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Abstract
A common feature of many modern technologies used in proteomics—including nuclear magnetic
resonance imaging and mass spectrometry—is the generation of large amounts of data for each
subject in an experiment. Extracting the signal from the background noise, however, poses significant
challenges. One important part of signal extraction is the correct identification of the baseline level
of the data. In this article, we propose a new algorithm (the “BXR algorithm”) for baseline estimation
that can be directly applied to different types of spectroscopic data, but also can be specifically
tailored to different technologies. We then show how to adapt the algorithm to a particular technology
—matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass
spectrometry—which is rapidly gaining popularity as an analytic tool in proteomics. Finally, we
compare the performance of our algorithm to that of existing algorithms for baseline estimation.

The BXR algorithm is computationally efficient, robust to the type of one-sided signal that occurs
in many modern applications (including NMR and mass spectrometry), and improves on existing
baseline-estimation algorithms. It is implemented as the function baseline in the R package
FTICRMS, available either from the Comprehensive R Archive Network
(http://www.r-project.org/) or from the first author.
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1 Introduction
A common feature of many modern technologies used in proteomics—including nuclear
magnetic resonance imaging and mass spectrometry—is the generation of large amounts of
data for each subject in an experiment. Extracting the signal from the background noise,
however, poses significant challenges. One important part of signal extraction is the correct
identification of the baseline level of the data. In this article, we first generalize an algorithm
of Xi and Rocke [1] which was developed for NMR baseline correction and show how it can
be applied to data from generic spectroscopic technologies. We also indicate how it can be
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adapted to the unique qualities of different technologies and illustrate this by adapting it to a
specific technology: matrix-assisted laser desorption/ionization Fourier transform ion
cyclotron resonance mass spectrometry (MALDI FT-ICR MS). Finally, we compare the
performance of our algorithm to that of existing algorithms for baseline estimation.

2 Methods
2.1 What is a baseline?

There are different possible interpretations of what exactly a “baseline” is in spectroscopic
analysis. If it is assumed that the signal is all positive standing out from a (theoretically) zero
baseline level, then some kind of (smoothed) running minimum would be an appropriate
baseline. This is the approach taken in software packages such as Cromwell [2], LCMS-2D
[3], LIMPIC [4], PrepMS [5], and PROcess [6]. Alternatively, if the noise is assumed to
fluctuate about a baseline level (like in an independent, identically-distributed (iid) normal
case), then some measure of center (median, mean, etc.) is more appropriate. This is the
approach taken in software packages such as msInspect [7]. Software packages such as LMS
[8] have options to compute either of these types of baselines. (A third common type of analysis
is continuous wavelet analysis, which does not have a separate baseline correction step as such;
the baseline is automatically removed as part of the wavelet transformation. This is the
approach taken in software packages such as MassSpecWavelet [9] and OpenMS [10].)

The Xi-Rocke algorithm uses the second interpretation of baseline (measure of center of the
noise), and as explained in Section 3, this is the appropriate way to analyze (in particular)
MALDI FT-ICR MS spectra, and is arguably appropriate in other applications. In the remainder
of this article we will concentrate on this type of baseline and compare our algorithm to LMS.
(msInspect was designed for liquid chromatography mass spectrometry and is not directly
comparable to our current algorithm.)

2.2 The BXR algorithm
Suppose that the data have the form (xt, yt) for t = 1, …, n. Xi and Rocke [1] proposed using
the score function in Equation (1) to estimate the baseline for NMR data.

(1)

Here, z+ ≡ max{z, 0}, bt represents the value of the baseline at the t-th data point, and A1 and
A2 are positive constants to be determined. We maximize this score function over all possible
values of {bt} to find the baseline1. The first term in F represents the overall height of the
baseline. The last term is negative only when the baseline is above the data points, so it penalizes
baseline values that lie too far above the data and helps ensure that the estimated baseline will
go through the middle of the data. The middle term is a measure of the curvature of the baseline,
so maximizing F will prevent the estimated baseline from curving too sharply.

