile (PAP), which is described below. In the mod-
ified vancomycin PAP described by Wootton et al., prototype
hVISA strain Mu3 is used as a standard reference for the
detection of hVISA isolates (387). By using PAP as a reference
method, the hVISA phenotype can be detected for strains of S.
aureus with vancomycin MICs as low as 0.5 to 1 �g per ml (174,
346). In a recent clinical study, the hVISA phenotype was
detected in 50% of clinical MRSA isolates with a vancomycin
broth MIC of 2 �g per ml (118). Therefore, if heteroresistance
to vancomycin is clinically important for S. aureus, the current
CLSI guidelines for the testing of vancomycin against S. aureus
will not detect potentially important resistance in many iso-
lates.

HISTORY AND EPIDEMIOLOGY

First Reports of hVISA and VISA

Reports of clinical S. aureus isolates that demonstrated re-
duced teicoplanin susceptibility and the in vivo emergence of
resistance during teicoplanin therapy came from Europe in the
early 1990s, although these strains remained susceptible to
vancomycin (153, 189, 192). In 1997, strains of S. aureus with

reduced susceptibility to vancomycin were reported from Ja-
pan. This included a strain with a vancomycin MIC of 8 �g per
ml (strain Mu50, vancomycin-intermediate S. aureus [VISA]
[ATCC 700699]) isolated from a surgical wound infection from
a 4-month-old individual who had undergone cardiac surgery,
where vancomycin failed to cure the infection (115), and a
strain with a vancomycin MIC of 4 �g per ml that harbored
subpopulations with a higher MIC at a rate of greater than 1 in
106 cells (strain Mu3, designated heterogeneous VISA
[hVISA] [ATCC 700698]) (114). Mu3 was isolated in 1996
from the sputum of a 64-year-old patient with MRSA pneu-
monia who failed vancomycin therapy (114). Using the latest
CLSI breakpoints, the original description of Mu3 would now
classify the strain as being a VISA strain (53); however, sub-
sequent studies where Mu3 has been tested reported vanco-
mycin MICs of 2 �g per ml (57, 58). The subsequent screening
of seven university hospitals in Japan found no additional
VISA strains but a rate of isolation of hVISA strains of be-
tween 9 and 20% of MRSA isolates by using a simplified
“mini-PAP” procedure (114).

Global Epidemiology and Associated Features
of hVISA and VISA

A clear difficulty in interpreting the literature in this area is
the lack of standardized criteria for the definition of hVISA
and the use of different methodologies to detect VISA. The
prevalence of hVISA has varied significantly. Some of these
differences may well be explained by differences in laboratory
definitions and testing strategies; however, it appears that rates
of hVISA vary globally. For example, Hiramatsu et al. detected
the hVISA phenotype in up to 20% of MRSA isolates from
their hospital (114), but a subsequent study from Japan re-
cently challenged this finding by detecting no hVISA strains
among 6,625 strains tested (9, 137). In the original description
of hVISA epidemiology in Japan by Hiramatsu et al., a brain
heart infusion (BHI) agar (BHIA) plate with 4 �g vancomycin

FIG. 3. Example of population analysis profile curves for vancomycin-susceptible and heterogeneous vancomycin-intermediate S. aureus
strains. The in vivo evolution of the resistant phenotype is depicted with a shift in the PAP curve to the right, with SmaI-digested pulsed-field gel
electrophoresis patterns being identical for paired isolates from the same patient. (Adapted from reference 121.)
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per ml was used for the screening of isolates (114). In a more
recent study, vancomycin heteroresistance was detected after
the selection of strains from screening agar containing 2 �g
vancomycin per ml (257). In many other studies, hVISA has
been defined by the use of a modified vancomycin population
analysis profile (PAP) described previously by Wootton et al.
(387).

After the first reports of VISA and hVISA from Japan, it did
not take long for this resistance phenotype to be recognized
around the world. Strains of S. aureus (predominately MRSA)
demonstrating the hVISA or VISA phenotype have now been
reported for many countries including the United States, Ja-
pan, Australia, France, Scotland, Brazil, South Korea, Hong
Kong, South Africa, Thailand, Israel, and others (22, 67, 69, 77,
79, 82, 94, 158, 167, 194, 195, 206, 258, 284, 300, 326, 327, 331,
352, 354, 366, 373). A retrospective analysis of stored isolates
detected previously unrecognized hVISA/VISA strains at least
back to 1987 in the United States and back to a similar period
in France, Spain, and Germany (11, 22, 39, 276, 288); however,
there has been some concern about the potential loss of resis-
tance during prolonged storage, which could impact results of
such retrospective analyses. Although reported predominately
for MRSA, the hVISA phenotype can be detected among
methicillin-sensitive S. aureus (MSSA) strains (6, 26, 93, 187,
271). Additionally, some strains of MRSA that also express the
VISA phenotype have been shown to have a deletion of the
mecA gene or demonstrate reduced methicillin resistance de-
spite the presence of mecA (107, 223).

After the first report of hVISA from Australia in 2001,
hVISA and VISA have been increasingly reported from
around Australia and New Zealand (100, 103, 119, 219, 375).
At our institution in Australia, 9.4% of blood culture isolates
of MRSA were found to be hVISA strains by modified vanco-
mycin PAP in a 12-month period from July 2001 (48). In a
more recent study at our institution, we found a similar per-
centage of MRSA blood culture isolates to be hVISA isolates
(13%) but found a remarkably high rate of hVISA (approxi-
mately 50%) when all clinical MRSA isolates were tested by
PAP analysis (118). Studies in the United States have generally
detected very low rates of hVISA (70, 133, 165, 341); however,
a range of methods were used for detection in these studies. A
recent analysis of vancomycin susceptibility in S. aureus over a
22-year period from the Detroit, MI, region demonstrated an
increasing rate of hVISA over the period (from 2.2 to 8.3%)
among clinical MRSA isolates by using MET screening and
confirmation by PAP (289).

In Israel in 2003 and 2004, 6% of patients with MRSA
bacteremia had hVISA when blood culture isolates were
screened using the MET, many of which would have been
missed with routine testing (194). A study of MRSA isolates
from 63 French hospitals found that only 0.7% of isolates were
hVISA isolates after screening with BHI agar containing 6 �g
teicoplanin per ml and confirmation by PAP (37), with simi-
larly low rates found by some other French studies and in
Belgium (69, 230, 271). However, a subsequent study at one
French institution, which screened 2,300 S. aureus isolates us-
ing BHIA with 4 �g teicoplanin per ml, followed by MET and
then PAP confirmation, found that 11% of the isolates were
hVISA isolates, which were found to be clonal by pulsed-field

gel electrophoresis (93). Seven of the 255 hVISA isolates de-
tected were MSSA isolates.

A variability in rates of hVISA strains in other countries has
also been demonstrated. After the early detection of hVISA
and VISA in South Korea (157, 158), a follow-up study found
no evidence of hVISA (156). In a Turkish hospital, the rate of
hVISA among MRSA strains increased from 1.6% in 1998 to
32% in 2001 (300). In a review by Liu and Chambers in 2003
(183), data from 14 previous studies were combined, and
hVISA rates were 2.16% in 6,052 MRSA isolates and 0.05% in
1,868 MSSA isolates in the literature at that time. Rates of
hVISA varied from 0 to 8.24% in studies where at least 50
isolates were included. The true prevalence of hVISA is un-
clear and may have been significantly underestimated by many
studies. To better understand hVISA epidemiology and clinical
relevance, it is important that standard criteria for investigat-
ing hVISA are developed and used in studies of prevalence
and clinical impact.

Risk factors for hVISA and VISA. Not surprisingly, the main
risk factors for infection with VISA and hVISA appear to be
prior MRSA infection or colonization and exposure to vanco-
mycin (48, 55, 91, 124). Additionally, most VISA and hVISA
infections occur in patients with serious underlying disease
such as malignancy, diabetes, renal failure, or recent major
surgery (48). A “high bacterial load,” which occurs with infec-
tions such as endocarditis, deep abscess, or infection of a pros-
thetic joint, may also predispose an individual to the develop-
ment of hVISA infection during failed glycopeptide therapy,
probably because large numbers of organisms are present and
the penetration of antibiotics into such infected areas may be
limited (48). Related to this, some data suggest that low serum
levels of vancomycin early in the treatment course of MRSA
infections may also be associated with the emergence of VISA
and hVISA (48). In studies to determine factors associated
with higher vancomycin MICs and the reduced in vitro bacte-
ricidal activity of vancomycin against S. aureus (rather than
hVISA or VISA per se), prior vancomycin exposure and resi-
dence in an intensive care unit (ICU) were independent pre-
dictors (185, 209).

For many patients, the hVISA or VISA phenotype was de-
tected in bacterial isolates only after a prolonged period of
infection associated with the failure of glycopeptide therapy
(48, 121, 124, 151, 213, 313, 316, 326, 337, 340, 376). In many
of these cases, a detailed analysis of the earlier clinical isolate
failed to detect any vancomycin heteroresistance, and the phe-
notype appears to have emerged from a vancomycin-suscepti-
ble strain during therapy. Pulsed-field gel electrophoresis pat-
terns have been used to demonstrate the clonality of
vancomycin-susceptible and subsequent vancomycin-resistant
strains, suggesting the emergence of resistance from the earlier
vancomycin-susceptible isolate (Fig. 3).

In other cases, a nosocomial spread of hVISA or VISA has
been suggested, with a number of outbreaks reported, mostly
in France (64, 105, 190, 253). An outbreak reported by de
Lassence et al. was described as 21 patients in a French ICU
who had isolates of S. aureus with reduced glycopeptide sus-
ceptibility (64). Although that report described an outbreak of
glycopeptide-intermediate S. aureus, the isolates in that study
were all susceptible to vancomycin and teicoplanin according
to routine Etest MIC determinations and were positive for
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reduced susceptibility only by a MET, suggesting that the
strains were in fact heteroresistant. This is an example of dif-
ficulties that arise when trying to interpret the literature in this
area and an example of an overinterpretation of the MET
result. In addition to patient isolates, a number of environmen-
tal surfaces were positive for the resistant outbreak strain,
demonstrating that hVISA/VISA can contaminate the environ-
ment. A comment in the discussion of that report stated that all
isolates were of the same strain, suggesting nosocomial spread
rather than the in vivo generation of resistant isolates.

Vancomycin MIC creep and hVISA/VISA. In addition to
increasing numbers of reports of hVISA and VISA, there has
been significant interest regarding the changing patterns of
vancomycin MICs within the S. aureus population. This has
been driven partly by studies demonstrating poorer outcomes
for vancomycin treatment of MRSA infections with higher
vancomycin MICs, even when these MICs are within the sus-
ceptible range (112, 184, 298, 332). Changing vancomycin
MICs will directly impact the rates of hVISA, as it was clearly
demonstrated that the proportion of isolates that are hVISA
isolates increases with increasing vancomycin MICs within the
susceptible range (Fig. 4) (289, 346). The term vancomycin
“MIC creep” is now frequently used (101, 276, 333, 374). This
phenomenon has been demonstrated at a number of centers in
the United States over recent years by using Etest or vanco-
mycin broth MIC (289, 333, 374), while at another location in
the United States, no change in vancomycin MIC was detected
between 1999 and 2006 (117). In France, increases in glyco-
peptide MICs (predominately teicoplanin) were observed over
a 20-year period (276), while in Spain, the testing of over 3,000
clinical isolates by broth microdilution between 2002 and 2006

found no change in vancomycin MICs at one institution (6).
Interestingly, an analysis of SENTRY data for the years 1998
to 2003, which included 35,458 S. aureus isolates, detected no
change in vancomycin MICs over this time by using standard
CLSI methods (147). Therefore, changes in S. aureus vanco-
mycin MICs over time can occur within certain institutions;
however, a limitation of previous studies is the lack of molec-
ular typing of strains to determine if the MIC creep is actually
due to the emergence of a new clone rather than the gradual
reduction in vancomycin susceptibility within the clonal popu-
lation of the institution. Ultimately, given the SENTRY re-
sults, it does not appear that changes in vancomycin MICs are
rapidly occurring on a global scale but may be shifting within
some institutions.

Molecular epidemiology of hVISA and VISA. Initially, studies
of VISA strains using staphylococcal cassette chromosome mec
(SCCmec) analysis and multilocus sequence typing (MLST) sug-
gested that the phenotype was present predominately in one
pandemic clone of MRSA; however, it has become clear that
resistance has emerged in many major epidemic clones of
MRSA (113, 126a).

Community-acquired S. aureus, including PVL-positive strains
and hVISA/VISA. A laboratory-based study of in vitro resistance
development demonstrated a limited vancomycin resistance po-
tential in community-acquired S. aureus clones from Australia
(216). Recently, however, the community MRSA clone USA300
(Panton-Valentine leukocidin [PVL] positive) with a VISA phe-
notype found in San Francisco, CA, and Kansas has been de-
scribed (102, 106). Therefore, the expression of the hVISA and
VISA phenotypes can occur in many S. aureus lineages and is not
limited to typical “hospital” clones of S. aureus. The recent emer-
gence of multidrug resistance in USA300 (71), in addition to the
recent description of the VISA phenotype in this clone, is con-
cerning given the rapid spread of this strain across the United
States. There is no reason to believe that PVL per se would affect
vancomycin activity against S. aureus.

agr group and hVISA/VISA. There initially appeared to be a
link between the agr group II locus and VISA (296); however,
subsequent studies have demonstrated the VISA phenotype in
isolates from other agr groups (369). There does, however,
appear to be a link between hVISA/VISA and the expression
of agr in S. aureus and a potential association between the agr
group and the response to vancomycin therapy (see below).

SCV S. aureus and hVISA/VISA. The S. aureus small-colony-
variant (SCV) phenotype is a slow-growing variant with distinct
characteristics including reduced pigmentation and hemolytic
activity as well as altered host-pathogen interactions favoring
persistent and recurrent infection (265, 266). Small-colony
variants of S. aureus have demonstrated reduced susceptibility
to a number of antimicrobials including gentamicin, fluoro-
quinolones, and linezolid (16, 52, 264). Recently, the in vitro
bactericidal activity of vancomycin against an SCV-defined
hemB mutant was tested. The vancomycin killing activity was
reduced in the SCV compared to the parental strain (359). It
is uncertain if reduced vancomycin susceptibility is a common
feature of clinical SCV S. aureus isolates; however, some of the
typical phenotypic features found in hVISA and VISA strains
are reminiscent of the SCV, such as reduced growth rate,
altered pigmentation, and reduced hemolytic activity, and in
VISA isolates demonstrating a heterogeneous colony mor-

FIG. 4. Correlation between vancomycin Etest MIC and heterore-
sistance (defined by macromethod Etest) for MRSA blood culture
isolates collected between 1996 and 2006. The shaded area represents
the percentage of isolates that are hVISA isolates at a given MIC and
demonstrates that strains with an Etest MIC as low as 1.5 �g per ml
also demonstrated heteroresistance. (Adapted from reference 220 with
permission.)
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phology, the small-colony forms tend to display greater vanco-
mycin resistance.

PHENOTYPIC FEATURES AND MECHANISMS
OF RESISTANCE

In the late 1990s, Sieradzki et al. suggested that alterations in
cell wall structure inhibit vancomycin access to its active site in a
laboratory-induced strain with a vancomycin MIC of 100 �g per
ml (315, 320). Over recent years, a model of the resistance mech-
anism of hVISA and VISA has evolved, where VISA emerges by
sequential mutations from VSSA, with hVISA as an intermediary
between VSSA and VISA. Reduced cell wall turnover and re-
duced autolytic activity, and in some cases activated cell wall
synthesis, are thought to lead to cell wall thickening and reduced
vancomycin access to its active site, which is localized to the
division septum (Fig. 2). The key phenotypic features of hVISA
and VISA are summarized in Table 3.

