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Abstract
Adenosine and dopamine receptors in striatal areas interact to regulate a number of different
functions, including aspects of motor control and motivation. Recent studies indicate that adenosine
A2A receptor antagonists can reverse the effects of dopamine (DA) D2 antagonists on instrumental
tasks that provide measures of effort-related choice behavior. The present experiments compared the
ability of the adenosine A2A antagonist KW6002, the nonselective adenosine antagonist caffeine,
and the adenosine A1 receptor selective antagonist DPCPX, to reverse the behavioral effects of the
DA D2 antagonist haloperidol. For these studies, a concurrent choice procedure was used in which
rats could select between lever pressing on a fixed ratio 5 schedule for a preferred food or approaching
and consuming a less preferred lab chow that was concurrently available in the chamber. Under
baseline or control conditions, rats show a strong preference for lever pressing, and eat little of the
chow; IP injections of 0.1 mg/kg haloperidol significantly reduced lever pressing and substantially
increased chow intake. The adenosine A2A antagonist KW6002 (0.125–0.5 mg/kg IP) and the
nonselective adenosine antagonist caffeine (5.0–20.0 mg/kg) significantly reversed the effects of
haloperidol. However, the adenosine A1 antagonist DPCPX (0.1875–0.75 mg/kg IP) failed to reverse
the effects of the D2 antagonist. The rank order of effect sizes in the reversal experiments was
KW6002 > caffeine > DPCPX. None of these drugs had any effect on behavior when they were
injected in the absence of haloperidol. These results indicate that the ability of an adenosine antagonist
to reverse the effort-related effects of a D2 antagonist depends upon the subtype of adenosine receptor
being blocked. Together with other recent results, these experiments indicate that there is a specific
interaction between DA D2 and adenosine A2A receptors, which could be related to the co-
localization of these receptors on the same population of striatal neurons.
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1. Introduction
Several lines of evidence indicate that dopamine (DA) and adenosine systems interact in the
brain. Striatal areas such as neostriatum and nucleus accumbens are very rich in adenosine
A2A receptors [13,18,19,33,70], and several papers have reported that there is a functional
interaction between striatal DA D2 and adenosine A2A receptors [17-23,27,28,31]. This
interaction frequently has been studied in regard to neostriatal motor functions that are related
to parkinsonian symptoms [8,20,22,29,32,34,35,46,52,53,59,67,82]. Researchers also have
characterized aspects of adenosine A2A receptor function related to cognitive processes [76]
and motivation [26,44,50]. In particular, several recent studies have focused upon the
functional significance of adenosine A2A receptors, and the interactions between adenosine
and DA receptors, in relation to aspects of behavioral activation and effort-related processes
[16,26,44,47,83].

Previous studies have shown that nucleus accumbens DA is a critical component of the brain
circuitry involved in behavioral activation and effort-related behavioral processes. Nucleus
accumbens DA depletions make rats highly sensitive to ratio requirements in operant schedules
[1,7,45,73], and affect response allocation in tasks that measure effort-related choice behavior
[58,61-63,66,68]. Some studies in this area have employed maze tasks to assess effort-related
choice [9,24,47,65], while others have used a concurrent fixed ratio 5 (FR5)/chow-feeding
procedure [38,58,68,73]. In the latter task, rats have a choice between responding on a FR5
lever-pressing schedule for a highly preferred food (i.e., high carbohydrate operant pellets) or
approaching and consuming freely available food (i.e., less preferred rodent laboratory chow).
Under baseline or control conditions, rats that are trained to respond on this procedure spend
most of their time pressing the lever for the preferred food, and eat very little of the concurrently
available chow. Low doses of DA antagonists alter choice behavior such that lever pressing
for food is suppressed, but chow intake is substantially increased [12,38,58,68,72]. Nucleus
accumbens is the DA terminal region most closely associated with these effects [10,11,38,
49,68,73]. The actions of DA antagonists or accumbens DA depletions differ substantially from
those produced by motivational manipulations such as pre-feeding [38], and appetite
suppressant drugs [12,58,72]. These appetite-related manipulations all failed to increase chow
intake under conditions that suppressed lever pressing.