To make the analysis easier, we change notation. Let b = (b1, …, bn)′—where the prime symbol
represents the transpose of a vector or matrix—be a column vector containing the values of

1Note that the values {xt} do not appear in F; the score function assumes equally-spaced data. Masses in MALDI FT-ICR spectra are
not equally spaced, but the masses are not directly measured. Instead, they are derived from measured frequencies via one of several non-
linear transformations [11], and the frequencies are equally spaced. Thus, it will be appropriate to use our generalization of Xi and Rocke’s
score function without modification in Section 3.

Barkauskas and Rocke Page 2

Anal Chim Acta. Author manuscript; available in PMC 2011 January 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the baseline, and similarly let y = (y1, …, yn)′ contain the measured values of the spectrum. Let
(S) be the indicator function for the set S and let 1 be an n × 1 column vector of ones. Finally,

it will be useful to allow A1 and A2 to vary with t, taking values  and ,
respectively. We can then rewrite Equation (1) in vector/matrix notation as

(2)

where N is an n × n diagonal matrix with entries A2,t  (bt > yt), and , where

is an (n−2) ×n matrix and A1 is an (n − 2) × (n − 2) diagonal matrix with entries A1,t. We will
refer to the process of maximizing this modified score function with respect to the baseline b
as the Barkauskas-Xi-Rocke (BXR) algorithm.

Note that the only change that the BXR algorithm makes over Xi and Rocke’s original
algorithm is allowing A1 and A2 to vary with t. This seemingly minor change has a profound
impact on the effectiveness of the algorithm in the analysis of real-world data, however, as we
show in Sections 2.3 and 3.

To maximize the function in Equation (2), we calculate the gradient and Hessian:

Note that ∇F is continuous everywhere, and H(F) is continuous except for jump discontinuities
where bt = yt for some t. Also, Δ2 and N are both positive semidefinite (because b′Δ2b is a sum
of squares, and N is diagonal with nonnegative entries). Thus, Δ2 + N is positive semidefinite
and will be positive definite unless Δ2 and N have a common null vector. But from the form

, we see that , and that x′
Δ2x = 0 exactly when x is a linear combination of 1 and n ≡ (1, …, n)′. Furthermore, the only
way that x′Nx = 0 is if xt = 0 whenever bt > yt. But a nontrivial linear combination of 1 and n
can have at most one zero entry, so in order for the two matrices to have a common null vector,
the baseline would have to be below all but at most one point of the data. This will clearly not
happen in any reasonable data set, so we see that H(F) is −2 times the sum of two positive
semidefinite matrices that have no common nullspace near any potential maximum. Thus, we
see that in any reasonable data set there will be a unique maximum, since H(F) is negative
semidefinite overall and negative definite near any (reasonable) potential maximum. We can
thus find the maximum by using Newton’s method using a reasonable starting point (e.g.,
median(y) · 1), and the BXR algorithm is virtually guaranteed to converge to the global
maximum. (Technically, in most applications it will be a quasi-Newton’s method, since the
matrices Δ2 and N will depend non-trivially on b—the quantity we are trying to estimate—and
at each iteration we will be using the currently-estimated baseline to approximate b. Thus, at
each step we will only be approximating the gradient and Hessian.)
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2.3 Calculating A1,t and A2,t
Since the estimated baseline should be linear in the data (i.e., for any constants m and c, if b
corresponds to y, then mb + c should correspond to my + c) and should be invariant under
sampling more or fewer points in the spectrum, Xi and Rocke argue that in their original
algorithm, A1 should have the form , where σ is a normalizing constant based on
y. (Xi and Rocke use an estimate of the noise standard deviation; hence the use of σ to denote
the constant.) In this article, we will allow the normalizing constant σ to vary with t as σt but
leave the smoothing parameter  constant, giving us the form . To decide on a
reasonable value of , we use a result from Barkauskas et al. [12] that the autocorrelation
function (ACF) of a (non-stationary) time series with {(Yt+k − Yt+k)(Yt − Yt)} ≈ 0 for
sufficiently large k eventually oscillates around a value that is approximately equal to

(3)

The optimal value of  can then be estimated by calculating the baseline b using different
choices for  and seeing which one gives the best match to the ACF of the noise portion of
the spectrum when substituted into Equation (3). (See Figure 3 in Section 3 for an example of
this applied to a MALDI FT-ICR spectrum.)