Most of the work assessing the mechanisms of resistance in
S. aureus strains with low-level vancomycin resistance has been
performed using VISA isolates with vancomycin MICs of 8 �g
per ml. hVISA strains appear to be the precursors of VISA
strains and appear to be induced to homogenous resistance
(VISA) after exposure to cell wall-active antibiotics (29, 30).
One of the difficulties in working with these strains in the
laboratory is the tendency for some resistant isolates to revert
to a more susceptible phenotype. For example, in one study of
four VISA strains (NJ, MI, PC, and Mu50), all strains reverted
to a more susceptible phenotype after 15 days of passage on
nonselective medium; however, three of the strains maintained
a subpopulation that would grow on 4 �g vancomycin per ml
(250). Cui et al. (58) also demonstrated a reduction in resis-
tance levels of VISA isolates upon serial passage on drug-free
medium; however, strains typically maintained an hVISA phe-
notype (58). Other studies demonstrated a more stable resis-
tance phenotype. For example, 6 laboratory-derived VISA
strains demonstrated a stable phenotype after 20 passages on
nonselective medium (250). Many of the earlier studies of the
features of VISA were performed with laboratory-derived
strains after stepwise selection on glycopeptide-containing me-
dium (62, 215, 250, 315, 319, 320, 322); however, more recent
studies have utilized clinical isolates (32, 56, 121, 151, 314,
318), and in many cases, the phenotypic features have been
similar. The ability to induce the selection of VISA from van-
comycin-susceptible parent isolates varies between strains in
terms of both the level of resistance attained and the rate at
which resistance develops (58, 250, 267). After early studies of
the effects of glycopeptides on S. aureus and investigation of
laboratory-derived vancomycin-resistant strains of S. aureus
and a clinical isolate of teicoplanin-resistant S. aureus revealed
an increased level of production of PBP2 and cell wall thick-
ening (62, 80, 313), much of the early investigation of hVISA
and VISA was focused on cell wall changes.

Cell Wall Changes

Common biochemical and morphological changes can be
found in many S. aureus isolates that demonstrate low-level
vancomycin resistance (hVISA and VISA), either laboratory-
induced or clinical isolates; however, when looked at in detail,

the cell wall rearrangements that occur in VISA strains can
vary between strains (32). Cell wall thickening is a consistent
feature and was recognized well before the first description of
clinical VISA isolates (Fig. 5) (30, 59, 62, 80, 108, 121, 187, 229,
267). It may be associated with activated cell wall synthesis
(108), and the cell wall thickening is reduced when isolates are
serially passaged and resistance levels drop (58). In some iso-
lates, cell wall thickening may not be obvious by electron mi-
croscopy without vancomycin, but after vancomycin exposure,
it becomes more obvious (59, 250, 316). Other common fea-
tures include an increased level of production of abnormal
muropeptides (319); an overexpression of PBP2 and PBP2�
(108, 215), although reduced levels of expression of PBP2�
were found in a laboratory-derived mutant due to the inacti-
vation of mecA (322); reduced PBP4 expression levels (319);
increased levels of D-Ala-D-Ala residues; and reduced levels of
peptidoglycan cross-linking in most isolates studied (Fig. 1)
(151, 215, 250, 318, 320). For some VISA isolates a small
increase in peptidoglycan cross-linking was found (30, 32, 267).
Other common features include a reduced growth rate (62,
250) and reduced whole-cell lysostaphin susceptibility (56, 62,
215). In contrast, purified cell walls of laboratory-induced
VISA strains demonstrated increased lysostaphin susceptibility
(160).

The thickened cell wall appears to be the most consistent
feature, and although the exact mechanisms leading to thick-
ening have not been determined, the thickened cell wall is
thought to prevent the diffusion of vancomycin to its active site
in the cytoplasmic membrane in the division septum (250, 318).
Recent studies using fluorescent vancomycin and fluorescent
ratio imaging microscopy demonstrated that the vancomycin
binding capacity was increased in resistant strains, with evi-
dence of a delayed access of vancomycin to the active site in
the septum in resistant strains (Fig. 1 and 2) (245).

Autolytic Activity

Reduced autolytic activity is a common feature of hVISA
and VISA strains and is a common early phenotypic change in
serial isolates obtained during persistent infection (30, 31, 108,
160), although this has not been demonstrated for all isolates
(121). Initial studies of Japanese VISA strain Mu50 reported
an increase in autolytic activity (362); however, recent data
have confirmed that Mu50 demonstrates reduced whole-cell
autolytic activity like other VISA strains (362). Some data
suggest a possible role for wall teichoic acids of VISA strains
suppressing peptidoglycan degradation by autolytic enzymes
(318), while other studies suggested that a reduction in the
autolytic activity and altered peptidoglycan hydrolase activity
of VISA autolysin extracts are responsible for the reduced
autolytic activity (160). It was proposed that vancomycin bind-
ing in the staphylococcal cell wall directly blocks the activity of
a peptidoglycan hydrolase and explains the reduced autolytic
activity demonstrated in the presence of vancomycin (321);
however, this does not explain the reduced autolytic activity of
hVISA and VISA strains in the absence of vancomycin (121).
A loss of agr function in S. aureus has also been linked with
reduced autolytic activity (295).
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TABLE 3. Phenotypic characteristics of clinical and laboratory-induced hVISA and VISA strains compared to related
vancomycin-susceptible S. aureus strainsa

Isolate studied
Phenotype

(vancomycin MIC
��g/ml�)

Isolate description Phenotypic feature(s) of hVISA or VISA
isolate compared to VSSA Reference(s)

MRSA COL VSSA VRSA (VM50) induced from MRSA
COL by vancomycin selective pressure

Gradual alterations in cell wall with increasing resistance; removed
vancomycin from broth (vancomycin absorbed into cell wall);
reduced growth rate; reduced X linking of cell wall PG; inactivated
PBP4; reduced methicillin MIC due to inactivation of mecA; delayed
access of vancomycin to active site in division septum

245, 315, 317,
319, 320, 322VM (VM50) VRSA (100)

VM3 hVISA/VISA
VM6 hVISA/VISA
VM12 hVISA/VISA
VM25 hVISA/VISA

523 VSSA Laboratory-induced VISA and VRSA
strains; 523teico induced by teicoplanin
(teicoplanin MIC of 128 �g per ml)

Slower growth, smaller colony size; increased lysostaphin resistance;
decreased coagulase activity; increased cell diam; increased cell wall
thickness; forms clumps in liquid culture; changes in PG X linking;
increased production of PBPs; reduced Triton X-induced autolysis

31, 62, 108, 215
523a hVISA/VISA (3)
523c VISA (4)
523k VISA (8)
523teico VISA (4)
1714 VSSA
1714s VRSA (32)
1725 VSSA
1725w VISA (16)

Mu3 hVISA (2–4) First reported hVISA and VISA strains vanA, vanB, and vanC1 to vanC3 negative; increased production of
PBP2 and PBP2�; activated cell wall synthesis; increased glutamate-
containing muropeptides; correlation between cell wall thickness and
vancomycin resistance; Mu50 reduced resistance after 15 days of
serial passage; reduced whole-cell autolytic activity; vancomycin
clogging of cell wall with anomalous diffusion

29, 56, 58, 59,
108, 109, 362Mu50 VISA (8)

Mu50� VSSA/hVISA Mu50� isolated 1 year later from same
patient as Mu50

SA137/93A VISA (8) Germany; SA137/93A clinical isolate;
other spontaneous mutants with
increased and decreased resistances

Increased cell wall thickness; reduced beta-lactam resistance; increased
cell wall X linking in SA137/93G

267
SA137/93G VISA (12)
SA137/93G1 VSSA

JKD6000 VSSA (2) Paired isolates from 5 patients with
persistent MRSA infections and
vancomycin treatment failure

vanA, vanB, and vanC1 to vanC3 negative; thickened cell wall; reduced
agr activity; reduced autolytic activity (4/5); reduced in vitro biofilm
formation

121
JKD6001 VISA (4)
JKD6004 VSSA (1)
JKD6005 hVISA (2)
JKD6009 VSSA (1)
JKD6008 VISA (4)
JKD6021 VSSA (1)
JKD6023 VISA (4)
JKD6052 VSSA (1)
JKD6051 hVISA (2)

PC-1 hVISA (2) Paired isolates from patient with
vancomycin treatment failure

Reduced vancomycin concn in broth culture of PC-3, recovered from
staphylococcal cell wall; cell wall thickening; reduced resistance after
15 days of serial passage; no increase in glutamate-containing
muropeptides; reduced Triton X-induced autolysis

29, 31, 32, 58,
284, 316PC-3 VISA (8)

BB225 VSSA (1) Series of laboratory-induced VISA
strains

No change in oxacillin MIC; increased cell wall thickness (with
vancomycin); increased doubling time; reduced lysostaphin
susceptibility of whole cells but increased susceptibility of purified
cell walls; reduced autolytic activity in part due to lower activity of
VISA autolysin extracts; reduced alt expression; removed
vancomycin from broth culture; no mutS mutations

58, 160, 221, 250
BB225V3 VISA (4)
BB270 VSSA (1)
BB270V15 VISA (12)
13136p�m� VSSA (1)
13136p�m�V5 VISA (4)
13136p�m� VSSA (1.5)
13136p�m�V20 VISA (16)
SH108 VSSA (2)
SH108V5 VISA (6)
BB399 VSSA (2)
BB399V12 VISA (12)
BB568 VSSA (1)
BB568V15 VISA (12)
COL VSSA (2)
COLV10 VISA (8)
Others

MI VISA (6) Michigan VISA isolate, July 1997,
CAPD-associated peritonitis

Reduced resistance after 15 days of serial passage; cell wall thickening;
increased extracellular matrix; increased glutamate-containing
muropeptides; reduced Triton X-induced autolysis

29, 31, 32, 58, 326

NJ VISA (5) New Jersey VISA isolate, August 1997,
bacteremia

Reduced resistance after 15 days of serial passage; cell wall thickening;
increased extracellular matrix; increased glutamate-containing
muropeptides; reduced Triton X-induced autolysis

29, 31, 32, 58, 326

IL-A hVISA VISA emerged from hVISA during 13
days of persistent bacteremia

Cell wall thickening; no increase in glutamate-containing
muropeptides; increased cell wall thickness; reduced lysostaphin
susceptibility; reduced Triton X-induced autolysis; increased cell wall
X linking; reduced Triton X-induced autolysis

30–32, 58
IL-F VISA (8)

AMC11094 VISA (8) South Korea, clinical isolate Cell wall thickening 58, 158

99/3759-V VISA (8) Scotland, UK Cell wall thickening 58
99/3700-W VISA (8)

LIM-1 VSSA (2) France; isolated from patient with
persistent infection and failed
teicoplanin therapy; all blood culture
isolates except LIM-3 (purulent
discharge)

Cell wall thickening; vanA, vanB, and vanC1 to vanC3 negative 58, 258
LIM-2 VISA (8)
LIM-3 VISA
LIM-4 VISA

28160 VISA (8) South Africa Cell wall thickening 58, 79

Continued on following page
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Metabolic Changes

An analysis of metabolic changes in highly resistant (vanco-
mycin MIC of 32 �g per ml) in vitro derivatives of VISA strains
demonstrated impaired acetate catabolism. Further analysis
revealed similar changes in other VISA strains (71% had re-
duced acetate catabolism, compared to 8% of VSSA strains)
(224). The authors of that report made the point that reduced
acetate catabolism could lead to altered growth characteristics,
antibiotic tolerance, changes in cell death, and increased poly-
saccharide intercellular adhesin synthesis, which was demon-
strated in their study (224).

Molecular Mechanisms of Resistance

A number of studies have demonstrated the absence of the
vancomycin resistance genes vanA, vanB, and vanC1 to vanC3
in hVISA and VISA strains (108, 121, 345). Because of the
activated cell wall synthesis demonstrated for some hVISA and
VISA strains (108), significant interest in regard to the molec-
ular mechanisms of resistance have focused on pathways of cell
wall biosynthesis in S. aureus.

Transcriptional changes. A variety of experimental ap-
proaches have been used in an attempt to determine the ge-

netic basis for the intermediate-level vancomycin resistance
evident in VISA strains. These approaches include cDNA dif-
ferential hybridization (169) and, more recently, DNA mi-
croarray analyses (57, 122, 168, 199, 201, 212, 303) to deter-
mine changes in the transcriptional profile of strains as they
acquire the VISA phenotype. A proteomics approach has also
been used to identify proteins that are differentially expressed
in VISA strains (74, 251, 303). These comparisons have been
done between closely related VISA and VSSA strains (57,
169), between laboratory-derived VISA strains and their less
sensitive parents (57, 74, 201), between VSSA and VISA
strains derived from a mouse model of infection (303), and
between sequential VSSA and VISA isolates from the same
patient (122, 199). From these studies, it appears that the
acquisition of the VISA phenotype is probably a multistep
process and that there are likely to be multiple pathways to
intermediate vancomycin resistance, even among closely re-
lated strains. Conversely, the same genes have often been iden-
tified in different laboratories as differentially expressed in
VISA strains that have diverse genetic backgrounds.

Also of relevance here are the transcriptional profiles of
VSSA and VISA strains exposed to vancomycin and other cell
wall-active antibiotics (168, 199, 202, 361, 392) or when cell

TABLE 3—Continued

Isolate studied
Phenotype

(vancomycin MIC
��g/ml�)

Isolate description Phenotypic feature(s) of hVISA or VISA
isolate compared to VSSA Reference(s)

JH1 VSSA (1) Baltimore, MD; series of blood culture
isolates from patient with endocarditis
who failed vancomycin therapy; JH14,
valve isolate

Cell wall thickening; decreased wall X linking; reduced PBP4;
decreased cell wall turnover and autolysis; changes in wall teichoic
acids; delayed access of vancomycin to active site in division septum

245, 314, 318
JH2 VISA (4)
JH3 VISA (4)
JH5 VISA (6)
JH6 VISA (8)
JH9 VISA (8)
JH14 VISA (8)

BR1 VISA (8) Clinical isolates from Brazil Cell wall thickening; vanA, vanB, and vanC1 to vanC3 negative 58, 235
BR2 VISA (8)
BR3 VISA (8)
BR4 VISA (8)
BR5 VISA (8)

98141 VISA (8) France, clinical isolate Cell wall thickening 49, 58

SF1 VSSA (1) San Francisco, CA, paired clinical
isolates; endocarditis, failed
vancomycin therapy

Significant reduction in efficacy of vancomycin against SF2 in rabbit
endocarditis model

213
SF2 hVISA (2)

MRGR3 VSSA (1), TSSA (0.5) Teicoplanin-resistant subclones emerged
in rat model of foreign-body infection
without antibiotic exposure; stable
clones selected on teicoplanin-
containing medium (14-4 and 17-2);
14-4rev, spontaneous revertant

Unstable resistance in rat model without antibiotic exposure; increased
fibronectin-mediated adherence; reduced autolytic activity; reduced
extracellular hydrolase activity; reduced agr

268, 269, 367
14-4 VISA (4; teicoplanin, 16)
14-4rev VSSA (1)
17-2 VISA (4; teicoplanin, 16)

RN6607 VSSA (1) RN strains laboratory induced Reduced agr activity in VISA and hVISA; reduced in vitro bactericidal
activity of vancomycin in agr-null vs parent strains; agr-null increased
propensity for hVISA; reduced agr activity associated with reduced
autolysis and resistance to tPMP

294, 295
RN6607V hVISA (2) A5937 and A5940 clinical isolate pair
RN9120 VSSA (1)
RN9120V hVISA (2)
RN9120V-GISA VISA (8)
A5937 VSSA (2)
A5940 VISA (4)

SA113 TSSA (teicoplanin, 3) In vitro-derived strains, teicoplanin
selected

Slower growth; thickened cell wall; increased N-acetylglucosamine
incorporation; reduced fitness in resistant strain

201
NM18 Teicoplanin MIC, 16
NM30 Teicoplanin MIC, 48
NM67 Teicoplanin MIC, 64

(vancomycin, 24)

Hershey MC Series of isolates from one patient Reduced muropeptide cross-linking; reduced O-acetylation of muramic
acid

151
1 VSSA
3 VSSA
10 VISA (daptomycin

resistant)
25 VISA

a Note that some laboratory-induced isolates had MICs of vancomycin in the resistant range despite the absence of the vanA operon. CAPD, continuous ambulatory
peritoneal dialysis; tPMP, thrombin-induced platelet microbicidal protein; TSSA, teicoplanin-sensitive S. aureus.

110 HOWDEN ET AL. CLIN. MICROBIOL. REV.



wall synthesis is disrupted by the modulation of the expression
of the murF or pbpB gene (92, 330). These experimental con-
ditions lead to a cell envelope stress response (148) and the
upregulation of a “cell wall stimulon” that responds to abnor-
mal cell wall synthesis (199, 361). This stimulon contains genes
encoding the two-component system VraSR, which in turn
positively regulates a number of genes involved in cell wall
synthesis (92, 168, 199). It appears that for some VISA strains,
this stimulon is permanently upregulated. VraSR was first
identified as being upregulated in VISA strains by using cDNA
differential hybridization (169) and subsequently by microarray
analyses (122, 199). Some of the genes within the stimulon
(murZ and sgtB) were also identified by another transcriptional
profiling study that involved six different comparisons between
VISA and VSSA strains (57). The two genes were upregulated
in at least five out of six comparisons, and an overexpression of
the gene products resulted in a slight increase in the MIC of
vancomycin (57). However, it should be emphasized that the
VISA phenotype can be achieved in some strains without the
induction of the cell wall stimulon (Fig. 6) (122, 202).