Recent papers have reported that intra-accumbens injections of the adenosine A2A agonist CGS
21680 produced effects that resembled those of accumbens DA depletions or antagonism, i.e.,
they impaired performance of operant schedules that had high ratio requirements [44], and they
decreased lever pressing and increased chow intake in rats responding on the concurrent choice
procedure [26]. In addition, the adenosine A2A receptor antagonist MSX-3 has been reported
to reverse the effects of DA D2 antagonists such as haloperidol and eticlopride on tasks that
provide measures of effort-related choice behavior, such as the operant concurrent choice task
[16,83] and the T-maze choice procedure [47]. The present studies were conducted to
investigate the role of DA/adenosine A2A receptor interactions in effort-related choice
behavior, using the concurrent lever-pressing/chow-feeding procedure. Specifically, these
experiments were undertaken to determine if the ability of an adenosine receptor antagonist to
reverse the effect of a DA D2 antagonist is dependent upon the particular subtype of adenosine
receptor that was being blocked. In the first group of experiments, three drugs were assessed
for their ability to reverse the effects of 0.1 mg/kg of the DA D2 antagonist haloperidol: the
well-known adenosine A2A antagonist KW6002 (istradefylline; 0.125–0.5 mg/kg IP), the
nonselective adenosine antagonist and minor stimulant caffeine (5.0–20.0 mg/kg), and the
adenosine A1 antagonist DPCPX (0.1875–0.75 mg/kg IP). The fourth experiment studied the
effects of the higher doses of KW6002, caffeine, and DPCPX in the absence of haloperidol.
In view of the anatomical data demonstrating colocalization of DA D2 receptors and adenosine
A2A receptors in striatum and nucleus accumbens, and the well-documented interactions
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between these receptors, it was hypothesized that the adenosine A2A antagonist would be more
effective at reversing the effects of haloperidol than the A1 selective antagonist.

2. Materials and methods
2.1. Animals

A total of 33 adult male Sprague—Dawley rats (Harlan Sprague Dawley, Indianapolis, IN)
were used in these experiments. They weighed 295–352 g at the beginning of the experiments,
and were deprived to 85% of their free-feeding body weight for initial lever press training, but
then were allowed modest growth (i.e., an additional 5–10%) throughout the course of the
studies. All rats were housed in a climate-controlled animal colony maintained at 23 °C, with
12 h light—dark cycle (lights on 07:00 h), and had access to water ad libitum in their home
cages. Animal protocols were approved by the University of Connecticut Institutional Animal
Care and Use Committee, and the studies were conducted according to NIH guidelines.

2.2. Behavioral procedures
Behavioral sessions were conducted in operant conditioning chambers (28 cm × 23 cm × 23
cm; Med Associates). Rats were initially trained to lever press on a continuous reinforcement
schedule (30-min sessions; 45-mg pellets, Bioserve, Frenchtown, NJ, were used for all operant
behavior tests) and then were shifted to the FR5 schedule (30-min sessions, 5 days/week) and
trained for several additional weeks. Rats were then trained on the concurrent FR5/chow-
feeding procedure. With this task, weighed amounts of lab chow (Lab Diet, 5P00 Prolab RMH
3000, Purina Mills, St. Louis, MO; typically 15–20 g, three large pieces) were concurrently
available on the floor of the chamber during the FR5 sessions. At the end of the session, rats
were immediately removed from the chamber, and food intake was determined by weighing
the remaining food (including spillage). Rats were trained until they attained stable levels of
baseline lever pressing and chow intake (i.e., consistent responding over 1200 lever presses
per 30 min), after which drug testing began. For most baseline days rats did not receive
supplemental feeding, however, over weekends and after drug tests, rats usually received
supplemental chow in the home cage. On baseline and drug treatment days, rats normally
consumed all the operant pellets that were delivered from lever pressing during each session.

2.3. Pharmacological agents and selection of doses
Haloperidol (Sigma Chemical Co., St. Louis, MO) was dissolved in a 0.3% tartaric acid solution
(pH 4.0), and this tartaric acid solution also was used as the vehicle control for the haloperidol
injections. The adenosine A2A antagonist KW6002 was generously provided by Lundbeck
Pharmaceuticals (Copenhagen, Denmark), and was dissolved in DMSO and Tween-80 mixed
with 0.9% saline (10:10:80% mixture). DPCPX (8-cyclopentyl-1,3-dipropylxanthine) was
obtained from Tocris, and was dissolved in a 20% ethanol vehicle. In all experiments, drug
treatments were administered IP (see below for descriptions of individual experiments and
drug administration schedules).