In order to determine A2,t, we set the t-th coordinate of ∇F equal to zero and assume that the
baseline is flat, so that the middle term drops out. Let Yt be the underlying random variable
whose realization is given by yt. We want to choose A2,t so that the function is maximized at
bt = g(Yt) for some function g. Thus, we want

(Of course, if g(Yt) were known, there would be no need to run the algorithm.) One obvious
choice for g(Yt) is the expected value Yt. For this choice of g(Yt) in the case that the data are
assumed to be iid normal with variance σ2, then we might choose

which recovers the result in Xi and Rocke [1].

We observe that for an arbitrary random variable Y, we have {( Y − Y)+} = | Y − Y|/2.
Thus, if there is no information about the distribution of the random variables {Yt}, then a
reasonable choice might be A2,t =  (b̂t > yt)/(b̂t − yt), where b̂t is the current estimate of the
baseline (i.e., the current estimate of Yt).
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Figure 1 shows the effect of these choices on the estimated baseline. We ran two simulations
of 973,720 observations (the number of observations in the “noise” spectrum analyzed in
Section 3), each with x-coordinates equally spaced between zero and three and with baseline
given by y = sin(2πx). In the first simulation we used iid (0, 1) noise added to the baseline,
and in the second we used independent  noise, where σx = 1 + 0.5 cos(4πx/3). We used

 and a constant value for σt estimated by dividing the spectrum into 1024 (roughly)
equal-sized sets of points, calculating the standard deviation of each set of points, then finding
the average standard deviation using the estimate of center from Tukey’s biweight with K = 9.
We ran the BXR algorithm twice on each set of simulated data, once with each choice of A2,t
above.

For the data generated with homoscedastic noise, both versions of the BXR algorithm perform
well, with only a small amount of bias near the extreme values of the baseline (Figure 1, top).
The major advantage here is that the algorithm that assumes homoscedasticity runs much faster
(using roughly 10–20% of the computing time, depending on the exact convergence criterion
chosen). However, if the noise is actually heteroscedastic, then assuming homoscedasticity
causes the BXR algorithm to badly mis-estimate the baseline—underestimating the baseline
when the variance is above average and overestimating the baseline when the variance is below
average (Figure 1, bottom). The distribution-free version of the BXR algorithm, however, still
produces a result that is almost indistinguishable from the true baseline. Thus, if the noise can
reasonably be assumed to be iid normal, then  is a good choice, but if the noise
is heteroscedastic with unknown distribution, then A2,t =  (b̂t > yt)/(b̂t − yt)—where b̂t is the
current estimate of the baseline—should be preferred.

Of course, if information on the distribution of the noise for a particular technology is available,
it would be advantageous to explore whether distribution-specific choices for A1,t and A2,t
would work better than the distribution-free choices. In the next section, we will show how to
do this for the particular case of MALDI FT-ICR MS data.

3 Application to MALDI FT-ICR MS data
Matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass
spectrometry (MALDI FT-ICR MS) is a technique for high mass-resolution analysis of
substances that is rapidly gaining popularity as an analytic tool in proteomics. Typically in
MALDI FT-ICR MS, a sample (the analyte) is mixed with a chemical that absorbs light at the
wavelength of the laser (the matrix) in a solution of organic solvent and water. The resulting
solution is then spotted on a MALDI plate and the solvent is allowed to evaporate, leaving
behind the matrix and the analyte. A laser is fired at the MALDI plate and is absorbed by the
matrix. The matrix breaks apart and transfers a charge to the analyte, creating the ions of interest
(with fewer fragments than would be created by direct ablation of the analyte with a laser).
The ions are guided with a quadrupole ion guide into the ICR cell where the ions cyclotron in
a magnetic field. While in the cell, the ions are excited and ion cyclotron frequencies are
measured. The angular velocity, and therefore the frequency, of a charged particle is determined
solely by its mass-to-charge ratio. Using Fourier analysis, the frequencies can be resolved into
a sum of pure sinusoidal curves with given frequencies and amplitudes. The frequencies
correspond to the mass-to-charge ratios and the amplitudes correspond to the concentrations
of the compounds in the analyte. FT-ICR MS is known for high mass resolution, with separation
thresholds on the order of 10−3 Daltons (Da) or better [13,14].