The fact that the cell wall stimulon is activated in some
VISA strains but not others could also explain some conflicting
conclusions. It was suggested that decreased levels of penicillin
binding protein 4 (PBP4) were partially responsible for the
VISA phenotype (81). Clinical VISA isolates (but not serially
passaged laboratory isolates) had no or substantially lowered
levels of PBP4, while all VSSA strains examined had detect-
able levels of this protein. Furthermore, the overproduction of
PBP4 in VISA resulted in a lower MIC of vancomycin (81).
However, a subsequent, more comprehensive, survey found
that many isolates with intermediate-level resistance to vanco-
mycin had normal levels of PBP4 (386). It seems that PBP4
expression levels are strain specific rather than obligatorily
linked to the VISA phenotype.

Along similar lines, there has been some debate about the
involvement of genes involved in purine biosynthesis in deter-
mining the VISA phenotype. A comparison has been made
between the transcriptional profiles of two VISA isolates and
resistant (MIC of vancomycin of 32 �g per ml) derivatives

obtained by three serial passages at increasing vancomycin
concentrations (212). It was argued that this comparison might
exaggerate the changes that occur in VISA isolates. However,
that same study suggested that there are no transcriptional
changes between one of the VISA parents and a VSSA deriv-
ative obtained by 100 serial passages in the absence of vanco-
mycin. A series of genes involved in purine biosynthesis were
upregulated in both resistant mutants.

This was later confirmed by using a proteomics approach
(251). The transcription of an operon encoding purine biosyn-
thesis genes is controlled by the PurR regulatory protein. The
purR gene of both resistant mutants was sequenced, and in
both cases, the same identical mutation had occurred (212). An
inactivation of PurR provided an explanation for the overex-
pression of the operon involved in purine biosynthesis, and the
authors of that study suggested that this might be needed to
increase ATP production for the increased cell wall thickness
observed for VISA strains (212). A subsequent biochemical
and genetic study could not confirm a link between purine
biosynthesis and vancomycin resistance (89). Neither a muta-
tion of purR nor the overproduction of wild-type or mutated
PurR had any effect on the level of vancomycin resistance in
VSSA. Furthermore, a panel of VSSA and VISA strains were
all passaged to higher levels of vancomycin resistance, and
none had a mutation in purR (89).

Among the genes that have been observed to be upregulated
in VISA strains are those encoding the GraRS two-component
regulatory system, so named for its glycopeptide resistance
association (57). The locus has also been called aps because of
its more general antimicrobial-peptide-sensing capacity (180).
The overexpression of GraR or GraS results in a slight increase
in the MIC of vancomycin (57), and a knockout mutation
results in hypersensitivity (122, 204). However, in two different
instances, point mutations have resulted in increased resis-
tance to vancomycin, presumably by modifying the activity of
the proteins (60, 123). The GraRS two-component regulatory
system has been shown to control the expression of a large
number of genes, including many genes involved in cell wall
synthesis (111). Interestingly, among the genes upregulated in

FIG. 5. Example of the cell wall and capsule changes that occur in hVISA and VISA strains in paired isolates from patients with persistent infections.
The top panel demonstrates significant cell wall thickening in VISA strains compared to VSSA strains, while the bottom panel demonstrates significant
increases in the expression of capsule by using an anticapsule type 8 immunoblot and serial dilutions of crude capsule extracts from paired VSSA and
VISA strains. (Adapted from references 121 and 122, the latter of which was published under an open-access license agreement.)
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a knockout mutant are the genes involved in purine biosynthe-
sis described above. The GraRS two-component regulatory
system also positively regulates rot and mgrA, which encode
global regulatory proteins that in turn control the expression of
many genes encoding virulence determinants and others where
the gene product is yet another regulatory protein (111).

In one study, the mgrA gene was found to be upregulated in
five out of six VSSA/VISA comparisons (57). The overexpres-
sion of MrgA also resulted in a slight increase in the MIC of
vancomycin (57). This perhaps unexpected connection be-
tween genes involved in endowing the VISA phenotype and
the very complex interconnected regulatory pathways control-
ling virulence in S. aureus has been noticed for many of the
experiments comparing the transcriptional profiles of VSSA

and VISA strains as well as for associated genetic and bio-
chemical studies. Where it has been investigated, it does not
seem that the differential expression of a particular virulence
determinant in the VISA strain has a direct impact on the level
of vancomycin resistance. For instance, capsule production was
shown to be upregulated in VISA strains by several studies, yet
mutations that result in the absence of capsule have no effect
on the vancomycin resistance of VISA strains (57, 122, 199).
Rather, it seems that the genes necessary for capsule produc-
tion, and one or more genes that directly or indirectly increase
vancomycin resistance, are part of the same regulon. Because
of the interconnected nature of the regulatory pathways, mu-
tations in multiple genes encoding regulatory proteins could
simultaneously result in increased capsule production and in-
creased vancomycin resistance.

Another example involves the alternative sigma factor SigB,
which has a positive effect on the expression of a regulon that
contains genes controlling pigmentation, among others (23).
SigB activity is suppressed by the action of the anti-sigma
factor RsbW. The activity of RsbW is in turn suppressed by
RsbU, so increased RsbU levels have a positive effect on the
expression of SigB-controlled genes. On the other hand, an
rsbU mutant will have no expression of SigB-controlled genes,
including those involved in pigmentation. Selection for in-
creased resistance to teicoplanin in an rbsU mutant resulted in
a strain that not only was pigmented but also had intermediate-
level resistance to both teicoplanin and vancomycin (23). The
relevant mutations inactivated the rsbW gene, allowing in-
creased SigB activity. In addition, the mutation of genes in-
volved in pigmentation had no effect on glycopeptide resis-
tance (23). This suggests that apart from genes involved in
pigmentation, the SigB regulon contains a gene(s) that con-
tributes to glycopeptide resistance in S. aureus (23). Recently,
it was demonstrated that the deletion of SpoVG, a downstream
regulator controlled by SigB, leads to an absence of capsule
production and reduced glycopeptide resistance in a VISA
strain (305). In a separate study, the overexpression of RsbU
and SigB in a VSSA strain resulted in a slight increase in the
MIC of vancomycin (57).

A final example of this complex connection between the
VISA phenotype and virulence regulons involves the produc-
tion of protein A, the product of the spa gene. Perhaps the
most consistent transcriptional change observed for VISA
strains is the downregulation of the spa gene (74, 122, 169, 199,
201, 251, 303). A possibly incomplete list of genes where the
gene product has been shown to affect the transcription of spa
includes agr (76, 343), sarA (51, 76, 343), sarS (50), arlSR (85,
86), sarT (304), srrAB (262), tcaR (200), mgrA (138), rot (240),
ccpA (307), and sarZ (342). Potentially, a mutation in any of
these regulatory genes could simultaneously increase vanco-
mycin resistance and decrease protein A production.

Mutations associated with resistance. It was proposed early
that VISA may have evolved in strains with defects in DNA
mismatch repair (i.e., strains with an elevated mutation fre-
quency) (221). Schaaff et al. generated a mutS knockout of
laboratory strain RN4220 and demonstrated that the rate of
acquisition and level of vancomycin resistance attained for
RN4220	mutS were higher than those for RN4220 (302).
Studies that have determined mutation frequencies for clinical
isolates of VISA did not detect an increased mutation fre-

FIG. 6. Microarray transcriptional heat map analysis of cell wall
stimulon activation of hVISA/VISA (defined by population analysis
and vancomycin broth MIC) relative to parental VSSA. Five isolate
pairs are included (P1 to P5). For each pair, the hVISA/VISA and
VSSA strains were isolated from the same patient. The fold ratio of
gene transcription for hVISA/VISA compared to VSSA was calculated
from pooled microarray data using The Institute for Genomic Re-
search S. aureus arrays. Divergent transcriptional patterns were ob-
served for the five pairs and demonstrate that for some hVISA/VISA
strains, the cell wall stimulon is activated compared to parental VSSA
strains, while in others, it is not activated compared to parental strains.
HP, hypothetical protein. (Adapted from reference 122, which was
published under an open-access license agreement.)
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quency (236–238). Additionally, an initial analysis of the Mu50
genome sequence suggested a frameshift mutation in mutS
(12), raising the possibility that a loss of mutS function could
have contributed to the emergence of vancomycin resistance in
Mu50; however, a resequencing of mutS from Mu50 did not
confirm this frameshift mutation (236), and the sequencing of
parental and VISA laboratory-induced isolates found no mutS
mutations (95, 186).

Transcriptomic and proteomic analyses have highlighted
that there are multiple pathways to the VISA phenotype. How-
ever, the most recent applications of comparative genomics
using isogenic VSSA/VISA pairs (or series of strains) isolated
from patients before, during, and after antibiotic treatment
have pinpointed some of the key S. aureus genes that are
involved in vancomycin resistance.

In a landmark study involving the complete genome se-
quencing of an isolate pair (JH1 and JH9) and mutation de-
tection in sequential S. aureus bloodstream isolates (named
JH1, JH2, JH5, JH6, and JH9) collected from a patient during
3 months of antibiotic treatment, Mwangi et al. uncovered a
total of 35 point mutations across the five isolates (222). The
appearance of each mutation (or groups of mutations)
was then correlated with changes in vancomycin susceptibility
patterns. While no experimental data were provided to support
the contribution of individual changes to vancomycin suscep-
tibility, there were only a limited number of mutations ob-
served between successive isolates. One of the first mutations
to arise was a nucleotide change in SA1702 (strain N315 locus
tag nomenclature), resulting in a predicted amino acid substi-
tution (H164R). SA1702 is a gene of unknown function within
the vraSR operon, but interestingly, its predicted protein prod-
uct shares 42% amino acid similarity with LiaF from Bacillus
subtilis. LiaF is a potent negative regulator of LiaR-dependent
gene expression (149), and the LiaRS two-component regula-
tory (2CR) system in B. subtilis drives the cell envelope stress
response, responding to changes in the cycling of undecaprenol
and disturbances of the cytoplasmic membrane (149). Further-
more, a liaF deletion in B. subtilis leads to the constitutive
activation of LiaR-dependent promoters. It is possible that the
H164R mutation of SA1702 has led to the upregulation of
vraR, the liaR ortholog in S. aureus. In support of this hypoth-
esis, the overexpression of vraR was shown to increase resis-
tance to vancomycin (169). However, while these systems share
amino acid sequence identity, LiaRS and VraSR are not func-
tional orthologs, as VraSR can regulate both early and late
steps in peptidoglycan synthesis (92, 168, 361).

Other mutations uncovered by Mwangi et al. in the three
subsequent isolates (JH5, JH6, and JH9), where the vancomy-
cin MIC increased stepwise from 4 �g per ml to 8 �g per ml,
included eight intragenic and nonsynonymous mutations that
caused changes in genes of the agr quorum-sensing system, the
WalKR cell wall regulatory operon, and a gene potentially
involved in peptidoglycan biosynthesis (Table 4) (222).

Neoh et al. also used comparative genomics to investigate
the evolution of VISA from hVISA by comparing the genomes
of hVISA strain Mu3 with a related VISA strain isolated from
a different patient, strain Mu50 (225). Sixteen point mutations
were observed, including a predicted amino acid substitution
(N197S) in GraR of Mu50, the response regulator of the
above-mentioned GraRS two-component regulatory system.

The introduction of GraR N197S from Mu50 into Mu3 con-
verted this hVISA strain into a full VISA strain, accompanied
by cell wall thickening and decreased autolysis (225). The in-
troduction of GraR N197S to N315 (VSSA) had no effect upon
vancomycin susceptibility, thus indicating that additional
genomic changes in N315 were required to develop the VISA
phenotype. Microarray studies of Mu3 expressing GraR N197S
suggested that at least 14 genes were specifically upregulated
by GraR, including the genes encoding the ABC transporters
VraFG and VraDE. Interestingly, these experiments also
showed that GraR N197S expression in Mu3 led to a down-
regulation of spa. The reduced level of expression of protein A
is a known VISA phenomenon. In contrast, a graRS knockout
in Mu3 did not lead to the VISA phenotype or any of the
associated cell wall changes. These data suggest that perhaps
the N197S amino acid substitution resulted in GraR remaining
in an activated “on” state. Most recently, that team used
genomics to compare clinical VISA strain Mu50 with a strain
with less vancomycin resistance isolated 1.5 years later from
the same patient, strain Mu50
 (60). Mu50
 had a loss-of-
function mutation in vraS. The restoration of intact vraS(I5N)
and the replacement of graR(N197S) from Mu50 resulted in
Mu50
 developing the full Mu50 VISA phenotype, clearly
demonstrating that point mutations in these two regulatory
elements are sufficient for VISA, at least in Mu50 (60).

Another comparative genomics study investigated the evo-
lution of VISA and also implicated the graRS locus in resis-
tance (123). An isogenic pair of bloodstream VSSA and VISA
isolates, obtained from a patient before and after 42 days of
vancomycin therapy, were fully sequenced and compared. Six
mutations were detected, and one of these mutations was in
graS, resulting in an amino acid substitution (T136I). This
mutation was confirmed to be a key contributor to an increase
in vancomycin resistance by the replacement of graS in VSSA
strain JKD6009 with graS(T136I) from JKD6008. Significantly,
however, the allele swap did not restore the full VISA pheno-
type, and so presumably, one or more of the remaining five
mutations detected in JKD6008 are also required to generate
the full VISA phenotype.

Table 4 contains a summary of genes linked to intermediate-
level vancomycin resistance in S. aureus. A number of loci are
included in Table 4, and a number of methodologies have been
used to investigate this problem, but the key message that has
emerged from genome-wide studies is that small changes in
key regulatory genes involved in cell wall metabolism have a
profound impact on vancomycin susceptibility. With the rap-
idly diminishing cost and concomitant higher throughput of
next-generation DNA sequencing, comparative genomics can
now be routinely applied to identify mutations associated with
resistance in clinical MRSA isolates. However, to go beyond an
association and understand the contribution of each mutation to
resistance, we need to continue to develop the tools that will
facilitate the genetic manipulation of S. aureus. These include
tools that permit the rapid creation of unmarked, site-directed
mutants in S. aureus, such as the allelic exchange vector pKOR1
(14), and, perhaps most importantly, methods for efficient deliv-
ery of DNA to those clinical strains of S. aureus that are refractory
to transformation by electroporation.
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TABLE 4. Genes associated with VISAb

Gene, predicted mutation Impact of mutation Description Reference(s)

graR, nucleotide
substitution

Led to a GraR aa substitution, N197S; expression of the mutant graR
allele in hVISA strain Mu3 converted this strain to VISA

Comparative genomic study
also with allele-swapping
experiments using hVISA
strain Mu3, VISA strain
Mu50, and VSSA strain
N315; looking at the
contribution of individual
genes to vancomycin
susceptibility

225

graRS, DNA deletion Deletion of graR led to increased susceptibility to vancomycin Reverse genetics, using
laboratory strains of S.
aureus and VISA strain
Mu50; this study shows
that GraRS and VraFG
are important mediators
of VISA

204
vraFG, DNA deletion Deletion of vraG led to increased susceptibility to vancomycin

SA1702,a nucleotide
substitution

Led to a predicted aa substitution in SA1702, H164R; SA1702 is a
protein of unknown function immediately upstream of vraS; this
isolate was obtained when the vancomycin MIC increased from 1 to
4 �g per ml

Comparative genomic study
of five sequential S.
aureus bloodstream
isolates obtained from a
single patient during 3
mo of antibiotic
treatment

222

SA1249, frameshift Led to a predicted loss-of-function in SA1249; the function of SA1249
is unknown, but its genomic location suggests that it might be part
of the murG operon with a role in peptidoglycan synthesis; this
isolate was obtained when the vancomycin MIC increased from 4 to
6 �g per ml

agrC, frameshift Led to a predicted loss of function in agrC; this gene is part of the agr
quorum-sensing locus; this is one of six mutations affecting protein-
coding sequences, where the vancomycin MIC increased from 6 to 8
�g per ml

yycH, premature stop
codon

Led to a predicted loss of function in yycH (90% protein not
translated); YycH is a hypothetical protein within an operon
containing the two-component regulator that controls cell wall
synthesis (WalKR/YycFG) by promoting expression of genes
involved in autolysis; this is one of six mutations affecting protein-
coding sequences, where the vancomycin MIC increased from 6 to 8
�g per ml

isdE, nucleotide
substitution

Led to a predicted aa substitution in IsdE, A84V; involved in heme-
iron transport; this is one of six mutations affecting protein-coding
sequences, where the vancomycin MIC increased from 6 to 8 �g
per ml

prsA, frameshift Led to a possible loss of function in PrsA; PrsA is a putative
membrane-linked ribose-phosphate pyrophosphokinase that can
chaperone secreted proteins in Gram-positive bacteria; this is one
of six mutations affecting protein-coding sequences, where the
vancomycin MIC increased from 6 to 8 �g per ml