The dose of haloperidol used to alter choice behavior (0.1 mg/kg IP) was based upon previous
research [16,68]. Although higher doses of haloperidol can suppress food intake, this dose did
not suppress intake of chow or operant pellets, and did not alter preference between them
[68]. Doses of KW6002 and caffeine were determined by unpublished pilot data and on
previous research [59]. In addition, a pilot study indicated that 40.0 mg/kg caffeine plus
haloperidol actually decreased performance relative to haloperidol alone; for that reasons, a
dose range of 5.0–20.0 mg/kg caffeine was selected. Several factors were considered for
determining the dose range for DPCPX that was used. In part, it was based upon doses listed
in published behavioral studies involving IP administration in rats [2,39,40,47,54].
Furthermore, extensive pilot studies also were performed. In one study, it was determined that
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1.5 and 3.0 mg/kg DPCPX did not reverse the effects of haloperidol on lever pressing, and that
the 3.0 mg/kg dose actually tended to impair lever pressing in haloperidol-treated rats; this is
consistent with a recent T-maze study showing that 3.0 mg/kg DPCPX in combination with
haloperidol actually led to worse performance than haloperidol alone [47]. In addition, it was
observed that very low doses of DPCPX (i.e., 0.04–0.09 mg/kg IP) also failed to reverse the
effects of haloperidol. Based upon all this pilot work, an intermediate dose range of DPCPX
(0.1875–0.75 mg/kg) was selected.

2.4. Experimental procedures
Rats were trained on the concurrent FR5/chow-feeding procedure (as described above) before
drug testing began, and each experiment employed different groups of rats. All five
experiments used a within-groups design, with each rat receiving all combined IP drug
treatments in their particular experiment in a randomly varied order (one treatment per week,
with none of the treatment sequences repeated across different animals in the same experiment).
Baseline (i.e., non-drug) sessions were conducted four additional days per week. The specific
treatments and testing times for each experiment are listed below.

2.4.1. Experiment 1: ability of KW6002 to reverse the effort-related effects of
haloperidol—On the test day, rats (n = 8) were injected with either tartaric acid vehicle (50
min before testing) plus DMSO/Tween vehicle IP (20 min before testing), 0.1 mg/kg
haloperidol IP (50 min before testing) plus DMSO/Tween vehicle IP (20 min before testing),
and 0.1 mg/kg haloperidol IP (50 min before testing) plus various doses of KW6002 injected
IP (0.125, 0.25 and 0.5 mg/kg; 20 min before testing).

2.4.2. Experiment 2: ability of caffeine to reverse effort-related effects of
haloperidol—For the drug test days, rats (n = 8) were injected with either tartaric acid vehicle
(50 min before testing) plus saline vehicle IP (20 min before testing), 0.1 mg/kg haloperidol
IP (50 min before testing) plus saline vehicle IP (20 min before testing), and 0.1 mg/kg
haloperidol IP (50 min before testing) plus various doses of caffeine injected IP (5.0, 10.0 and
20.0 mg/kg; 20 min before testing).

2.4.3. Experiment 3: ability of DPCPX to reverse effort-related effects of
haloperidol—Rats (n = 10) were injected on drug treatment days with either tartaric acid
vehicle (50 min before testing) plus saline vehicle IP (30 min before testing), 0.1 mg/kg
haloperidol IP (50 min before testing) plus saline vehicle IP (30 min before testing), and 0.1
mg/kg haloperidol IP (50 min before testing) plus various doses of DPCPX injected IP (0.1875,
0.375 and 0.75 mg/kg; 30 min before testing).

2.4.4. Experiment 4: effects of KW6002, caffeine and DPCPX in the absence of
haloperidol—Rats (n = 5) received IP injections of either saline vehicle, DMSO/Tween
vehicle, 20% ethanol vehicle, 0.5 mg/kg KW6002, 20.0 mg/kg caffeine, or 0.75 mg/kg DPCPX
30 min before testing.