As an application of the methods developed in Section 2, we use them on two MALDI FT-ICR
spectra, one of which is a “noise” spectrum—one created with no analyte or matrix, pictured
in Figure 2—and the other of which was prepared for a cancer study [15] with human blood
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serum as the analyte. The spectra analyzed in this article were recorded in the Lebrilla lab in
the Chemistry Department at the University of California at Davis on an external source
MALDI FT-ICR instrument (HiResMALDI, IonSpec Corporation, Irvine, CA) equipped with
a 7.0 T superconducting magnet and a pulsed Nd:YAG laser 355 nm. The serum sample was
collected at the University of California at Davis Cancer Center; the patient gave written
informed consent under an IRB-approved protocol.

The BXR algorithm is especially suited to analyzing MALDI FT-ICR spectra because of the
following property, first observed in Barkauskas et al. [12]: the data obtained by dividing the
noise portion of a MALDI FT-ICR spectrum by the expected value at each point can be closely
modeled by a causal and invertible autoregressive, moving-average time series with
generalized gamma innovations. Thus, identifying the mean level of the noise determines the
entire distribution of the noise, which leads to a nice method for identifying peaks in a MALDI
FT-ICR spectrum as either noise or signal.

It follows that if we consider the random variables , then { } should be identically
distributed with mean 1. (Note that { } are not independent; the autocorrelation function is
non-trivial.) Thus, we get

Using the spectrum in Figure 2 as {Yt} (and running means to estimate { Yt}) gives us
. For each iteration we can use the currently estimated value of the

baseline b̂t as an estimate for Yt, so we see that for this spectrum we should use A2,t =
1/0.4201412b̂t. Similarly, to obtain an appropriate value of σt, we observe that since the
standard deviation of  estimated from the spectrum is 0.522659, we can use σt =
0.522659b̂t.

To choose an appropriate value of , we tried values of 10−j for j = 10, …, 13 and found that
the value of Var(b)= Var(y) was closest to the eventual value of the ACF of the noise spectrum
when  (see Figure 3).

For each of the two spectra, we calculated the baseline using four methods: a running Tukey’s
biweight with K = 9 and bandwidth 8001; and the BXR algorithm with  and A2,t

chosen to be one of the three choices  (the “iid normal method”, which is just Xi and
Rocke’s original algorithm), or  (b̂t > yt)/(b̂t − yt) (the “distribution-free method”), or
1/0.4201412b̂t (the “distribution-specific method”), where b̂t is the current estimate of the
baseline at point t. For the first two choices of A2,t we used σt calculated in the same way as
for the simulated data in Section 2.3; for the last choice of A2,t, we used σt = 0.522659b̂t. We
then computed the ratio of each of the estimated baselines to a running means estimate.

For the noise spectrum, we used running means with bandwidth 8001. The noise spectrum has
two spikes at frequencies of 41.21 kHz and 42.21 kHz which extend upward to intensities of
approximately 222.7 and 95.4, respectively, and are apparently instrumental noise (they have
no isotope peaks; if they were real compounds, the isotope peaks should be easily large enough
to show above the noise). In the calculation of the running means, we set the values of the
spectrum at frequencies corresponding to these two peaks to be missing.

For the serum spectrum, the presence of multiple large peaks would badly skew the running
means. To get a reasonable estimate of the running means of the noise portion of the spectrum,

Barkauskas and Rocke Page 6

Anal Chim Acta. Author manuscript; available in PMC 2011 January 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



we used a baseline calculated using the BXR algorithm with parameters A1,t and A2,t as for the
noise spectrum and set the values of the spectrum at frequencies corresponding to any peak
that reaches at least 3.7996 times higher than that to be missing. (From simulations of noise
spectra, this is approximately equivalent to taking 4.5 standard deviations above the mean for
iid normal data.) We then used running means with bandwidth 8001.