SA2094, nucleotide
substitution

Led to a predicted aa substitution in SA2094, A94T; the function of
SA2094 is unknown, but it is predicted to be membrane associated,
and it shares similarity with an Na�/H� antiporter from B. subtilis;
this is one of six mutations affecting protein-coding sequences,
where the vancomycin MIC increased from 6 to 8 �g per ml

graS, nucleotide
substitution

Led to an aa substitution in GraS, T136I; this was one of six
mutations detected in VISA strain JKD6008 compared to VSSA
progenitor strain JKD6009; replacement of the mutant graS allele in
VSSA strain JKD6009 resulted in an increase in the MET MIC
from 2 to 6 �g per ml

Comparative genomic study
with allele-swapping
experiments with two S.
aureus blood culture
isolates (ST239) obtained

123

graRS, DNA deletion Led to a loss of GraRS function in VSSA JKD6009 and resulted in
increased sensitivity of this strain to vancomycin, with a decrease in
the MET MIC from 2 to 1 �g per ml

from a patient before
and after 42 days of
vancomycin therapy; this
study highlights the key
role that GraRS plays in
the formation of VISA
among clinical isolates

vraS, premature stop
codon

Led to a predicted loss of VraS function in VSSA strain Mu50
;
replacement of this disrupted vraS allele with intact vraS from
VISA strain Mu50 resulted in an increase in the vancomycin MIC
from 0.5 to 3.5 �g per ml

Comparative genomic study
also with allele-swapping
experiments using VISA
isolates Mu50 and
Mu50
; the latter strain
was isolated from the
same patient 1.5 yr after
Mu50 was isolated

60

Continued on following page
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TABLE 4—Continued

Gene, predicted mutation Impact of mutation Description Reference(s)

graR, no change compared
with other VSSA
isolates

Replacement of this graR allele in strain Mu50
 with both vraS and
graR from VISA strain Mu50 resulted in an increase in the
vancomycin MIC for Mu50
 from 0.5 to 6.0 �g per ml; these
experiments show that point mutations in vraSR and graRS together
are sufficient to induce VISA

yycFG, IS256 upstream
insertion

Insertion of IS256 led to upregulation of yycFG (walKR);
overexpression in trans of yycFG led to increase in vancomycin
resistance

Comparative transcriptome
study with overexpression
experiments using hVISA
strain SA137/93A and
laboratory derivative
SA137/93G

141

mgrA and sarA, DNA
deletion

Led to a loss of SarA and MgrA function; SarA and MgrA are
negative regulators of murein hydrolases (or autolysins); these
enzymes (both dimeric, winged-helix proteins) are required for cell
wall turnover; the double mutant showed increased Triton X-100-
induced autolysis and increased sensitivity to killing by vancomycin
and oxacillin

Used laboratory strains
COL, MW2, and
derivatives

353

spoVG, deleted Deletion of spoVG decreases resistance to oxacillin and teicoplanin,
with less impact on vancomycin resistance; loss of spoVG also led to
a loss of capsule production; the yabJ/spoVG operon is under the
control of the alternative sigma factor (SigB); the SigB regulon has
been implicated in glycopeptide resistance

Used laboratory strains
COL, Newman, and
derivatives

305

vraS, nucleotide
substitution

Led to a predicted aa substitution in VraS, I5N; this mutation was
present only in Mu3 and Mu50 and not in other VSSA isolates

Comparative genomic
VISA strain, Mu50,
hVISA strain Mu3, and
VSSA strain N315; no
experimental data
provided

234

mprF/fmtC, Tn917
insertion

Insertion of Tn917 led to MprF loss of function and decreased
vancomycin resistance; MprF (FmtC) is involved in synthesis of
lysyl-phosphatidylglycerol (a major cell wall component), changing
the content of the cell wall and increasing the net negative charge

Mutagenesis study using S.
aureus RN4220

286

mprF/fmtC, Tn551
insertion

Insertion of Tn551 led to MprF loss of function and decreased
vancomycin resistance in VISA strains but slightly increased
vancomycin resistance in VSSA strains

Mutagenesis study using S.
aureus COL and
vancomycin-resistant
laboratory derivatives

228

trfA/trfB, insertional
inactivation (antibiotic
resistance marker)

Loss of this locus led to an increase in susceptibility to teicoplanin,
oxacillin, and vancomycin; function of TrfAB not known

Conducted genetic studies
with S. aureus RN4220,
laboratory-derived
teicoplanin-resistant
mutants, and clinical
strain NRS3

270

ccpA, insertional
inactivation (antibiotic
resistance marker)

Loss of CcpA (carbon catabolite protein A) impacts S. aureus in many
ways (reduces growth, carbon metabolism, RNAIII expression, and
capsule synthesis); loss of CcpA also reduced resistance to
teicoplanin; the effect of this mutation on vancomycin resistance
was not reported

Conducted genetic studies
with S. aureus strains
COL, Newman, RN4220,
and laboratory-derived
mutants

307

agr, insertional
inactivation (antibiotic
resistance marker)

Loss of Agr led to increased probability of hVISA when population
was exposed to 1 �g/ml vancomycin

Conducted genetic studies
with S. aureus strains
RN6390, RN6607, and
RN4580

294, 296

rsbU, DNA deletion RsbU is an anti-anti-sigma factor; selection for teicoplanin resistance
in an rsbU mutant resulted in GISA, suggesting that a gene(s) (e.g.,
spoVG) within the SigB regulon can mediates glycopeptide
resistance (refer to reference 305)

Used S. aureus strain
MRGR3, a teicoplanin-
resistant mutant obtained
from animal studies of
wound infection

23

pbp4, DNA deletion Loss of Pbp4 led to increased vancomycin resistance in VSSA, while
overexpression of Pbp4 reduced vancomycin resistance in VISA;
Pbp4 may be involved in transpeptidation, i.e., formation of
peptidoglycan cross-linking

Conducted genetic studies
using S. aureus strains
COL, RN450M, N315,
and their laboratory-
derived VISA mutants

81

a Gene identifier according to S. aureus N315 locus tags.
b aa, amino acids.
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Other Features of hVISA and VISA

The development of reduced vancomycin susceptibility in S.
aureus in many cases appears to be associated with changes in
bacteria that are predicted to impact host-pathogen interac-
tions and are not linked directly to the expression of the anti-
biotic resistance phenotype. Although only limited work has
been done in this area, it has demonstrated changes in in vitro
biofilm formation, polysaccharide capsule production, surface
protein A expression, and agr activation in hVISA and VISA
isolates, with preliminary results suggesting an impact on host
immune responses (121, 122). Interestingly, it was demon-
strated using a rat model of chronic foreign-body infection that
reduced teicoplanin and vancomycin susceptibility can occur in
vivo without antibiotic exposure (367), suggesting a possible
coevolutionary effect where bacterial changes to favor persis-
tent infection may lead to reduced glycopeptide susceptibility,
and vice versa.

Surface proteins. In strain 14-4 (derived from rat tissue cage
infection), an increased surface expression of fibronectin bind-
ing proteins was associated with increased fibronectin-medi-
ated adherence in an in vitro model (269). As described above,
a consistent transcriptional change observed in VISA strains is
the downregulation of the spa gene, encoding protein A (74,
122, 169, 199, 201, 251, 303). For a small number of strains, we
have demonstrated that reduced spa expression levels in
hVISA and VISA strains are associated with decreased levels
of cell surface protein A (Fig. 1) (122). Protein A is a very
important S. aureus surface protein that is highly conserved
and abundantly expressed in infections of the lung (83). It
possesses antiphagocytic activity by binding the Fc portion of
immunoglobulin (275), acts as a B-cell superantigen (241),
activates clotting by binding von Willebrand factor (96, 97),
and has been shown to activate tumor necrosis factor (TNF)
receptor 1 (TNFR1) and lead to proinflammatory signaling,
which is important in the pathogenesis of staphylococcal pneu-
monia (98). Recently, it was shown that protein A also cleaves
TNFR1 from the surface of epithelial cells and macrophages,
which limits TNF-� signaling. This process is mediated by a
protein A interaction with the epidermal growth factor recep-
tor (EGFR) and by the activation of tumor necrosis factor
alpha-converting enzyme (TACE), the TNF1 sheddase (98).
Changes in protein A expression are therefore likely to impact
host-pathogen interactions in hVISA/VISA strains.

Capsule. An early investigation of two VISA strains from the
United States (MI and NJ) demonstrated an increase in extracel-
lular matrix by electron microscopy (326). Several transcriptional
studies demonstrated an upregulation of genes associated with
capsule biosynthesis (57, 122, 199), and increased capsule produc-
tion has been demonstrated for a small number of hVISA and
VISA strains that have been tested (Fig. 5). The majority of S.
aureus strains produce microcapsules (10, 239, 368). Although 11
serotypes of S. aureus have been found, most clinical isolates
produce polysaccharide capsule type 5 or 8 (312). The type 5 and
8 capsules are structurally very similar and differ only in the
linkages between sugars and in O-acetylation (239).

The production of polysaccharide capsule by S. aureus has
an effect on host immune evasion as well as changing endo-
thelial binding and virulence properties. Although early results
were conflicting, capsule expression does protect the bacterium

from phagocytic uptake and killing by human polymorphonu-
clear leukocytes (261, 336). Initial animal studies of virulence
in wild-type and capsule knockout strains did not demonstrate
a difference (227, 260, 349). Later studies demonstrated that
type 5 encapsulated strains of S. aureus were more virulent in
a mouse bacteremia model, a renal abscess model, and a septic
arthritis model (274). Recently, it was demonstrated that cap-
sule expression reduces clumping factor A-mediated binding to
fibrinogen and platelets, suggesting that capsule can mask sur-
face adhesins and prevent binding (274).

D-Alanine esters in teichoic acids. Mutations, inactivation,
and altered expression of graRS have been linked to changes in
vancomycin susceptibility in S. aureus (57, 60, 111, 123, 204,
225). GraRS (Aps) is known to control the dltABCD operon,
which controls the alanylation of wall teichoic acids in response
to antimicrobial challenge, indicating that the structure of tei-
choic acids can change in response to challenges (111, 180,
181). The Aps and dltABCD pathway is linked to cationic
antimicrobial peptide resistance in S. aureus, and the positive
charge of D-alanine residues repels positively charged mole-
cules such as defensins (54, 248, 249). There is also evidence of
a link between the D-alanylation state of teichoic acids and
vancomycin susceptibility in S. aureus, where a dlt mutant
strain lacking in D-alanine in teichoic acids was shown to have
increased vancomycin susceptibility compared to that of the
wild-type strain (249). Wall teichoic acids also have a role in
attachment to host cells, with studies demonstrating reduced
nasal colonization and reduced binding to endothelial cells in
strains deficient in WTA and in strains with a reduced
dltABCD-mediated alanylation of teichoic acids (378, 380, 381). It
is therefore likely that for isolates of hVISA or VISA where the
development of resistance is associated with an increased level of
expression of graRS or mutations in the locus, alterations in sus-
ceptibility to antimicrobial peptides are likely to occur, favoring
resistance to these agents (Fig. 1). Further work is required to
clearly define the interplay between hVISA, VISA, and suscepti-
bility to antimicrobial peptides in S. aureus.

Accessory gene regulator (agr). The agr locus is a quorum-
sensing system that consists of a �3-kb locus with divergent
transcription units, which are driven by two promoters, P2 and
P3 (231). The agr locus consists partly of 4 genes (agrBDCA)
controlled by the P2 promoter that act like a two-component
regulatory system with its autoinducing ligand. This transcript
is called RNAII. The autoinducing peptide is encoded by agrD
and is processed and secreted by the transmembrane protein
AgrB (394). agrC acts as the sensor histidine kinase that is
phosphorylated in response to the autoinducing peptide (182),
while agrA is the response regulator that is thought to bind and
activate the two agr promoters, P2 and P3, thus completing the
autoinducing circuit; however, this has been difficult to dem-
onstrate definitively (231).

The agr locus is conserved throughout the staphylococci,
with a hypervariable region found between the 3� end of agrB
and the 5� region of agrC (and including agrD) leading to the
designation of four agr specificity groups or types (75). The
ability of an autoinducing peptide to activate its receptor is
highly sequence specific, and a single amino acid change can
alter group specificity (231). Therefore, functional variants of
the agr locus would lead to cross-group inhibition rather than
cooperative communication (231). The agr types appear to
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map to different clonal complexes by multilocus sequence typ-
ing (144), suggesting that agr may have evolved early in the
staphylococcal evolutionary process (390).

An RNA molecule (RNAIII) (�0.5 kb) is produced by the
divergent agr transcript promoted by P3 and overlaps the hld
gene, which encodes delta-hemolysin (232). RNAIII is the
intracellular effector molecule of the agr locus and is respon-
sible for the direct activation or inhibition of other loci.
RNAIII transcription increases during growth and is maximal
in the postexponential growth phase (364). It has a long half-
life of approximately 15 min (143). RNAIII has a complex
secondary structure consisting of 14 hairpins, many of which
are conserved in all staphylococcal species (17). RNAIII up-
regulates the transcription of genes encoding most of the ex-
tracellular proteins and downregulates the transcription of
genes encoding many surface proteins (232, 301). RNAIII was
also shown to act at the level of translation to control the
expression of alpha-hemolysin and protein A (135, 232). Al-
though hld is cotranscribed with RNAIII, it does not have any
regulatory effect, as the deletion of the genomic region encod-
ing this small 26-amino-acid hemolysin did not lead to an
agr-negative phenotype (143).

A number of studies have linked alterations in agr activation
or function with vancomycin tolerance, an increased tendency
to develop vancomycin resistance, and the presence of the
hVISA or VISA phenotype (121, 269, 295, 296, 357). In a
number of these studies, determinations of agr activity were
performed by the analysis of delta-hemolysin production on
sheep blood agar; however, this is only a semiquantitative
measure (296). Similar results were found by using microarray
transcriptional analysis or real-time quantitative PCR to mea-
sure RNAIII transcripts in paired isolates (121, 269). Although
mutations have been found in the agr locus in a small number
of isolates (296), reduced levels of agr expression occur without
mutations in the locus (121, 269). The mechanisms of reduced
levels of agr expression in these isolates are not completely
understood.

Initially, it appeared that agr group II isolates were overrep-
resented in VISA strains from around the world (369); how-
ever, a subsequent study from Europe demonstrated that many
of their VISA and hVISA isolates were of agr group I (295,
296). In addition, it was demonstrated that S. aureus from agr
groups I to IV all develop intermediate vancomycin resistance
upon in vitro exposure to the drug (358). It was demonstrated
that when hVISA or VISA develops from VSSA, there is a
reduction in levels of agr expression in the resistant isolates
(121, 269). Given the global regulatory role that agr plays in
virulence factor expression, in particular the production of
exotoxins, it is likely that strains of hVISA and VISA that have
reduced agr activity produce fewer exotoxins than parental
strains. This has not been tested specifically.

In a number of in vitro studies, reduced agr function has
been shown to favor the development of vancomycin resistance
(295, 296, 358); however, an association between agr function
and teicoplanin resistance development was not demonstrated
(281). Assuming that the relationship between agr function and
the development of vancomycin resistance exists, it is worth
noting that in one study, 48% of hospital MRSA strains were
found to have reduced agr function, compared to 3.5% of
community-associated MRSA strains (357), suggesting a pos-

sible higher tendency for hospital MRSA strains to develop
into hVISA or VISA strains. A clinical study also linked agr
group II polymorphisms with poor responses to vancomycin
therapy for patients with MRSA infections (211). In addition,
a loss of agr function was associated with a reduced suscepti-
bility to platelet microbiocidal protein and reduced autolysis, a
common feature of hVISA and VISA strains (295, 296).

Interestingly, some studies of persistent S. aureus bacteremia
isolates (where hVISA and VISA strains have not been de-
tected or assessed) have demonstrated some changes in iso-
lates similar to those seen with hVISA and VISA. In particular,
these changes have included reduced agr function, reduced
susceptibility to host antimicrobial peptides including platelet
microbiocidal protein and hNP-1, and increased adhesion to
fibrinogen, fibronectin, and endothelial cells (88, 297, 391). In
a study by Xiong et al., although there was no formal assess-
ment for hVISA, in a rabbit endocarditis model, there was a
reduced efficacy of vancomycin in one persistent bacteremia
isolate compared to the control (391).