2.5. Statistical analyses
Total number of lever presses and gram quantity of chow intake from the 30 min sessions were
analyzed with repeated measures analysis of variance (ANOVA). When the overall ANOVA
was significant, non-orthogonal planned comparisons using the overall error term were used
to compare each treatment with the haloperidol plus vehicle control condition. For these
comparisons, α level was kept at 0.05 because the number of comparisons was restricted to the
number of treatments minus one (Ref. [37]; pp. 110–139). With this analysis, each condition
that combined haloperidol plus adenosine antagonist was compared with its respective
haloperidol plus vehicle condition using the planned comparisons. The present analyses used
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Systat 7.0, and the factorial ANOVA with trend analysis also tested for interactions across the
linear, quadratic and cubic trends. Effect size calculations (R2 values; [37]) were performed to
assess the magnitude of the treatment effect (i.e., the size of the treatment effect sum of squares
expressed as the proportion of total sum of squares, which is a marker of the total variance
accounted for by treatment variance; for example R2 = 0.3 reflects 30% of the variance
explained) across experiments and measures.

3. Results
3.1. Experiments 1–3: KW6002, caffeine and DPCPX combined with haloperidol

KW6002 significantly attenuated the effects of haloperidol on the concurrent lever-pressing/
chow-feeding task. The overall treatment effect for lever pressing was statistically significant
(Fig. 1A; [F(4,28) = 16.6, p < 0.01]). Planned comparisons revealed that haloperidol decreased
lever pressing compared to injection of Veh/Veh (p < 0.01). KW6002 significantly increased
responding in haloperidol-treated rats, with all three doses being significantly different from
haloperidol plus vehicle (p < 0.05). The overall treatment effect for chow intake also was
statistically significant (Fig. 1B; [F(4,28) = 11.2, p < 0.01]). Planned comparisons showed that
haloperidol increased chow intake compared to injections of Veh/Veh (p < 0.01). KW6002
significantly decreased chow intake relative to haloperidol plus vehicle at all three doses (p <
0.05).

In experiment 2, caffeine also significantly attenuated the effects of haloperidol on the
concurrent lever-pressing/chow-feeding task. The overall treatment effect for lever pressing
was statistically significant (Fig. 2A; [F(4,28) = 28.8, p < 0.01]). Planned comparisons
demonstrated that haloperidol decreased lever pressing compared to injection of Veh/Veh (p
< 0.01). Caffeine significantly increased responding in haloperidol-treated rats, with all three
doses being significantly different from haloperidol plus vehicle (p < 0.05). The overall
treatment effect for chow intake also was statistically significant (Fig. 2B; [F(4,28) = 11.3, p
< 0.01). Haloperidol increased chow intake compared to injections of Veh/Veh (p < 0.01).
Caffeine significantly decreased chow intake relative to haloperidol plus vehicle at the 10.0
and 20.0 mg/kg doses (p < 0.05).

The results of the third experiment showed that DPCPX failed to significantly alter responding
in haloperidol-treated rats. The treatment effect for lever pressing was statistically significant
(Fig. 3A; [F(4,36) = 32.3, p < 0.001]), and as in the other experiments, haloperidol decreased
lever pressing compared to injection of Veh/Veh (p < 0.01). However, DPCPX combined with
haloperidol had no significant effects compared to haloperidol plus vehicle. Similarly, the
overall treatment effect for chow intake also was statistically significant (Fig. 3B; [F(4,36) =
7.5, p < 0.01]), and planned comparisons revealed that haloperidol increased chow intake
compared to injections of Veh/Veh (p < 0.01), but there were no significant differences between
haloperidol/Veh and haloperidol plus any dose of DPCPX.

3.2. Comparisons across the reversal experiments: effect sizes
In order to make comparisons between the effects of the different adenosine antagonists across
multiple experiments, data from the Veh/Veh condition were excluded, and additional
ANOVAs were performed. Effect size analyses were conducted based upon these separate
ANOVAs performed on each drug reversal experiment (1–3) for both lever pressing and chow
intake. There were marked differences in effect sizes between the three reversal experiments
(see Table 1). KW6002 had the highest effect size, caffeine was intermediate, and DPCPX had
a very small effect size.
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3.3. Experiment 4: effects of KW6002, caffeine and DPCPX alone
Experiment 4 was a control study that assessed the effects of each vehicle condition used in
experiments 1–3, as well as the highest doses of KW6002, caffeine and DPCPX used, in the
absence of haloperidol. The means (±S.E.M.) number of lever presses were as follows: saline
vehicle: 1250.6 (±120.2); 20% ethanol/saline vehicle: 1300.0 (±121.4); DMSO/Tween vehicle:
1227.4 (±165.7); 0.5 mg/kg KW6002: 1327 (±179.8); caffeine: 970.6 (±65.4); 0.75 mg/kg
DPCPX: 1567.4 (±95.6). There were no significant differences between these conditions as
determined by repeated measures ANOVA (F(5,20) = 2.4, n.s.). The means (±S.E.M.) gram
quantity of chow intake was as follows: saline vehicle: 2.82 (±0.65); 20% ethanol/saline
vehicle: 2.54 (±0.80); DMSO/Tween vehicle: 2.02 (±0.89); 0.5 mg/kg KW6002: 2.10 (±0.89);
caffeine: 2.96 (±0.27); 0.75 mg/kg DPCPX: 1.80 (±0.70). As with lever pressing, there were
no significant differences between these conditions in terms of chow intake (F(5,20) = 2.6,
n.s.). With both measures, there was a tendency for caffeine alone to decrease responding and
increase chow intake, and for DPCPX to increase lever pressing and decrease chow intake.
The three vehicle conditions did not significantly differ from each other.