The results for the noise spectrum are displayed in Figure 4, and the results for the serum
spectrum are displayed in Figure 5. Note that each algorithm performs similarly for both
spectra. Specifically, the iid normal method underestimates the baseline for small frequencies
(where the noise variance is large) and overestimates the baseline for large frequencies (where
the noise variance is small), as expected. The distribution-free method does much better, but
is still consistently underestimating the baseline. Furthermore, in the noise spectrum the bias
increases in absolute value as the frequency decreases. The running Tukey’s biweight
underestimates the running means by a fairly consistent amount (although by less than the
distribution-free method), which is not surprising, since a simple calculation shows that the
distribution of the noise is right-skewed. Finally, we see that the baseline estimated using the
distribution-specific parameters is (on average) unbiased.

Thus, applying the distribution-specific BXR algorithm to a MALDI FT-ICR spectrum is
roughly equivalent to simply calculating running means for the noise portion of that spectrum.
However, the BXR algorithm has two main advantages over running means. The first is speed:
the BXR algorithm uses roughly half the computing time of the running means. (Of course,
optimizing each algorithm could change this. Also, as noted in Yang et al. [16], even aside
from issues of algorithm optimization, running times are only really comparable for programs
in the same language. Thus, comparing run times of various algorithms should only be
considered as a rough guideline.) More importantly, the negativity penalty A2,t in the BXR
algorithm only comes into play when the baseline is above the data. If the data is above the
baseline, it doesn’t matter by how much. Thus, the extremely large values in a spectrum which
constitute the signal are automatically ignored by the BXR algorithm, while extra work is
needed to ignore the signal when calculating the running means (as we had to do above in the
estimation of the running means for the serum spectrum).

This is even more clearly illustrated by a comparison of baselines computed by the BXR
algorithm and the LMS algorithm (Figures 6 and 7). Note that for the noise spectrum, the two
baselines are extremely close to each other, except for an apparent edge effect at low
frequencies for the LMS algorithm. In fact, except near the peak and at the low frequency edge,
the estimates never differ by more than ±5%. However, in the areas of the serum spectrum that
have signal, the estimate from the LMS algorithm is pulled up toward the signal drastically,
reaching up to more than three times as high as the BXR estimate. In the areas with little or no
signal (frequencies greater than 100 kHz), the LMS and BXR estimates are still within ±5%
of each other. While there is a mild inflation of the baseline in the presence of signal in the
BXR algorithm, it is only inflated up to 13% larger than the estimated baseline for the noise
spectrum. Thus, it is clear that the BXR algorithm is far less sensitive to the presence of signal
than the LMS algorithm.

4 Future Directions
One obvious question is how many of this results in this article are due to the particular
experimental setup used to generate the spectra analyzed in this article and how much can be
generalized. One encouraging sign is that the coefficients obtained in Section 3 are consistent
in replicates; for a set of 56 noise spectra similar to the one displayed in Figure 2, the estimated
values of  had a mean of 0.210011 and a standard deviation of 2.46 × 10−4, while
the estimated values for the standard deviation of  had a mean of 0.522584 and a standard
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deviation of 6.36 × 10−4. Thus, it would seem to be justified to use the mean values of the two
parameters for analyses on any spectrum generated on the same MALDI FT-ICR machine
rather than having to calculate them individually for each spectrum. Whether or not these same
numbers would apply to other MALDI FT-ICR machines is unknown, but it seems likely that
at the very worst, each experimenter could use the techniques described in this article to
determine the appropriate numbers for his or her experimental setup and use those.

Additionally, we have concentrated on the case the the estimated quantity is Yt because that
is the key quantity in MALDI FT-ICR MS. However, any measure of center g(Yt) which is
homogeneous of degree 1 (i.e., g(cYt) = c · g(Yt)) can be used instead. For example, replacing
g(Yt) = Yt with g(Yt) = median(Yt) in the calculations for the noise spectrum from Figure 2
gives us σt = 0.5570115b̂t and A2,t = 1/0.3796328b̂t. Plotting the ratio of the result of running
the BXR algorithm with these parameters to the running median with bandwidth 8001 gives a
picture that is virtually identical to the distribution-specific panel of Figure 4.