Host immune interactions and virulence. A few studies have
suggested that the acquisition of vancomycin or teicoplanin
resistance by S. aureus is associated with changes in bacterial
fitness and virulence potential. In a rat infection model, a
reduced fitness of a teicoplanin-resistant laboratory-derived
strain of S. aureus was demonstrated (201). Using the inverte-
brate model Galleria mellonella, the impact of reduced vanco-
mycin susceptibility and altered agr function was assessed for a
few isolates (244). As the vancomycin MIC increased, viru-
lence in the model was reduced. Additionally, S. aureus with
reduced agr function demonstrated reduced virulence.

As a potential clinical correlate of the laboratory studies, a
recent clinical study assessed the relative clinical importance of
hVISA/VISA compared to VSSA with regard to the likelihood
of causing active clinical infection (118). That study included
59 patients with VSSA isolates and 58 patients with hVISA/
VISA isolates defined by PAP and microbroth MIC (56 hVISA
isolates with a vancomycin MIC of 2 �g per ml and 2 VISA iso-
lates with a vancomycin MIC of 4 �g per ml). The hVISA/
VISA isolates were less likely to be associated with clinical
infection; in particular, this was due to a decrease in the rate of
bacteremia caused by hVISA/VISA compared to the rate of
bacteremia caused by VSSA.

Because of the changes in the cell surface of hVISA and
VISA isolates that we have studied, we assessed the impact of
the hVISA and VISA phenotypes on proinflammatory cyto-
kine stimulation by using an in vitro system (122). In the
clinical isolate pairs tested, the hVISA and VISA phenotypes
were associated with a significant reduction in levels of NF-
B,
TNF-�, and interleukin-1� (IL-1�) expression. In a clinical
study of MRSA bacteremia, the risk of shock was lower for
patients infected with strains of S. aureus with higher vanco-
mycin MICs, suggesting a possible correlation with in vitro
data (332). In that clinical study, proinflammatory cytokine
levels were not assessed for the patients with S. aureus bacte-
remia; however, such a study linking S. aureus vancomycin
susceptibility to patient immune responses would provide an
interesting insight into the impact of vancomycin resistance on
host-pathogen interactions.
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LABORATORY DETECTION

Despite significant effort, the genetic determinants of
hVISA and VISA have not been completely resolved. There-
fore, no molecular-based assays are available for the detection
of hVISA and VISA. The accurate detection of hVISA and, to
some extent, VISA has been difficult with phenotypic methods;
however, increasing amounts of data support a number of
methods for the screening for and confirmation of hVISA and
VISA infection. Isolates of S. aureus with vancomycin MICs of
4 to 8 �g per ml are rare, while S. aureus isolates with vanco-
mycin MICs of 2 �g per ml are relatively common. For exam-
ple, Surveillance Network data from the United States for 2005
found that only 0.2% (n � 520) of all S. aureus isolates had a
vancomycin MIC of �4 �g per ml, while 16.2% (n � 39,223)
had a vancomycin MIC of 2 �g per ml (346). A high rate of
hVISA isolation can be detected for S. aureus isolates with a
vancomycin MIC of �2 �g per ml in some settings (118, 175);
therefore, the vancomycin MIC result alone is unable to accu-
rately distinguish hVISA from VSSA isolates, and the use of
MIC testing alone will fail to detect hVISA strains that are
relatively common among isolates of S. aureus with broth MICs
of 2 �g per ml (Fig. 4).

The relative levels of resistance to vancomycin and teicopla-
nin can vary between different VISA isolates. Some authors
suggested classifying strains as class A, B, and C glycopeptide
resistant (class A, vancomycin intermediate and teicoplanin
intermediate; class B, vancomycin intermediate and teicopla-
nin susceptible; class C, vancomycin susceptible and teicopla-
nin intermediate) (29); however, this has not been widely
adopted.

Colony Morphology of hVISA and VISA

The morphological features of VISA and hVISA strains can
be different from those of standard S. aureus cultures on agar
plates, although these changes are often subtle variations such
as reduced pigmentation or slightly smaller colony size (see
“SCV S. aureus and hVISA/VISA”). In some cases, the
changes are more obvious. For example, hVISA and VISA
isolates can be slow growing and can generate a “mixed” col-
ony morphology where large and small colonies and colonies
with different pigmentations are present in a pure culture from
a clinical specimen (Fig. 7) (197). It is therefore important to
test each of the different morphotypes from a mixed-morpho-
type culture of S. aureus for vancomycin susceptibility.

VISA and Vancomycin MIC Testing

Vancomycin-intermediate S. aureus is defined by a vanco-
mycin MIC result of 4 to 8 �g per ml (53). Possible methods for
defining the vancomycin MIC include CLSI-approved methods
(agar dilution and broth MIC), Etest MIC using a 0.5 Mc-
Farland standard, 24 h of incubation on Mueller-Hinton agar
(MHA), and other commercial tests such as MicroScan and
Vitek 2. The 2-McFarland-standard macromethod Etest is a
screening tool for hVISA and VISA but is not a true vanco-
mycin or teicoplanin MIC, and the results of the macromethod
Etest should not be reported as a true MIC. Subtle but poten-
tially important variability in vancomycin MIC results is ob-

tained with different methods (130, 174, 263, 291, 338). In a
study by Leonard et al., 100 hVISA and 50 VSSA isolates were
tested by vancomycin broth and Etest MICs. Overall, the MIC
result tended to be higher by Etest than by broth microdilution
(174). In a study by Prakash et al. (263), 101 MRSA isolates
were tested by agar dilution and microbroth MICs according to
CLSI criteria as well as by standard vancomycin Etest per-
formed with two different brands of Mueller-Hinton agar
(BBL and Remel). While there was reasonable correlation
between the CLSI agar dilution and broth microdilution meth-
ods, the Etest results were consistently one twofold dilution
higher than results for the other methods, changing the modal
vancomycin MIC from 1 �g per ml (broth and agar dilution) to
2 �g per ml (Etest) (263). Similar results were recently re-
ported for 1,800 randomly selected MRSA isolates, where
Etest MICs were 0.5 to 1.5 log2 dilution steps higher than the
reference broth MIC results (291). Even the agar dilution and
broth microdilution methods demonstrated some inconsis-
tency, with 20.8% of isolates having a vancomycin MIC of 0.5
�g per ml by broth microdilution and 1% having a vancomycin
MIC of 0.5 �g per ml by agar dilution. Swenson et al. investi-
gated a number of commercial assays and reference methods
for the detection of VISA (338). A number of the assays
(Sensititre, Vitek Legacy, and Vitek 2) tended to categorize

FIG. 7. Examples of changes in colony morphology that can occur
with hVISA and VISA strains. (A) Mixed-colony morphologies from a
pure culture of S. aureus from a bile specimen demonstrate remarkable
heterogeneity in colony size and hemolytic activity. The small colonies
were VISA, while the larger colonies were VSSA. (Reprinted from
reference 197 with permission.) (B) Mixed-colony pigmentation in a
pure culture of S. aureus, where the yellow colonies were VISA and the
gray colonies were VSSA. The different morphologies were identical
by pulsed-field gel electrophoresis. (C and D) Subtle changes in colony
morphology that occur in VISA strains compared to parental VSSA
strains. JKD6009 (C) is a VSSA strain, and JKD6008 (D) is a VISA
strain isolated from the same patient after failed vancomycin therapy.
The pulsed-field gel electrophoresis patterns were also identical for
JKD6008 and JKD6009.
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VISA strains as susceptible, while others (MicroScan and
Phoenix) tended to categorize susceptible strains as VISA.
Given these inconsistencies, determinations of vancomycin
broth MIC performed according to CLSI criteria should be
used to define VISA (53). Additionally, for the purposes of
further study and clinical treatment decisions, reporting of
vancomycin MIC results should clearly describe the method
used to generate the result.

Many of the VISA strains with a vancomycin MIC of 8 �g
per ml that have been reported from around the world have
developed in patients during failed vancomycin therapy, under
vancomycin selective pressure (258, 316). A number of these
strains demonstrated lower vancomycin MICs (as low as 2 �g
per ml) when subsequently retested, demonstrating the unsta-
ble nature of this resistance phenotype and a tendency for
some strains to have a reduction in MICs when vancomycin
selective pressure is removed (339).

There has been recent interest in the use of vancomycin
MIC results (within the susceptible range) to predict outcomes
for patients with serious S. aureus infections being treated with
vancomycin (184, 298, 332). Generally, these studies demon-
strated a higher failure rate for vancomycin treatment of S.
aureus strains with higher vancomycin MICs within the suscep-
tible range (see “Clinical Studies”). None of these studies
assessed the presence of the hVISA phenotype, and it is pos-
sible that this may have been an even better predictor of
clinical failure. The three studies used different methods for
vancomycin MIC determinations, agar dilution MIC (298),
Etest MIC (184), and microdilution MIC (332), making it
somewhat difficult to draw direct comparisons between studies.
Clearly, given the apparent variability in vancomycin MIC re-
sults obtained with the different methods, the use of the van-
comycin MIC to predict the outcome of serious S. aureus
infections needs to take into account the method used and the
results of studies using that particular method.

hVISA

There is currently no standardized method for the accurate
detection of hVISA (183), which makes laboratory testing and
interpretation of the clinical significance of hVISA difficult. A
large number of screening methods have been analyzed, and
although a number of them are useful for the detection of
VISA, the majority are not adequate for screening for hVISA.
Any method to detect the resistant subpopulation of cells
present in an hVISA strain is inherently more difficult than
standard testing according to CLSI criteria, because the resis-
tant subpopulation can be present in a low ratio compared to
the susceptible population (typically 10�5 to 10�6). Given the
low inoculum used for CLSI broth and agar dilution methods,
the hVISA phenotype will not be detected. Methods to detect
hVISA therefore tend to rely on the testing of a higher inoc-
ulum (for example, 108 CFU for population analysis and a
2-McFarland-standard inoculum for the MET) and methods to
promote the growth of the resistant subpopulation, such as
prolonged incubation (usually 48 h) or use of more nutritious
media (e.g., brain heart infusion agar [BHIA] or Mueller-
Hinton agar [MHA] with blood). From a laboratory point of
view, PAP appears to be the best method for the confirma-
tion of the presence of hVISA, while potentially effective
screening tests include modified Etest methods (MET or
Etest GRD) and screening agar consisting of MHA with 5
�g teicoplanin per ml when population analysis is used as
the reference method (see Table 5 for a summary of screen-
ing methods).

Screening methods. hVISA strains tend to have higher van-
comycin MICs within the susceptible range such that 30 to 49%
of S. aureus isolates with MICs of 2 �g per ml determined by
Etest are hVISA strains by detailed PAP testing (Fig. 4) (174,
220), while in our experience, approximately 60% of our
MRSA isolates with a vancomycin microbroth MIC of 2 �g per

TABLE 5. Laboratory detection of hVISA and accuracy of methods compared to those of modified population analysis/area under the curvea

Method Sensitivity Specificity Reference(s)

Vancomycin broth MICb 11% 100% 372
BHIA � vancomycin at 6 �g per ml, 10 �l of a 0.5-McFarland-

standard suspension (BHIA6V)c
48 h, 4.5–12% 48 h, 68–100% 370, 389, 393

MHA � teicoplanin at 5 �g per ml, 10 �l of a 2-McFarland-
standard suspension (MHA5T)d

48 h, 65–79% 48 h, 35–95% 82, 252, 370, 389, 393

MHA � teicoplanin at 5 �g per ml, 10 �l of a 2-McFarland-
standard suspensione

48 h, 98% 48 h, 53% 82

MHA � vancomycin at 5 �g per ml, 10 �l of a 0.5-McFarland-
standard suspension

48 h, 1–20% 48 h, 59–99% 370, 372

Simplified PAP f 48 h, 71% 48 h, 88% 372
Macromethod Etest (MET) 48 h, 69–98.5% 48 h, 89–94% 174, 289, 370, 372, 389
Etest GRD 24 h, 70–77% 24 h, 98–100% 174, 393

48 h, 93–94% 48 h, 82–95%

a In all studies, vancomycin population analysis/area under the curve (PAP/AUC) was considered the “gold standard” for calculating sensitivity and specificity.
b Evaluation of vancomycin broth MICs included detection of VISA and hVISA. By definition, hVISA will not be detected by determinations of broth MIC.
c BHIA6V is the screening plate recommended by the CDC and the Clinical and Laboratory Standards Institute for the detection of VRSA and VISA strains with

vancomycin MICs of �8 �g per ml (http://www.cdc.gov) (53), which is spot inoculated with 10 �l from a 0.5-McFarland-standard suspension and read at 24 and 48 h.
The culture is considered positive if there is growth of 2 or more colonies.

d MHA5T is the screening plate recommended by the Comité de l’Antibiogramme de la Société Française de Microbiologie (http://www.sfm.asso.fr),which is spot
inoculated with 10 �l from a 2-McFarland-standard suspension and read at 24 and 48 h. The culture is considered positive if there is growth of 1 or more colonies.

e This analysis included some isolates with a hetero-teicoplanin-resistant but vancomycin-susceptible phenotype by population analysis.
f Simplified PAP consists of inoculating BHIA with 4 �g per ml of vancomycin with 10 �l from a 0.5-McFarland-standard suspension and reading at 24 and 48 h for

any growth.
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ml are hVISA strains (118). Some strains of S. aureus with
Etest MICs of 0.75 �g per ml or microbroth MICs of 0.5 to 1
�g per ml are hVISA strains when tested by PAP (174).

Early after the emergence of hVISA and VISA, it became
clear that automated susceptibility testing methods and stan-
dard disc diffusion were inadequate for the detection of VISA
let alone the low-level-resistant subpopulations present in
hVISA strains (91, 127, 347). A number of screening tests for
hVISA and VISA have since been developed and assessed,
although the sensitivity has been generally low for the detec-
tion of hVISA (Table 5). A detailed analysis of different
screening methods for hVISA detection was reported by Walsh
et al. in 2001 (372), and two subsequent multicenter analyses
helped to define the optimal screening methods for hVISA by
using population analysis as the “gold standard” (370, 389).
Significant intra- and interlaboratory variability exists for a
number of the proposed screening methods (370).

In the original report by Hiramatsu et al., a simplified pop-
ulation analysis was described (114). This method involved
inoculating 10 �l of a suspension of 108 CFU per ml onto
BHIA with 4 �g vancomycin per ml. Any growth at 24 h was
considered potential VISA and tested by determination of the
vancomycin MIC. Any growth after 48 h was considered po-
tential hVISA, and this was confirmed if the vancomycin MIC
was 8 �g per ml after selection on vancomycin-containing
medium and if the phenotype was maintained for �9 days on
drug-free medium. A number of studies used the simplified
PAP as a screening method (22, 154, 158, 383); however, the
method described for the confirmation of hVISA by Hiramatsu
et al. using this approach is not practical, and there have been
significant concerns raised about the induction of resistance
when testing isolates after growth on vancomycin (128, 129,
344, 372). In addition, other studies found that this method has
poor reproducibility and detects Mu3 only 80% of the time
(372, 387). A number of variations of this method have been
reported, including the use of different media such as MHA
with different vancomycin concentrations (2 to 5 �g per ml)
(133, 271) and the use of a higher inoculum size on the screen-
ing plate (352). Jung et al. performed a one-point population
analysis by using BHIA plates with 4 �g vancomycin per ml but
found that it was not superior to the original method proposed
by Hiramatsu et al. (152). These differences in methodologies
make it difficult to interpret the significance of studies of
hVISA epidemiology and clinical impact.

Two agar screening plates have been most extensively tested
in a number of studies. The CDC recommends BHIA with 6 �g
vancomycin per ml (BHIA6V) inoculated with 10 �l of a 0.5-
McFarland-standard suspension, aimed primarily at detecting
VRSA and possibly VISA. The growth of two or more colonies
after 48 h is considered a positive result (344, 372, 393). The
agar was originally developed to screen for vancomycin-resis-
tant enterococci that typically have much higher vancomycin
MICs (8). An important component of this method is the use
of commercially prepared BHIA6V plates, as significant vari-
ability in performance exists if in-house medium is used. Not
surprisingly, a number of studies demonstrated a very low
sensitivity of the BHIA6V method for the detection of hVISA
(12%) compared to that of PAP, but detection rates of VISA
with an MIC of 8 �g per ml are good (389, 393); however, a
recent study detected only 33% of VISA isolates with a van-

comycin MIC of 4 �g per ml using this screening agar (338).
The Comité de l’Antibiogramme de la Société Française de
Microbiologie (http://www.sfm.asso.fr) recommends the use of
MHA with 5 �g teicoplanin per ml (MHA5T). This screening
plate has been tested by a number of studies using an inoculum
of 10 �l of a 2-McFarland-standard suspension for the detec-
tion of hVISA and VISA (49, 389, 393). This has been adopted
in the European Antimicrobial Resistance Surveillance
Scheme; however, the inoculum described in this document is
10 �l of a stationary-phase culture grown overnight in BHI
broth (BHIB) (http://www.rivm.nl/earss/). Any growth is con-
sidered positive after 48 h of incubation. Although this screen-
ing plate has a higher sensitivity than the BHIA6V plate, the
sensitivity remains relatively low, at 65 to 79% for the detection
of hVISA and VISA (389, 393), and the specificity was re-
ported to be low by some studies (252).