4. Discussion
In the experiments presented above, a concurrent choice lever-pressing/chow-feeding task was
used to investigate the interaction between adenosine receptor antagonists with different
profiles of selectivity and the DA D2 family antagonist haloperidol. Injection of haloperidol
without co-administration of an adenosine antagonist produced a well-documented shift in
response allocation; 0.1 mg/kg haloperidol significantly decreased lever pressing and increased
chow intake in all experiments. These results are consistent with previously reported findings
from experiments that employed systemic administration of numerous DA antagonists with
varying degrees of receptor selectivity [12,58,68,72], as well as local DA antagonism in nucleus
accumbens [38,49] and accumbens DA depletions [10,11,68,73]. Previous research has shown
that the shift from lever pressing to chow intake in rats responding on this task occurs after DA
depletions in the nucleus accumbens, but not after depletions in anteroventromedial
neostriatum [11]. Moreover, DA depletions in ventrolateral neostriatum produced severe motor
impairments that disrupted both lever pressing and feeding [11]. Based upon these results, as
well as the outcome of numerous control experiments investigating the effects of various
appetite and effort-related manipulations [12,58,66,68,69,72], and studies employing a
discrete-trial T-maze choice task [9,47,65], this pattern of findings has been interpreted to
indicate that DA antagonists and nucleus accumbens DA depletions are not acting to blunt
appetite for food or to suppress primary or unconditioned food reinforcement [3,36,61,68,
69]. Rather, these results are widely seen as consistent with the suggestion that DA antagonists
and accumbens DA depletions are altering behavioral activation, instrumental response output,
response allocation, or effort-related processes [4,25,48,51,56,61,68,69,72]. Of course,
accumbens DA must participate in effort-related processes in concert with other structures and
neurotransmitters [15,16,30,71,80,81], and for that reason the present studies investigated the
ability of adenosine antagonists to reverse the effects of the D2 antagonist haloperidol.

In the first experiment, the adenosine A2A antagonist KW6002 was able to produce a substantial
attenuation of the behavioral effects of the D2 antagonist haloperidol. Combined administration
of KW6002 with haloperidol led to very large increases in lever pressing and decreases in chow
intake compared to haloperidol alone. These data are consistent with recent studies indicating
that the adenosine A2A antagonist MSX-3 was able to reverse the effects of the DA antagonists
haloperidol [16] and eticlopride [83] in rats responding on the concurrent lever-pressing/chow
intake task, and to reverse the suppression of an instrumental barrier climbing response in rats
treated with haloperidol [47]. Taken together, these results indicate that adenosine and DA
systems interact in the regulation of effort-related functions. Moreover, these observations are
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consistent with recent reports that local administration of an adenosine A2A agonist into the
nucleus accumbens can produce behavioral effects that resemble those of DA antagonists or
accumbens DA depletions [26,44].