Several variants of the BXR algorithm could be useful. One possibility is to try penalizing
different order derivatives rather than the second. This would involve changing Δ2 by changing
M2. For example, if we wanted to penalize large values of the fourth derivative, we could use

, where

is (n − 4) × n (and A1 would then be (n − 4) × (n − 4)). As in Section 2.2, the resulting Hessian
is almost certainly negative definite (unless the baseline is below all but at most three points
of the spectrum). However, it appears to be difficult to adequately smooth the spectrum in this
way, since using a large enough  to get a reasonably smooth estimate causes the Hessian to
be computationally singular.

Another variant would be to allow  to depend on t. Especially with MALDI FT-ICR spectra
—which each show a large spike in baseline and variance near 53.75 kHz—it might be useful
to incorporate  into the formula, with an appropriate adjustment to Δ2.

A third possibility would be to allow the matrix N from Equation (2) to be non-diagonal. This
is an especially attractive idea in light of the non-trivial autocorrelation of MALDI FT-ICR
spectra.

A fourth possibility is to extend the score function to cases where the masses are not equally
spaced. Although in MALDI FT-ICR MS we can use the frequencies as equally-spaced data,
it is certainly possible that there are (or will be) technologies which will not generate equally-
spaced data.

We also observe that in deriving the appropriate values for A1,t and A2,t to calculate a baseline,
it was assumed that a baseline had already been estimated, which is obviously problematic in
applications. This suggests an iterative process, where an initial baseline estimate is found (for
example, by using the distribution-free BXR algorithm), then A1,t and A2,t are estimated using
this baseline. The new values of A1,t and A2,t can then be used to re-estimate the baseline using
the distribution-specific BXR algorithm, which will lead to new parameters, etc. In simulations,
it appears this process does, in fact, converge to a stable result.
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Finally, we note that although the BXR algorithm has been developed for one-dimensional
data, the same principles should be applicable to higher-dimensional data, such as data
generated by liquid chromatography mass spectrometry.

Acknowledgments
Funding

This work was supported by the National Human Genome Research Institute (R01-HG003352); National Institute of
Environmental Health Sciences Superfund (P42-ES04699); National Institutes of Health Training Program in
Biomolecular Technology (2-T32-GM08799 to DAB); and the Ovarian Cancer Research Fund.

The authors would like to thank Scott Kronewitter and Carlito Lebrilla (University of California at Davis, Department
of Chemistry) for providing the MALDI FT-ICR spectra used in Section 3 and Ralph de Vere White (University of
California at Davis Cancer Center, Division of Urology) for providing the serum sample used to generate the serum
spectrum.

References
1. Xi Y, Rocke D. Baseline correction for NMR spectroscopic metabolomics data analysis. BMC

Bioinformatics 2008;9(1):324. [PubMed: 18664284]
2. Coombes KR, Tsavachidis S, Morris J, Baggerly K, Hung MC, Kuerer H. Improved peak detection

and quantification of mass spectrometry data acquired from surface-enhanced laser desorption and
ionization by denoising spectra with the undecimated discrete wavelet transform. Proteomics 2005;5
(16):4107–4117. [PubMed: 16254928]

3. Du P, Sudha R, Prystowsky MB, Angeletti RH. Data reduction of isotope-resolved LC-MS spectra.
Bioinformatics 2007;23(11):1394–1400. [PubMed: 17496000]

4. Mantini D, Petrucci F, Pieragostino D, Del Boccio P, Di Nicola M, Di Ilio C, Federici G, Sacchetta P,
Comani S, Urbani A. LIMPIC: a computational method for the separation of protein MALDI-TOF-
MS signals from noise. BMC Bioinformatics 2007;8(1):101. [PubMed: 17386085]

5. Karpievitch YV, Hill EG, Smolka AJ, Morris JS, Coombes KR, Baggerly KA, Almeida JS. PrepMS:
TOF MS data graphical preprocessing tool. Bioinformatics 2007;23(2):264–265. [PubMed:
17121773]

6. Li, X.; Gentleman, R.; Lu, X.; Shi, Q.; Iglehart, JD.; Harris, L.; Miron, A. Proteomics spectra. In:
Gentleman, R.; Carey, V.; Huber, W.; Irizarry, R.; Dudoit, S., editors. Bioinformatics and
Computational Biology Solutions Using R and Bioconductor. Springer; 2005. p. 91-109.