Other screening plates have also been variously tested but
have generally proven to have poor sensitivity and specificity
for hVISA detection and have not been widely used. These
include BHIA with 2 �g vancomycin per ml and BHIA with 5
�g teicoplanin per ml, both inoculated with 100 �l of a bacte-
rial suspension adjusted to a 2 McFarland standard (21), as
well as MHA with 5 �g vancomycin per ml inoculated with 10
�l of a 0.5-McFarland-standard suspension, which was aimed
at detecting VISA (133), and MHA with 8 �g teicoplanin per
ml inoculated with 10 �l of a 0.5-McFarland-standard suspen-
sion (242). The use of BHIA with 3 �g vancomycin per ml
inoculated with 10 �l of a 0.5-McFarland-standard suspension
had a high false-positive rate reported by one study (165).
Fitzgibbon et al. assessed a range of screening media for the
detection of hVISA (MHA with 5 �g teicoplanin per ml and
BHIA with 5 �g teicoplanin per ml), all inoculated with 10 �l
of a 0.5-McFarland-standard suspension, a 2-McFarland-stan-
dard suspension, and a BHIB stationary-phase culture (82).
The hVISA-positive isolates were confirmed by PAP but in-
cluded isolates that were positive for hetero-teicoplanin resis-
tance but negative for hVISA by PAP. All BHIA plates and
MHA inoculated with the stationary-phase culture had a sen-
sitivity of 100%, but specificity was only between 4 and 57%.
MHA inoculated with a 0.5 McFarland standard had sensitivity
and specificity of 66% and 82%, respectively, while MHA in-
oculated with a 2-McFarland-standard suspension had sensi-
tivity and specificity of 98% and 53%, respectively. Additional
supplementation of BHIA with 5% blood or 20% serum was
found to enhance the growth of hVISA in a pilot study, sug-
gesting that such supplementation could improve the routine
detection of hVISA (126); however, a more detailed analysis of
these media has not confirmed this (118).

The MET utilizes a higher inoculum and prolonged incuba-
tion to detect hVISA (Table 5 and Fig. 8). It should be noted
that the result of the MET is just a cutoff level and is not a true
MIC. Even though this method is clearly defined and the
manufacturer recommends the use of an inoculum of 200 �l,
various inoculum sizes have been used in different studies, such
as 100 �l (370, 389) and 50 �l (194), again potentially limiting
the extrapolation and comparison of results.

The recently released Etest GRD provides a new method for
the detection of reduced vancomycin susceptibility and, in par-
ticular, a potentially useful improvement in result turnaround
time, with an initial reading performed after 24 h of incubation.
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The method involves the use of a double-ended Etest strip that
contains vancomycin, teicoplanin, and a nutritional supple-
ment. A standard inoculum (0.5 McFarland standard), rather
than the 2 McFarland standard used for the MET, is used and
inoculated onto MHA with 5% blood (Fig. 8). Two studies
evaluated the Etest GRD for hVISA detection (174, 393). In
an initial evaluation, Yusof et al. found the Etest GRD with
the nutritional supplement to be almost equivalent to PAP
when read at 48 h after growth on MHA with 5% blood (393).
While the sensitivity was only 70% at 24 h of incubation, it
increased to 94% at 48 h, while the specificity remained high
(100% at 24 h and 95% at 48 h). Leonard et al. found similar
results for sensitivity at 24 and 48 h (77% and 93%, respec-
tively) but a drop-off in specificity at the 48-h reading (from
98% to 82%); however, the reasons for this difference are
unclear (174).

Given the turnaround time for hVISA detection in the rou-
tine laboratory, some research groups have been attempting to
develop more rapid assays for hVISA and VISA detection.
Tajima et al. utilized a chemiluminescence assay induced by
active oxygen species to measure bacterial metabolic activity
upon exposure to vancomycin or teicoplanin in an assay with a
turnaround time of 4 to 6 h. They were able to detect hVISA
with high sensitivity and specificity for a well-defined set of
hVISA/VISA and VSSA isolates; however, this assay requires
further validation in a routine setting (339).

Confirmatory methods. The vancomycin population analysis
profile (PAP) was proposed to be the most accurate method
for the detection of hVISA, and this is the method used in our
laboratory; however, it is relatively time-consuming and re-
quires the use of a spiral plater. Results are generally not
available in a clinically relevant time frame, often taking at
least 3 to 5 days. Wootton et al. described a modified PAP
method by calculating the area under the curve (AUC) of the
standard PAP graph (PAP/AUC) and comparing the result of
the test organism to hVISA reference strain Mu3 (Table 6)

(387). Those authors defined VSSA as a PAP/AUC ratio of
�0.9 and hVISA as a PAP/AUC ratio of �0.9 (387). Based
upon repeat testing of VISA strain Mu50, a strain with a
PAP/AUC ratio of �1.3 has a resistant population similar to
that of a VISA strain with a vancomycin MIC of 8 �g per ml
(372). A key factor in defining hVISA in this way is the repro-
ducibility of the PAP/AUC for reference strain Mu3. In the
original description, Mu3 was tested on 16 occasions and gave
very reproducible results (mean AUC of 21.06 � 2.47) (387).
We have tested Mu3 on multiple occasions and have also
found the PAP/AUC ratio to be highly reproducible for this
strain. At present, given the lack of a simple alternative, the
modified PAP method described by Wootton et al. appears to
be the best method for the definitive identification of hVISA
(387). Whether the hVISA phenotype requires definitive iden-
tification in all suspected cases is debatable, and it may be that
the use of an accurate screening method is adequate for most
laboratories, with the referral of isolates for PAP testing in
selected cases.

Practical Approach to hVISA and VISA Detection

The optimal approach for the detection and confirmation of
hVISA is yet to be determined; however, PAP is currently
considered to be the gold standard for hVISA confirmation. To
develop an accurate understanding of hVISA and VISA epi-
demiology and clinical impact, it is critical that research groups
around the world use the same methodology to detect and
confirm the presence of hVISA and VISA, including adhering
to the correct inoculum size and result interpretation. To this
end, the methodologies for the most important and commonly
used methods are summarized in Table 6.

A number of screening approaches are available, and the
method used will depend on the number of isolates to be tested
and work flows and capabilities within the laboratory. For high-
throughput screening, the MHA5T screening plate appears to be
the best method; however, for laboratories where modified Etest
screening is feasible, the MET or the Etest GRD is more accu-
rate. A key factor in deciding which screening approach to use is
the ultimate relevance of the result to patient management and
whether all isolates or only selected isolates from high-risk pa-
tients need to be screened. At Austin Health, we have detected
high rates of hVISA (up to 50% of MRSA isolates) when all
MRSA isolates are assessed in detail by PAP; however, a signif-
icant clinical impact of the hVISA phenotype has not been dem-
onstrated for less severe infections such as superficial-wound in-
fections (118). As highlighted in a recent case report of serious
MRSA infection, the early detection of hVISA in a patient that
subsequently failed vancomycin and then daptomycin therapy
may have alerted the clinician to the potential for treatment
failure and a possible alternate approach to therapy (348). At
present, we favor the screening of isolates from high-risk patients
(those with bacteremia or deep-seated infection) and patients
who are failing vancomycin therapy, as indicated by persisting
positive cultures upon therapy (Fig. 9).

Selection of the clinical isolate to test. As described above, in
many cases, the hVISA or VISA phenotype is detected after a
prolonged period of infection, which is associated with a failure of
glycopeptide therapy (121, 151, 213, 313, 316, 326, 337, 340, 348,
376). The testing of later clinical isolates from patients who have

FIG. 8. Examples of Etest methodology used to detect hVISA.
(A) Etest GRD result for Mu50 after 48 h of incubation. (B and C)
Macromethod (2 McFarland standard) Etest result for Mu50 against
vancomycin (VA) and teicoplanin (TP) after 48 h of incubation. Note
the microcolonies that are best detected using magnification and are
important for interpreting the test result.
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failed glycopeptide treatment appears more likely to yield a pos-
itive result for hVISA or VISA. In reality, susceptibility testing is
aimed at predicting the response to a particular antibiotic therapy
at the onset of clinical infection. Therefore, studies to correlate
the presence of reduced vancomycin susceptibility and glycopep-
tide treatment outcome should clearly define which clinical iso-
lates have been tested: the first available isolate or a later isolate
after treatment failure.

Measurement of Vancomycin Bactericidal Activity

Vancomycin bactericidal activity can be assessed in a number
of ways. Recently, Sakoulas et al. (298) and Moise et al. (208)

determined the impact of reduced bactericidal activity on vanco-
mycin treatment outcome for a select group of patients. Different
methods for the determination of vancomycin bactericidal activity
were used. Sakoulas et al. used an overnight BHIB culture that
was diluted 1:100 in 20 ml of BHIB containing 16 �g vancomycin
per ml. Colony counts were performed at time zero and at 72 h.
Vancomycin bactericidal activity for each strain was expressed as
log10 CFU per ml at 0 h � log10 CFU per ml at 72 h. Moise et al.
(208) determined the reduction in log10 CFU per ml with 16 �g
vancomycin per ml in MHB after only 24 h of incubation using the
same inoculum as that described by Sakoulas et al. (298). Al-
though a correlation between reduced bactericidal activity and
treatment outcome was demonstrated by these studies, no further

TABLE 6. Methodology for screening and confirmation of hVISA and VISA strainsb

Method Inoculum Interpretation Description Reference(s) or source

Vancomycin MIC Prepare a 0.5-McFarland-standard
direct-colony suspension in
water, saline, or MHB, dilute,
and inoculate cation-adjusted
MHB to final concn of 5 � 105

CFU per ml; incubate a full 24 h
at 35°C � 2°C

Read with unaided eye and
determine lowest concn
with complete inhibition
of growth

Inoculum prepared from
overnight growth on
nonselective agar;
control strain: ATCC
29213 (S. aureus)

53

MHA � teicoplanin at
5 �g per ml
(MHA5T)

Prepare a 2-McFarland-standard
direct-colony suspension; 10 �l
onto plate; incubate for 48 h at
35oCa

Any growth positive Inoculum prepared from
growth on blood agar
plate overnight

389, 393

Macromethod Etest
(MET)

Pipette 200 �l of a 2-McFarland-
standard suspension onto a 90-
mm BHI plate and swab evenly;
dry the agar surface (15 to 20
min) and then apply Etest strips;
incubate for 48 h at 35oC

Use oblique light and
magnifying glass or plate
microscope to read point
of complete inhibition
(Fig. 5); positive result,
vancomycin MIC of �8
and teicoplanin MIC of
�8 �g per ml or
teicoplanin MIC of �12
�g per ml

Inoculum prepared from
overnight growth on
blood agar plate;
beware of adherent
growth if plate not
dry; do not convert a
result of 6 �g per ml
to the next upper
dilution; control
strains: ATCC 29213
(S. aureus), ATCC
700699 (Mu50),
ATCC 29212
(Enterococcus faecalis)

EAS 003 product
information; AB
Biodisc, Solna,
Sweden

Etest GRD Using sterile cotton swab, inoculate
MHA with 5% sheep or horse
blood from a 0.5-McFarland-
standard suspension in MHB;
after dipping cotton swab into
broth, press against side of tube
to remove excess fluid; dry the
agar surface (15 to 20 min), and
then apply Etest GRD strip;
read after 24 and 48 h at 35oC

Vancomycin or teicoplanin
MIC of �8 �g per ml

Inoculum prepared from
overnight growth on
blood agar plate;
control strains: ATCC
29213 (S. aureus),
ATCC 700699
(Mu50), ATCC
700698 (Mu3)

Product information,
AB Biodisc, Solna,
Sweden

PAP/AUC Culture grown overnight in TSB
diluted to 10�3 and 10�6;
inoculate BHIA with vancomycin
at 0, 0.5, 1, 2, 2.5, and 4 �g per
ml using a spiral plater; incubate
for 48 h prior to counting
colonies

Plot graph of CFU per ml
vs vancomycin concn and
calculate AUC;
determine ratio of AUC
of test organism vs Mu3
(ATCC 700698); if AUC
ratio is �0.9 and
vancomycin MIC is �2
�g per ml, the isolate is
hVISA

Mu3 should be run in
parallel with test
organism; software
such as GraphPad
Prism (San Diego,
CA) is available for
calculating AUC

385, 387

a Note that the European Antimicrobial Resistance Surveillance Scheme suggests an inoculum using 10 �l of a stationary-phase culture grown overnight in BHIB
(http://www.rivm.nl/earss/).

b TSB, tryptone soy broth.

122 HOWDEN ET AL. CLIN. MICROBIOL. REV.



studies using these methods have been published. The laboratory
work required to obtain these results is similar to performing a
population analysis and is unlikely to be applied in the routine
diagnostic laboratory.

IMPACT OF hVISA AND VISA ON
TREATMENT OUTCOMES

In Vitro Models and Animal Studies

Hiramatsu demonstrated that the hVISA phenotype associ-
ated with a subtle change in the vancomycin MIC could impact
the efficacy of vancomycin treatment in vitro. Using Mu3
(hVISA strain with a vancomycin MIC of 2 �g per ml), 10 �g
per ml of vancomycin was required to completely suppress
growth, whereas in a comparator strain, 87/20 (VSSA strain
with a vancomycin MIC of 1 �g per ml), 2 �g per ml of
vancomycin suppressed growth to the same degree (113). An in
vitro analysis using three VISA strains demonstrated a reduced
rate of vancomycin killing but no difference in the final extent
of killing due to the VISA phenotype (1); however, vancomycin
had no effect against Mu50 in a rabbit endocarditis model (13).
Other in vitro models have demonstrated a reduced efficacy of
vancomycin against hVISA and VISA (175, 282), in particular
in situations where a high inoculum was used (171, 282).

Moore et al. studied isolates from a patient who experienced

vancomycin treatment failure for MRSA endocarditis. Al-
though all isolates remained susceptible by MIC testing, the
later clinical isolate was determined to be an hVISA isolate by
PAP (vancomycin MIC of 2 �g per ml) (213). Using a rabbit
endocarditis infection model, the early clinical isolate was
eradicated by vancomycin; however, the hVISA strain per-
sisted, suggesting that the hVISA phenotype contributed to
treatment failure in this case.

Clinical Studies

The clinical significance of hVISA and VISA has been dif-
ficult to clearly determine. This has been due partly to differ-
ences in definitions and laboratory detection but predomi-
nately because no well-controlled prospective studies have
been performed. One of the major outcome measures for
patients with serious MRSA infections is the persistence of the
infection. Many patients with serious hVISA or VISA infec-
tions have persistent bacteremia while on appropriate doses of
vancomycin (48, 121, 124, 213); however, many clinicians con-
sider vancomycin to be inferior to beta-lactams for the treat-
ment of S. aureus bacteremia and endocarditis, and patients
with apparently vancomycin-susceptible infections can fail van-
comycin therapy (46, 324).

A summary of the various definitions used to describe these
non-van-operon-containing strains of MRSA with reduced

FIG. 9. Flow diagram describing the possible approaches to the investigation and management of patients with serious MRSA infections being
treated with vancomycin.
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vancomycin susceptibility is provided in Table 2. It should be
remembered that hVISA/VISA appears to be able to develop
ex vivo from more sensitive strains in a variety of S. aureus
lineages. Hence, the provenance of clinical strains linked to
treatment failure is critical for determining whether hVISA/
VISA is the a priori cause of treatment failure or emerges after
treatment failure has already occurred. This important detail is
not always described clearly in the clinical literature. The avail-
ability of clinical isolates of hVISA and VISA from patients with
persistent infection where the earlier clinical isolates are fully
vancomycin susceptible has provided an opportunity to under-
stand the mechanisms of hVISA and VISA. However, in deter-
mining the clinical impact of the resistance phenotype, the ex-
pression of resistance in the first clinical isolate and the impact on
treatment outcomes are more relevant to the clinician.