The nonselective adenosine antagonist caffeine also was able to significantly reduce the effects
of haloperidol in experiment 2. Although the effect sizes in the caffeine experiment were
generally smaller than those produced by KW6002, it is nevertheless true that this minor
stimulant did produce statistically significant effects in haloperidol-treated rats. The present
results with caffeine are consistent with previous reports indicating that nonselective adenosine
antagonists can reverse the behavioral effects of DA antagonists [79]. Furthermore, the modest
effects of caffeine are consistent with reports indicating that caffeine, despite its some-what
mixed pattern of binding to adenosine receptors, does show some degree of preference for
adenosine A1 receptors over A2A receptors [23]. In marked contrast to the ability of MSX-3,
KW6002, and caffeine to reverse the effects of the D2 antagonist haloperidol, the selective
adenosine A1 antagonist DPCPX did not significantly alter the actions produced by haloperidol.
In the dose range tested, DPCPX failed to produce significant changes in lever pressing or
chow intake in haloperidol-treated rats. Moreover, pilot experiments indicated that neither
higher nor lower doses of DPCPX were effective (see Section 2.3 above). The present results
are consistent with several previous studies showing differences between the behavioral effects
of adenosine A1 and A2A receptor antagonists [42,43,55]. DPCPX also was reported to be
relatively ineffective compared to selective adenosine A2A antagonists at producing signs of
antiparkinsonian actions in monkeys [79] and rats [6]. Furthermore, the present observations
are consistent with a recent report indicating that DPCPX in an IP dose range of 0.75–3.0 mg/
kg failed to reverse the effects of 0.15 mg/kg haloperidol in a T-maze task; in fact, the 3.0 mg/
kg dose of DPCPX only served to further impair responding in haloperidol-treated rats [47].

The present data, together with other recent results, indicate that there are differential effects
of adenosine A1 and A2A receptor antagonists in terms of the extent to which these drugs can
reverse the impact of DA D2 antagonism. Drugs that can exert functional antagonism of A2A
receptors, including selective A2A antagonists such as MSX-3 and KW6002, as well as
nonselective adenosine antagonists such as caffeine, can attenuate the effects of DA D2
antagonists (see Refs. [16,47,83]; experiments 1 and 2 above). In contrast, the adenosine A1
receptor antagonist DPCPX was not able to do so ([47]; experiment 3 above). In the present
studies there were substantial differences in effect sizes between the three reversal experiments
(see Table 1); KW6002 had the highest effect size, caffeine was intermediate, and DPCPX had
a very small effect size. Furthermore, a recent paper has demonstrated that the adenosine
A2A antagonist MSX-3 was able to produce a complete reversal of the effects of the highly
selective D2 family antagonist eticlopride in rats responding on the concurrent lever-pressing/
feeding task, while it produced only a marginal reversal of the effects of the highly selective
D1 antagonist ecopipam [83]. When considered together, this pattern of results points to a
rather important and selective interaction between DA D2 and adenosine A2A receptors. The
neurochemical basis of this interaction is not completely clear, however, it is likely that it is
related to the pattern of cellular localization of adenosine A1 and A2A receptors in striatal areas,
including the nucleus accumbens [17]. Adenosine A2A receptors tend to be co-localized on
striatal and accumbens medium spiny neurons with DA D2 receptors (i.e., enkephalin positive
medium spiny neurons), and these receptors converge onto the same signal transduction
mechanisms and show the capacity for forming heterodimers [17,23,27,31,75]. Therefore, it
is reasonable to suggest that adenosine A2A receptor antagonists are so effective in reversing
the effort-related actions of D2 antagonists such as haloperidol and eticlopride because of the
direct interaction between adenosine A2A and DA D2 receptors located on the same medium
spiny neurons. This suggestion is consistent with studies showing that adenosine A2A receptor
antagonists can reverse the expression of Fos-like immunoreactivity that is induced by D2
antagonists in medium spiny neurons [52]. In contrast, adenosine A1 receptors are more likely
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to be co-localized with DA D1 receptors [17], which could help to explain why it is more
difficult for adenosine A1 receptor antagonists to reverse the effects of D2 receptor blockade.
Although DPCPX has generally failed to reverse the behavioral actions of haloperidol, it is
possible that DPCPX would be able to reverse T-maze or lever-pressing effects if they were
induced by a D1 antagonist. Future research will investigate this possibility.