7. Bellew M, Coram M, Fitzgibbon M, Igra M, Randolph T, Wang P, May D, Eng J, Fang R, Lin C, Chen
J, Goodlett D, Whiteaker J, Paulovich A, McIntosh M. A suite of algorithms for the comprehensive
analysis of complex protein mixtures using high-resolution LC-MS. Bioinformatics 2006;22(15):
1902–1909. [PubMed: 16766559]

8. Yasui Y, Pepe M, Thompson ML, Adam B-L, Wright J, George L, Qu Y, Potter JD, Winget M,
Thornquist M, Feng Z. A data-analytic strategy for protein biomarker discovery: profiling of high-
dimensional proteomic data for cancer detection. Biostatastics 2003;4(3):449–463.

9. Du P, Kibbe WA, Lin SM. Improved peak detection in mass spectrum by incorporating continuous
wavelet transform-based pattern matching. Bioinformatics 2006;22(17):2059–2065. [PubMed:
16820428]

10. Lange E, Gröpl C, Reinert K, Kohlbacher O, Hildebrandt A. High-accuracy peak picking of
proteomics data using wavelet techniques. Pac Symp Biocomput 2006;11:243–254. [PubMed:
17094243]

11. Zhang LK, Rempel D, Pramanik BN, Gross ML. Accurate mass measurements by Fourier transform
mass spectrometry. Mass Spectrom Rev 2005;24(2):286–309.

12. Barkauskas DA, Kronewitter SR, Lebrilla CB, Rocke DM. Analysis of MALDI FT-ICR mass
spectrometry data: A time series approach. Anal Chim Acta 2009;648(2):207–214. [PubMed:
19646586]

13. Herbert, CG.; Johnstone, RAW. Mass Spectrometry Basics. CRC Press; Boca Raton, FL: 2003.

Barkauskas and Rocke Page 9

Anal Chim Acta. Author manuscript; available in PMC 2011 January 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



14. Park Y, Lebrilla CB. Application of Fourier transform ion cyclotron resonance mass spectrometry to
oligosaccharides. Mass Spectrom Rev 2005;24(2):232–264. [PubMed: 15389860]

15. Barkauskas DA, An HJ, Kronewitter SR, de Leoz ML, Chew HK, de Vere White RW, Leiserowitz
GS, Miyamoto S, Lebrilla CB, Rocke DM. Detecting glycan cancer biomarkers in serum samples
using MALDI FT-ICR mass spectrometry data. Bioinformatics 2009;25(2):251–257. [PubMed:
19073586]

16. Yang C, He Z, Yu W. Comparison of public peak detection algorithms for MALDI mass spectrometry
data analysis. BMC Bioinformatics 2009;10(1):4. [PubMed: 19126200]

Barkauskas and Rocke Page 10

Anal Chim Acta. Author manuscript; available in PMC 2011 January 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Barkauskas and Rocke Page 11

Anal Chim Acta. Author manuscript; available in PMC 2011 January 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Baseline estimation for simulated homoscedastic and heteroscedastic normal data using each
of the two possible choices for A2,t from Section 2.3.
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Figure 2.
A typical noise spectrum. The spike extending off the top of the picture is actually two peaks
at frequencies of 41.21 kHz and 42.21 kHz which extend upward to intensities of approximately
222.7 and 95.4, respectively.

Barkauskas and Rocke Page 13

Anal Chim Acta. Author manuscript; available in PMC 2011 January 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Value of Var(b)/Var(y) for baselines estimated from the noise spectrum in Figure 2 using
various choices of smoothing parameter . The solid line is the least-squares fit parabola for
the data points, and the horizontal dashed line is the eventual value of the ACF of the spectrum.
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Figure 4.
Ratio of estimated baselines over running means (bandwidth 8001) for noise spectrum.
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Figure 5.
Ratio of estimated baselines over running means (bandwidth 8001) for serum spectrum.
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Figure 6.
Estimated baselines for noise spectrum calculated using BXR (top) and LMS (bottom)
algorithms.
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Figure 7.
Estimated baselines for serum spectrum calculated using BXR (top) and LMS (bottom)
algorithms.
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