In 1999, Sieradzki et al. described a renal dialysis patient in
the United States from whom sequentially more vancomycin-
resistant blood isolates of MRSA were obtained. The MIC of
vancomycin for the initial isolate was 2 �g per ml but had risen
to 8 �g per ml just prior to death. However, this patient also
had an infected deep focus (Gore-Tex fistula) that was not
removed; hence, the progressive rise in the MIC of the blood
culture isolates may represent a secondary adaptation rather
than the primary cause of treatment failure (316). At the same
time, Smith et al. reported two further patients from the
United States, one on renal dialysis and one with diabetes,
both of whom had persistent or recurrent invasive MRSA
infections. Initial isolates had a vancomycin MIC of 8 to 16 �g
per ml (VISA) (326). An outbreak investigation did not iden-
tify evidence of lateral transfer of related VISA strains. Both
patients were ultimately cured with antibiotic therapy but sub-
sequently died, indicating that they suffered from significant
comorbidities, a common theme in many of these reports. In
the same year, Ariza et al. (11) reported a case series from
Spain of 19 patients with MRSA infections, all with vancomy-
cin MICs of �4 �g per ml, 14 of whom had metallic implants.
Strains were also examined by PAP. Although treatment fail-
ure occurred for 68% of individuals overall, only 20% (1/5)
failed treatment when hVISA was excluded by PAP, compared
with 86% (12/14) of individuals whose isolates were confirmed
as hVISA. All patients with prosthetic devices and treatment
failure in that report were ultimately cured following the re-
moval of prosthetic material (11). These authors also surveyed
a larger number of isolates from across Spain and concluded
that hVISA appeared to have been present in their hospital
since 1990 and that heteroresistance may be a general and
long-standing property of their common Iberian MRSA clone.
Later, in 1999, a group from Hong Kong reported a case-
control study of staphylococci with inducible vancomycin re-
sistance. However, only 3 patients were infected with S. aureus,
two of whom died. Initial MICs for these 3 cases were 1 to 2 �g
per ml, but selectable subclones with MICs of 8 �g per ml
defined these patients as having hVISA infections (383).

In 2001, Fridkin reviewed the U.S. experience with VISA
(defined at the time as MRSA clinical isolates with vancomycin
MICs of 8 to 16 �g per ml). Six patients were discussed, some
previously reported. Five patients died, but only one died di-
rectly from MRSA sepsis, and this patient was a dialysis patient
with line sepsis. Of the other patients, one patient treated with
surgical drainage plus linezolid, trimethoprim-sulfamethox-

azole (SXT), and doxycycline survived. The remaining 4 pa-
tients either refused surgical treatment or were cured of
MRSA before death from another cause (90). For the survivor,
weekly serum vancomycin levels were in the range of 2.7 to 4.9
�g per ml during the 10 weeks prior to the detection of VISA
in peritoneal fluid (107).

In Brazil in the same year, 140 clinical isolates of MRSA in
a single hospital with a burn unit were screened by agar dilu-
tion and macrobroth MIC followed by confirmation with a
modified PAP. Five isolates with a macrodilution MIC of 8 �g
per ml, 4 from patients with burns and 1 from a patient with
osteomyelitis, were identified. Initial broth MICs were not
provided in that report. The outcome was described as favor-
able in 4/5 cases despite extensive resistance to other agents
and the unavailability of newer alternative agents to vancomy-
cin in Brazil at the time. The patients with burns had been
exposed to more than 30 days of vancomycin at the time at
which their clinical isolates were obtained (235). In 2003, a
case report, also from Brazil, described a patient with MRSA
endocarditis where blood culture isolates of MRSA had van-
comycin MICs of 4 to 8 �g per ml. Despite very prolonged
treatment with vancomycin, with documented trough levels of
43 �g per ml, the patient remained febrile but promptly re-
sponded when treated with linezolid. This is a convincing case
of vancomycin failure due to a VISA strain that became pro-
gressively more resistant during treatment (7).

In 2003, a case-control study described 19 cases and 42
controls in the United States with or without MRSA infections
with reduced susceptibility to vancomycin (SA-RVS). SA-RVS
was defined as a vancomycin MIC of �4 �g per ml (Table 2);
isolates from control patients had vancomycin MICs of �2 �g
per ml. Prior exposure to a glycopeptide and previous history
of MRSA infection increased the likelihood of being classified
as a case-patient. Case-patients had a higher mortality rate but
were also more likely to have bloodstream infections than
controls. There were no differences in clinical presentations
between cases and controls, and neither renal failure nor di-
alysis per se predicted definition as a case-patient (91). In a
multivariate analysis, bloodstream infections and SA-RVS re-
mained independent predictors of death. An overall attribut-
able mortality of 63% for patients with SA-RVS was reported,
but numbers in this study were small, and there remains a
possibility that the comparison was confounded by the in-
creased likelihood of bloodstream infections or other unknown
factors in case-patients despite statistical adjustment. Isolates
from case-patients appeared to be heterogeneous rather than
belonging to a predominant clone.

In the same year, Schwaber et al. described a case series
from the Beth Israel and Deaconess Medical Centre and Johns
Hopkins Hospital in the United States (306). A definition of
SA-RVS similar to that provided by Fridkin et al. was em-
ployed, but a subanalysis using PAP for hVISA was also in-
cluded. In that retrospective study, 61 patients with SA-RVS
isolates (defined by initial growth on a 4-�g/ml vancomycin
screening plate) were compared with 88 controls. No isolates
were identified as being hVISA. There was no difference in
clinical outcomes between case-patients and controls. Those
authors concluded that screening for hVISA was not necessary
if MRSA with a low vancomycin MIC was isolated from a
clinical specimen (306).
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In 2004, an Australian study reported a consecutive series of
53 patients with MRSA blood culture isolates over 12 months.
Five patients with infections due to hVISA defined by modified
PAP (375) were compared with 48 patients with negative
hVISA screens. Patients with hVISA bacteremia were more
likely to have high-bacterial-load infections, vancomycin treat-
ment failure (defined as persistent fever and bacteremia for �7
days after the start of therapy), and initially low serum vanco-
mycin levels (48). hVISA was defined by the modified PAP
described by Wootton et al. (387). The precise definition of
hVISA was a blood culture isolate with a vancomycin MIC of
�4 �g/ml and a PAP/AUC ratio of �0.9 compared with Mu3
(387). All isolates classified as being hVISA also had a stan-
dard inoculum vancomycin Etest result of 4 �g per ml, while
vancomycin microbroth MICs were 2 to 4 �g per ml. Despite
small numbers, that study clearly associated hVISA rather than
SA-RVS, VISA, or VRSA with treatment failure, but because
the last rather than the first blood culture isolate from each
patient was studied, it potentially invokes the post hoc ergo
propter hoc problem: did treatment fail because of the a priori
presence of hVISA, or did hVISA appear as an epiphenome-
non in those who failed treatment for some other reason? This
is addressed partly by the rapid clinical response to linezolid in
4 of 5 patients, which is reminiscent of the case from Brazil
described by Andrade-Baiocchi et al. (7).

In a subsequent case series from Australia and New Zeal-
and, 25 patients with serious infections due to hVISA were
studied (124). Eight patients had endocarditis, 9 had bactere-
mia associated with deep-seated infection, 6 had osteomyelitis
or septic arthritis, and 2 had empyema. All patients had re-
ceived vancomycin before the isolation of hVISA, and glyco-
peptide treatment had failed for 19 patients (76%), defined as
a blood culture positive for S. aureus after �7 days of glyco-
peptide therapy or a sterile-site isolate positive for S. aureus
after �21 days of glycopeptide therapy. Twenty-one patients
subsequently received alternative antibiotic treatment, includ-
ing 18 who received linezolid, which was effective for 14 pa-
tients (78%), including 4 patients with endocarditis. Twelve
patients received a combination of rifampin and fusidic acid.
Surgical intervention was required for 15 patients (60%). It
appeared from this case series that for patients with glycopep-
tide treatment failure and hVISA, linezolid with or without
rifampin and fusidic acid in conjunction with surgical debulk-
ing is effective therapy for the majority of cases, including those
with endocarditis (124).

Khosrovaneh et al. described 22 patients with recurrent or
persistent MRSA bacteremia in Detroit, MI (155). Patient
isolates were specifically examined for hVISA using a PAP/
AUC ratio of �0.9, and results from that case series are there-
fore directly comparable with data from studies from our in-
stitution. However, Khosrovaneh et al., while observing that
isolates with higher initial MICs (in the vicinity of 4 �g per ml)
were more likely to produce subcolonies with even higher
MICs, detected definite hVISA in only 3 of their 22 patients
and concluded that hVISA defined in this way was uncommon
and that treatment failure could be explained by other factors
without the need to invoke the presence of resistant subpopu-
lations per se (155).

Moise-Broder et al. then reported a different kind of com-
parative case series, highly enriched for vancomycin treatment

failure, as this had been an entry criterion for an earlier related
pharmaceutical company trial (211). The key finding in their
initial univariate analysis was that while all isolates had an
initial MIC of �4 �g per ml, as the MIC increased, so did the
likelihood of vancomycin treatment failure. However, in the
multivariate analysis, only preexisting renal failure and isolates
that belonged to agr group II predicted treatment failure. The
authors felt that agr group II polymorphism was more likely a
marker rather than a cause of vancomycin treatment failure,
although agr dysfunction may shift S. aureus in the direction of
vancomycin resistance and persistence rather than virulence,
as described above (356). The relationship between renal im-
pairment and treatment failure was unexplained, although re-
duced host defense secondary to platelet dysfunction was pos-
tulated. In a related study, Sakoulas et al. reported isolates
from 30 patients with MRSA bacteremia and were also able to
demonstrate a statistically significant association between in-
creasing vancomycin MICs and treatment failure, although all
isolates were within the vancomycin-susceptible range (all iso-
lates had an MIC of �2 �g per ml). In that report, the in vitro
bactericidal activity of vancomycin was also studied. Consider-
able strain-to-strain variability (72-h vancomycin killing ranged
from 0.17 to 8.6 log10 CFU per ml) existed, and although no
association could be found between the bactericidal activity of
vancomycin and the vancomycin MIC, multivariate analysis did
identify increased vancomycin bactericidal power and de-
creased MIC as being independent predictors of vancomycin
treatment success or failure (298). A further publication de-
veloped this theme and concluded that once the vancomycin
MIC approached 2 �g per ml, the efficacy of vancomycin for
MRSA bacteremia is severely compromised, even though these
isolates are defined as being susceptible by national guidelines
(208).

In 2006, the CLSI, in response to mounting concern and
some evidence, altered its breakpoints for vancomycin suscep-
tibility (Table 2). Tenover and Moellering provided a very
clear discussion of the thinking behind this decision (346). The
review recognized the possible role of hVISA in some of the
reports of vancomycin treatment failure leading up to this
decision but pointed out that hVISA and SA-RVS are not
identical. In fact, strains of S. aureus with vancomycin MICs as
low as 0.5 �g per ml by broth dilution or 1 �g per ml by
standard Etest may produce subpopulations with higher MICs
in the VISA/VRSA range (i.e., hVISA). However, despite new
evidence from some investigators who believed that a vanco-
mycin Etest MIC of �1.5 �g per ml may be a better breakpoint
for MRSA (184, 185), the review pointed out that a further
reduction from the current breakpoint of �2 �g per ml would
define 16% of S. aureus isolates surveyed in the United States
as being vancomycin intermediate, an outcome out of keeping
with current clinical experience (346).

Also in 2006, a study from the University of California, Los
Angeles, aimed to link the initial MRSA vancomycin MIC to
outcome and to compare usual treatment with targeted ther-
apy aimed to achieve an unbound serum vancomycin trough
level at least 4 times the MIC of the infecting strain. Hidayat et
al. (112) reported results from 95 patients, 54% of whom had
isolates with high vancomycin MICs by standard Etest (�2 �g
per ml). The majority of these patients had pneumonia, and
only 25% had bloodstream infections. The key findings were
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that outcome was improved by achieving the target trough
regardless of MIC but that poorer APACHE II scores and
higher MICs remained predictors of a poor treatment response
in a multivariate analysis. Another finding was that renal im-
pairment was more common for patients with serum vancomy-
cin troughs of �15 �g per ml. Those authors commented that
additional agents (e.g., rifampin, linezolid, and daptomycin)
may improve outcome and should be considered for patients
with high-vancomycin-MIC MRSA infections (112).

In a retrospective cohort study from Texas, Maclayton et al.
studied patients undergoing hemodialysis who developed
MRSA bacteremia, and these researchers also attempted to
relate outcomes to initial MICs. In the univariate analysis,
MICs of �0.5 �g per ml predicted improved survival, but
recent surgery and ICU admission were also risk factors for
having MRSA isolates with MICs of 2 �g per ml. The MIC
method was not defined. In a multivariate analysis that in-
cluded cost modeling, patients with high-MIC isolates had
increased lengths of stay and increased hospital costs com-
pared with patients with low-MIC isolates and uninfected con-
trol patients, but mortality was not increased (188). A further
recent report suggested that prior glycopeptide exposure is
associated with increased MICs and reduced in vitro vancomy-
cin killing in patients who subsequently developed MRSA sep-
sis (209).

In 2007, Maor et al. reported a case series of 264 patients
with MRSA bacteremia from the Sheba Medical Centre, Tel
Hashomer, Israel. Isolates were screened by the macromethod
Etest to detect hVISA, with no confirmation by PAP (194).
Sixteen hVISA cases were identified (6%), and although those
authors were not able to directly link outcome to MIC, there
was a higher mortality rate in this group, and they reported an
hVISA-attributable mortality of 50%. The same group fol-
lowed up this initial report with a case-control study of 27
case-patients with positive METs with 227 control patients
with MRSA bacteremia who had negative hVISA screens.
Case-patients were more likely to have prolonged bacteremia,
osteomyelitis, and endocarditis and to develop resistance to
rifampin. Those authors were not able to relate these compli-
cations to low serum vancomycin levels. The infection-attrib-
utable mortality for hVISA was similar to that for MRSA
bacteremia (193).

In a study from Japan, Neoh et al. reported a 7-year review
of hVISA defined by PAP/AUC at a single center. Twenty of
209 cases of MRSA bacteremia were defined as hVISA cases.
The vancomycin treatment response characteristics “days until
afebrile” and “CRP [C-reactive protein] of �30% of maxi-
mum” correlated with hVISA, but no relationship to mortality
could be established (226).

A recent study from our institution evaluated the clinical
importance of hVISA compared to VSSA in relation to the
likelihood of causing active infection and also determined
treatment outcomes (118). hVISA and VISA strains were less
likely to cause invasive disease, and for infected patients who
were treated, a statistical difference in cure rates was not iden-
tified (however, cure rates were 58% for hVISA and VISA and
80% for VSSA infections; P � 0.08). A larger study, especially
including more patients with invasive disease, will be required.

In a large recent study from Spain, Soriano et al. described
414 cases of MRSA bacteremia, covering the period 1991 to

2005, at a single institution (332). Those authors highlighted
the use of the first available isolate for MIC testing using
standard Etest to subclassify patients. They then examined
outcome with a multivariate model based on MIC classification
of the infecting isolate (standard-method Etest MICs of 1 �g
per ml [n � 109], 1.5 �g per ml [n � 213], and 2 �g per ml [n �
92]). In their univariate analysis, there was no difference in
rates of mortality among these 3 groups, but there was a highly
significant reduction in the risk of septic shock with higher-
MIC isolates. This is initially counterintuitive but aligns with
data from other reports suggesting that a downregulation of
virulence may be associated with increased vancomycin resis-
tance [see “Accessory gene regulator (agr)” and “Host immune
interactions and virulence”]. However, some other conclusions
from that study are harder to understand: despite shock being
an independent predictor of death, an odds ratio of 7.38 (95%
confidence interval [CI], 4.1 to 13.3) and high MIC being
protective against shock, the use of vancomycin for patients
with an MRSA isolate with an MIC of 2 �g per ml was also
associated with an odds ratio for death of 6.39 (95% CI, 1.68 to
24.3). Those authors explained this with reference to a phar-
macokinetic study of humans with MRSA pneumonia for
which an AUC at 24 h (AUC24)/MIC ratio of �350 was pre-
dictive of treatment success. The probabilities of achieving this
target with an isolate with an MIC of 1 �g per ml with serum
vancomycin trough levels of 10 and 15 �g per ml were 40 and
60%, respectively (210). Clearly, doubling the MIC would sub-
stantially reduce the chance of achieving this measure. How-
ever, lung penetration of vancomycin is relatively poor, mean-
ing that direct extrapolation to MRSA bacteremia may not be
valid. In fact, according to data reported by Soriano et al., the
odds ratio for death for vancomycin treatment when the
MRSA isolate had a vancomycin MIC of 2 �g per ml was
higher than that for treatment with a drug not predicted to
have any activity against MRSA. Some of these inconsistencies
may be oddities of statistics but should lead to some caution in
drawing firm conclusions (332).