In summary, the present data are consistent with previous studies showing that adenosine
A2A antagonists can reverse the effects of DA D2 antagonists. This observation has relevance
for the potential antiparkinsonian effects of adenosine A2A antagonists [8,32,59,67], and also
for understanding activational aspects of motivation and effort-related processes [16,47,83].
These findings support the hypothesis that DA and adenosine systems in the brain, possibly in
nucleus accumbens, interact in the regulation of instrumental response output and effort-related
choice behavior [16,26,44,61]. Furthermore, the present results illustrate the specific nature of
the interaction between adenosine A2A and DA D2 receptors, which is likely to be related to
the co-localization of these receptors on the same population of striatal and accumbens neurons.
Characterization of the neurochemical mechanisms involved in regulating behavioral
activation and effort-based choice behavior can shed light on these important facets of
motivation, and also may serve to illustrate the relation between activational aspects of
motivation (i.e., vigor, persistence and work output) and higher-order processes involved in
motor control [61]. Activational aspects of motivated behavior are highly adaptive because
they enable organisms to surmount work-related response costs or obstacles that limit access
to significant stimuli [57,60,68,78]. In addition, impairments in behavioral activation can be
maladaptive. Symptoms such as anergia, psychomotor slowing, and fatigue, which reflect
psychopathologies related to behavioral activation in humans, are fundamental aspects of
depression and other psychiatric and neurological disorders [5,14,41,61,64,74,77,84].
Research in this area may promote our understanding of the neural mechanisms involved in
clinical psychopathologies related to behavioral activation and effort [61,64]. Furthermore, it
is possible that A2A receptor antagonists could be beneficial for ameliorating the motivational
effects of D2 antagonists that are used clinically, and also for treating other energy-related
disorders [64].
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Fig. 1.
Effects of the adenosine A2A antagonist KW6002 in combination with 0.1 mg/kg haloperidol.
(A) Mean (±S.E.M.) number of lever presses after treatment with vehicle or haloperidol plus
various doses of KW6002 are shown. (B) Mean (±S.E.M.) intake of lab chow (in grams) after
treatment with vehicle or haloperidol plus various doses of KW6002 are shown. Veh/Veh
(vehicle plus vehicle), HP/Veh (0.1 mg/kg haloperidol plus vehicle), HP/KW 0.125 (0.1 mg/
kg haloperidol plus 0.125 mg/kg KW6002), HP/KW 0.25 (0.1 mg/kg haloperidol plus 0.125
mg/kg KW6002), HP/KW 0.5 (0.1 mg/kg haloperidol plus 0.5 mg/kg KW6002). #p < 0.01,
haloperidol different from vehicle/vehicle, planned comparison; *p < 0.05, different from
vehicle plus haloperidol, planned comparison.
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Fig. 2.
Effects of the nonselective adenosine antagonist caffeine in combination with 0.1 mg/kg
haloperidol. (A) Mean (±S.E.M.) number of lever presses after treatment with vehicle or
haloperidol plus various doses of caffeine are shown. (B) Mean (±S.E.M.) intake of lab chow
(in grams) after treatment with vehicle or haloperidol plus various doses of caffeine are shown.
Veh/Veh (vehicle plus vehicle), HP/Veh (0.1 mg/kg haloperidol plus vehicle), HP/CAF 5.0
(0.1 mg/kg haloperidol plus 5.0 mg/kg caffeine), HP/CAF 10.0 (0.1 mg/kg haloperidol plus
10.0 mg/kg caffeine), HP/CAF 20.0 (0.1 mg/kg haloperidol plus 20.0 mg/kg caffeine). #p <
0.01, haloperidol different from vehicle/vehicle, planned comparison; *p < 0.05, different from
vehicle plus haloperidol, planned comparison.
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Fig. 3.
Effects of the adenosine A1 antagonist DPCPX in combination with 0.1 mg/kg haloperidol.
(A) Mean (±S.E.M.) number of lever presses after treatment with vehicle or haloperidol plus
various doses of DPCPX are shown. (B) Mean (±S.E.M.) intake of lab chow (in grams) after
treatment with vehicle or haloperidol plus various doses of DPCPX are shown. Veh/Veh
(vehicle plus vehicle), HP/Veh (0.1 mg/kg haloperidol plus vehicle), HP/DPC 0.187 (0.1 mg/
kg haloperidol plus 0.1875 mg/kg DPCPX), HP/DPC 0.37 (0.1 mg/kg haloperidol plus 0.375
mg/kg DPCPX), HP/PDC 0.75 (0.1 mg/kg haloperidol plus 0.75 mg/kg DPCPX). #p < 0.01,
haloperidol different from vehicle/vehicle, planned comparison.
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Table 1

Effect size calculations (R2 values) for the reversal experiments.

Drug Lever pressing Chow intake

KW6002 0.49 0.40

Caffeine 0.21 0.11

DPCPX 0.06 0.08
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