Twelve years after Hiramatsu’s first description of this mode
of vancomycin resistance in S. aureus, it seems safe to conclude
that patients infected with isolates of MRSA with vancomycin
broth microdilution MICs of 8 �g per ml should not be treated
with vancomycin. We are fortunate to have new and effective
alternatives, but we should also recall that the removal of deep
sources and other surgical interventions should be considered
in every case, whatever the MIC. There is increasing evidence
that isolates with MICs in the 4- to 8-�g/ml range are also
likely to fail treatment, and the CLSI has recently adjusted
breakpoints to account for this. There is contentious ground in
the MIC range of 1 to 2 �g per ml and some evidence that
breakpoints should be lowered again. However, such a move
would lead immediately to a large increase in the use of more
expensive alternative agents, with associated increases in
costs and potential toxicity. The relative contribution of the
hVISA phenotype in S. aureus strains with low vancomycin
MICs to treatment failure has not been definitively defined.
Future studies will be required to answer these questions,
but the most revealing of potential studies, prospective
blinded randomized comparisons of correctly dosed vanco-
mycin with newer agents, stratified by MIC and perhaps
PAP/AUC, may never be performed. Future studies should
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include the use of clearly defined methods for hVISA and
VISA detection and should clearly define which clinical
isolates are tested.

THERAPEUTIC OPTIONS AND POTENTIAL
CROSS-RESISTANCE

Role of Surgery

A feature of many of the reported cases of hVISA and VISA
infection has been the association with “high-bacterial-load”
infections such as endocarditis, osteomyelitis/septic arthritis,
deep abscesses, and infection of prosthetic devices such as joint
replacements (48, 91, 124). In a review of 25 cases of serious
hVISA and VISA infections, surgical debridement was a key
component of therapy for over 60% of patients who were
successfully treated (124). An important adjunct to antimicro-
bial therapy for these patients, therefore, is an adequate sur-
gical debridement of infection (Fig. 9).

Potentially Active Antimicrobials Currently Available

A number of antimicrobials with activity against S. aureus
retain activity in vitro against hVISA and VISA. These include
older agents such as rifampin and fusidic acid and a number of
newer agents, some which are not yet released but for which
there is in vitro data or animal model data potentially support-
ing their use for infections caused by these strains. Ultimately,
there are no clinical trials of hVISA and VISA treatment, and
only a few patients with serious hVISA or VISA infections that
have been successfully treated have been reported in the liter-
ature. Table 7 summarizes detailed cases of serious hVISA or
VISA infections that have been successfully treated and re-
ported in the literature.

There is concern about potential cross-resistance between
hVISA/VISA and the lipoglycopeptides that are structurally
and functionally similar to vancomycin. At this stage, it is not
clear whether the hVISA or VISA phenotype will impact clin-
ical treatment responses to these agents, but this needs to be
monitored. In addition, there are increasing numbers of re-
ports of the potential for reduced daptomycin susceptibility in
hVISA/VISA strains and a number of reports describing dap-
tomycin treatment failure following vancomycin failure for se-
rious MRSA infections (see below). The clinical implications
of this are not yet clear.

Rifampin and fusidic acid. Rifampin and fusidic acid both
possess good in vitro activity against S. aureus and in particular
have been useful for oral treatment of multiresistant MRSA
infections (134, 360, 395). Resistance develops rapidly with
monotherapy with either agent; therefore, these agents should
always be used in combination with another effective anti-
staphylococcal agent (125). Typical combinations include ri-
fampin plus fusidic acid or rifampin plus a quinolone if the S.
aureus isolate is susceptible. In Australia and some other parts
of the world, the use of oral combination therapy with rifampin
and fusidic acid is the mainstay of therapy for complicated
MRSA infections requiring prolonged nonparenteral therapy.
This combination is not available in the United States because
fusidic acid is not approved for use. In a few cases, therapy with

oral rifampin and fusidic acid was an important component of
therapy for the successful treatment of hVISA and VISA in-
fections in patients who had failed vancomycin therapy (124).
Importantly, it appears that vancomycin does not adequately
protect against the development of rifampin resistance when
this combination alone is used to treat serious MRSA infec-
tions (35, 150). In addition, fusidic acid monotherapy should
not be used because of the frequent development of fusidic
acid resistance in S. aureus (120).

Linezolid. Linezolid is the first in a new class of completely
synthetic antimicrobial agents, the oxazolidinones. Strains of S.
aureus and coagulase-negative staphylococci with reduced van-
comycin susceptibility retain susceptibility to linezolid, with no
change in the MIC90 (146). Although linezolid resistance has
been reported for S. aureus (162, 355), rates of resistance
remain very low (350). Also, although linezolid is essentially
bacteriostatic against S. aureus in vitro, a number of serious
cases of MRSA, hVISA, and VISA infections, including endo-
carditis, have been cured with linezolid (Table 7) (124, 131,
287). We have found linezolid to be very useful for the treat-
ment of hVISA and VISA infections or infections with MRSA
where vancomycin has failed. A key issue with linezolid, how-
ever, is toxicity. Although a number of large postmarketing
studies have found linezolid toxicity rates to be similar to those
of comparator drugs (140, 145, 285, 382), high rates of toxicity
have been found for complex patients, and prolonged therapy
should be used with caution in these cases (24).

Daptomycin. Daptomycin is a cyclic lipopeptide derived
from Streptomyces roseosporus. Reduced daptomycin suscepti-
bility in S. aureus was reported to emerge during therapy and
appears to be associated with high-bacterial-load infections
(87, 110, 116, 191, 198). In some cases resistance appears to be
associated with mutations in mprF and yycG, loci which have
been implicated in reduced vancomycin susceptibility in some
strains. There has been an association between hVISA and
VISA and reduced susceptibility to daptomycin (61, 222, 243,
348, 388). It appears that vancomycin exposure per se can
induce low-level daptomycin resistance or daptomycin hetero-
resistance (131, 283, 293, 348); however, these changes appear
to be strain specific and may be unstable (283). Data from in
vitro and animal studies suggest that daptomycin may have a
lower rate of in vitro killing of hVISA than against VSSA
(175); however, daptomycin retains bactericidal activity against
hVISA and VISA (2, 40, 196, 283). hVISA and VISA are
generally susceptible to daptomycin by MIC testing (299), with
an MIC range from 0.125 to 1 �g per ml against 50 hVISA/
VISA strains in one study. In that study, minimal bacterial
concentrations (MBCs) were equal to MICs. Thirty-two VISA
strains from Israel had an MIC of daptomycin of �0.5 �g per
ml. Some case reports described the failure of daptomycin
therapy after failed vancomycin therapy for serious MRSA
infections (18, 131, 348), and in one case, persistent MRSA
bacteremia was subsequently successfully cleared with linezolid
and fusidic acid (131).

The potential relevance of the vancomycin induction of low-
level daptomycin resistance is clearly important in the deci-
sion-making process for clinicians who are faced with a patient
with a serious MRSA infection who has failed vancomycin
therapy. It is not clear at present if daptomycin should be
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avoided in this situation or if additional laboratory studies will
help resolve this question.

QD. Quinupristin (pristinamycin IA) is a group B strepto-
gramin, while dalfopristin (pristinamycin IIA) is a semisyn-
thetic derivative of a group A streptogramin. They have been
combined to generate a water-soluble intravenous preparation.
Quinupristin-dalfopristin (QD) is active against MRSA and
has also demonstrated in vitro activity against a range of

hVISA and VISA strains (MIC90 for hVISA and VISA of 1 �g
per ml) (146, 177).

Tigecycline. Tigecycline is the first glycylcycline to be avail-
able for clinical use and is a member of the tetracycline family.
It has very good in vitro activity against MSSA and MRSA
strains (MIC90 of 0.12 to 1 �g per ml), including a small
number of VISA strains; however, it has not been extensively
tested against hVISA and VISA strains (132).

TABLE 7. Clinical cases of successfully treated hVISA or VISA infectionsc

Predominant
antibiotic therapya

No. of
cases Feature of case Key feature(s) of treatment Outcome and description Reference(s)

Linezolid 1 MRSA endocarditis. Failed VAN (90
days) despite trough levels up to
43 �g per ml

Oral LZD, no surgery Cured 7

1 MRSA endocarditis and septic
thrombophlebitis; failed VAN and
then DPT (58 days of bacteremia)

Changed to LZD � FA Cleared bacteremia; died from
candidemia

131

1 MRSA endocarditis; failed VAN and
then DPT (10 wk); developed
VISA and reduced DPT
susceptibility

Changed to LZD �
SXT; also had course
of QD

Cured; thrombocytopenia from
LZD, severe
arthralgias/myalgias from
QD

348

9 4 endocarditis, 3 OM, 1 bacteremia
� OM, 1 empyema; VAN MIC of
2 �g per ml (n � 6) � 4 �g per
ml (n � 3)

Surgery (n � 5);
linezolid alone

Effective (n � 7), not effective
(n � 2)

124

1 MRSA AV and MV endocarditis
with implantable defibrillator;
SA-RVS; failed VAN

LZD for 67 days;
removal of
implantable
defibrillator

Infection cleared but
developed recurrent MRSA
bacteremia 2 mo later

384

Linezolid and then
rifampin �
fusidic acidb

8 3 endocarditis, 2 bacteremia � SA/
OM, 2 bacteremia � intra-
abdominal infection, 1 prosthetic
joint; VAN MIC of 2 �g per ml
(n � 5) � 4 �g per ml (n � 3)

Surgery (n � 5) Effective (n � 6), not effective
(n � 2)

124

Linezolid � other
agents

1 VISA hepatic abscess (VAN MIC of
8 �g per ml), after 10 wk VAN

Surgery, LZD � SXT �
DOX

Infection cleared 90, 107

1 MRSA prosthetic AV valve
endocarditis after repeated
bacteremia and VAN therapy;
failed VAN (MIC of 6 �g per ml
by Etest)

LZD � AMI, no surgery Cured 176

1 MRSA-infected hip fracture after
fixation; failed debridement and
VAN therapy (last isolate Etest
MIC of 4 �g per ml)

LZD � RIF, further
debridement

Infection cleared 376

Rifampin � 3 2 bacteremia, 1 OM; VAN MIC of 2 Surgery (n � 2), oral Cured (n � 1) 124
fusidic acid �g per ml (n � 2) � 4 �g per ml RIF � FA Not effective (n � 1)

(n � 1) NA (n � 1)

Others 1 VISA (MIC of 8 �g per ml),
bacteremia and vertebral OM;
prior 18 wk of VAN

VAN � NAF � GEN Infection cleared; died from
another cause

90

1 Recurrent MRSA bacteremia; VISA
(MIC of 8 �g per ml) after 18 wk
of VAN

GEN � RIF Infection cleared; died from
candidemia

326

1 Recurrent peritonitis in peritoneal
dialysis pt VISA (MIC of 8 �g per
ml) after 18 wk of VAN; failed
VAN treatment

SXT � RIF Infection cleared 326

a Defined as the main antistaphylococcal antibiotic therapy used to cure the infection or to obtain control of the infection prior to long-term suppression.
b One patient received linezolid followed by fusidic acid plus chloramphenicol. One patient received rifampin plus fusidic acid followed by linezolid.
c VAN, vancomycin; DPT, daptomycin; SXT, trimethoprim-sulfamethoxazole; RIF, rifampin; FA, fusidic acid; QD, quinupristin-dalfopristin; DOX, doxycy-

cline; NAF, nafcillin; NA, not applicable; SA, septic arthritis; OM, osteomyelitis; AV, aortic valve; MV, mitral valve; AMI, amikacin; LZD, linezolid; GEN,
gentamicin.
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Potentially Active Antimicrobials in Development

Dalbavancin. Dalbavancin is a semisynthetic lipoglycopep-
tide with an extended half-life that enables once-weekly dos-
ing. It has very good in vitro activity against S. aureus (MIC
range of �0.015 to 0.5 �g per ml; MIC90 of 0.06 �g per ml)
with no effect of the methicillin resistance phenotype on MICs
(334). It retains good activity against staphylococcal strains
that are resistant to vancomycin and other new agents such as
linezolid and quinupristin-dalfopristin (335). The MIC range is
0.06 to 2 �g per ml against hVISA and VISA (335). Notably,
the dalbavancin MICs are higher for hVISA and VISA strains,
and higher concentrations were required to achieve bacteri-
cidal activity than for MRSA in an in vitro model (28); how-
ever, the clinical implications of this finding are unclear. In an
endocarditis model, dalbavancin was equally effective against
VISA and teicoplanin-intermediate S. aureus, and the bacteri-
cidal results were nearly identical (173).

Oritavancin. Oritavancin is a lipoglycopeptide antibiotic and
is structurally very similar to vancomycin. Despite the struc-
tural similarity, oritavancin retains in vitro activity against van-
comycin-intermediate and vancomycin-resistant S. aureus
strains (33). However, in one study, the MICs were higher for
VISA than for MSSA or MRSA, and a time-kill analysis dem-
onstrated reduced bactericidal activity against VISA strains
(203).

Telavancin. Telavancin is a semisynthetic lipoglycopeptide
derivative of vancomycin. Against methicillin-susceptible and
-resistant S. aureus strains, telavancin has low MICs, ranging
between 0.03 and 1 �g per ml (73, 142), with similar results for
VISA strains (0.125 to 1 �g per ml) but higher MICs for VRSA
strains (1 to 4 �g per ml) (73).

New cephalosporins. The new cephalosporins with anti-
MRSA activity are also active against hVISA and VISA in vitro
and in animal models.

Ceftaroline has potent activity against S. aureus strains, in-
cluding MRSA strains; however, the MIC90s are higher for
MRSA strains (MIC90 of 2 �g per ml) than for MSSA strains
(MIC90 of 0.25 to 0.5 �g per ml) (290). The MIC90 for 100
strains of hVISA and VISA (19 VISA and 81 hVISA strains)
was also 2 �g per ml (range, 0.25 to 4 �g per ml) (290). A few
animal studies have shown ceftaroline to be useful for the
treatment of MRSA infections, and in mice, ceftaroline was
comparable or superior to vancomycin, linezolid, teicoplanin,
and arbekacin (136). In a rabbit endocarditis model, ceftaro-
line was highly bactericidal against MRSA and hVISA com-
pared with linezolid and vancomycin (139).

Ceftobiprole has demonstrated good in vitro activity against
MRSA strains, with an MIC90 of 2 �g per ml (27). Ceftobiprole
retained good activity against a small number of VISA and
VRSA strains (MICs of �2 �g per ml) (27). In a rabbit model
of endocarditis due to MRSA and VISA, ceftobiprole was as
effective as vancomycin against MRSA and superior to vanco-
mycin against VISA (41).

Should Combination Therapy Be Used Routinely with
Vancomycin for Serious MRSA Infections?

hVISA and VISA can emerge from VSSA during vancomycin
therapy for serious S. aureus infections. Although the molecular

determinants of resistance are not completely determined, it is
also clear that the sequential acquisition of point mutations can
lead to resistance. It could therefore be argued that combination
therapy of serious S. aureus infections where vancomycin is being
used may be appropriate in an attempt to avoid the selection of
resistant mutants. There are no data to support this proposal at
present, but further work in this area is warranted.

SUMMARY AND FUTURE DIRECTIONS

Issues surrounding laboratory detection and the clinical im-
pact of reduced vancomycin susceptibility on S. aureus con-
tinue to trouble clinical microbiologists and infectious disease
specialists. At this point, the optimal approach for the detec-
tion of hVISA and VISA strains has not been determined, and
appropriate treatment decisions in cases where such strains are
detected are not clear. The clinical impact of hVISA is likely to
be highest for patients with high-bacterial-load infections, and
changes in therapy as well as aggressive surgical debridement
appear to be appropriate in these cases.

The use of high-throughput genomics will soon allow a clearer
understanding of the genetic determinants of altered vancomycin
susceptibility in S. aureus, with the potential to have an impact on
clinical definitions and laboratory detection if the range of muta-
tions is not too broad. Future clinical studies using strict defini-
tions and randomized treatment protocols may provide the an-
swers for clinicians keen to understand the best approach to
treating patients with serious MRSA infections. Appropriately
dosed vancomycin in conjunction with other active agents may
still present a relatively safe and cheap option for the treatment of
patients with MRSA infections once the clinical isolate has been
appropriately tested.
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