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ABSTRACT
Background: Low vitamin B-6 status has been linked to an in-
creased risk of cardiovascular diseases. The cardioprotective effects
of vitamin B-6 independent of homocysteine suggest that additional
mechanisms may be involved.
Objective: Our objective was to examine the cross-sectional asso-
ciation of vitamin B-6 status with markers of inflammation and
oxidative stress.
Design: We measured plasma pyridoxal-5#-phosphate (PLP), C-
reactive protein (CRP), and an oxidative DNA damage marker,
urinary 8-hydroxydeoxyguanosine (8-OHdG), in Puerto Rican
adults who were living in Massachusetts (n = 1205, aged 45–75 y).
Results: There was a strong dose-response relation of plasma PLP
concentration with plasma CRP. Increasing quartiles of PLP were
significantly associated with lower CRP concentrations (geometric
means: 4.7, 3.6, 3.1, and 2.5 mg/L; P for trend , 0.0001) and with
lower urinary 8-OHdG concentrations (geometric means: 124, 124,
117, and 108 ng/mg creatinine; P for trend: 0.025) after multivariate
adjustment. These negative associations persisted after plasma ho-
mocysteine was controlled for. Plasma PLP concentrations were
significantly correlated with plasma fasting glucose (r = 20.1,
P = 0.0006), glycated hemoglobin (r = 20.08, P = 0.006), and
homeostasis model assessment of b cell function (r = 0.082, P =
0.005). Metabolic syndrome, obesity, and diabetes were also signif-
icantly associated with low plasma PLP concentrations (P = 0.011,
0.0007, and 0.004, respectively).
Conclusions: Low vitamin B-6 concentrations are associated with
inflammation, higher oxidative stress, and metabolic conditions in
older Puerto Rican adults. Our data suggest that vitamin B-6 may
influence cardiovascular disease risk through mechanisms other than
homocysteine and support the notion that nutritional status may
influence the health disparities present in this population. Am J
Clin Nutr 2010;91:337–42.

INTRODUCTION

Vitamin B-6 includes pyridoxal, pyridoxine, and pyridox-
amine, which function as essential cofactors for enzymes in-
volved in various metabolic activities, which include amino acid,
fat, and glucose metabolism (1). The phosphate ester derivative
pyridoxal 5#-phosphate (PLP) is the biologically active form of
this vitamin (2) and reflects long-term body storage (3). Studies
have shown that low plasma PLP concentrations are associated
with increased risk of cardiovascular disease (CVD) (4, 5). The
potential mechanism has been proposed to act through PLP

regulation of homocysteine metabolism, itself an independent
risk factor for CVD and stroke (6).

The observation of protective effects of vitamin B-6 on CVD
independent of homocysteine (4) suggests that additional
mechanisms may be involved. Biochemical studies have revealed
some underlying mechanisms of the cardioprotective effect, such
as the regulation of cholesterol metabolism (7) and the inhibition
of platelet aggregation (8) and endothelial cell proliferation (9).
Recent data have shown that plasma PLP was adversely asso-
ciated with inflammatory markers, which include C-reactive
protein (CRP), fibrinogen, and blood cell count (4, 10–12).
Additionally, low vitamin B-6 concentrations are commonly
present in diseases with a strong inflammatory basis, such as
diabetes (13), rheumatoid arthritis (14), and inflammatory bowel
disease (15). Current evidence highlights the notion that in-
flammation may represent another link between vitamin B-6 and
CVD. However, the relation of vitamin B-6 status with in-
flammation and other CVD risk factors has not been investigated
extensively in a population at high risk of CVD.

Puerto Ricans who live in the United States represent one of
the largest Hispanic ethnic groups. Health disparities have been
well documented in this minority population. We have reported
previously that Puerto Rican elders who live in Massachusetts
have a high prevalence of depressive symptoms, cognitive im-
pairment, type 2 diabetes, obesity, and hypertension compared
with non-Hispanic whites and other Hispanic subgroups (16–19).
It is therefore important to explore and identify factors that
contribute to those disparities. Nutritional status may influence
those disadvantageous health outcomes (18). In the present study,
we aimed to examine the association of vitamin B-6 status with
markers of inflammation and oxidative stress as well as metabolic
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conditions in older Puerto Rican adults who were living in
Massachusetts.

SUBJECTS AND METHODS

Subjects

The present study consisted of 1222 self-identified Puerto
Ricans aged 45–75 y who were living in Boston, Massachusetts
(361 men and 861 women; mean 6 SD age: 52 6 7 y) and were
participating in the Boston Puerto Rican Health Study, a longi-
tudinal study on stress, nutrition, health, and aging (18, 20). The
design and methodology of the study have been described pre-
viously (20). Detailed materials and methods can be found under
"Supplemental data" in the online issue. Dietary intake was
assessed with the use of a semiquantitative food-frequency
questionnaire with 126 items, which was adapted and validated
for this population (21). This food-frequency questionnaire has
been validated against plasma carotenoids (22), vitamin E (23),
and vitamin B-12 (24) in Hispanics aged �60 y. A total of 1205
participants with complete data for demographic and bio-
chemical characteristics and dietary intake (600 kcal , energy
intake , 4000 kcal) were included in the final analyses. The
metabolic syndrome (MetS) was defined in accordance with the
2001 National Cholesterol Education Program Adult Treatment
Panel III guidelines modified to reflect glucose recommen-
dations from the American Diabetes Association (25). Type 2
diabetes was determined with the use of American Diabetes
Association criteria (fasting glucose � 7 mmol/L or 126 mg/dL)
(26) and/or use of diabetes medications. Participants were
classified as obese if their body mass index (BMI; in kg/m2)
was �30. Vitamin B-6 inadequacy was defined as plasma PLP,
20 nmol/L, the concentration used to set the current Recommen-
ded Dietary Allowance (RDA) (27).

The protocol for this study was approved by the Human
Studies Committee of the Institutional Review Board at Tufts
Medical Center. Written informed consent was obtained from all
participants.

Biochemical measurements

Plasma PLP was determined enzymatically with the use of
tyrosine decarboxylase, based on the principles described by
Shin-Buehring et al (28). Serum folate was measured by using
Immulite chemiluminescent kits according to the manufacturer’s
instructions (Diagnostic Products Corporation/Siemens, Los
Angeles, CA). Plasma homocysteine was determined by reverse-
phase HPLC analysis. Plasma CRP was measured by the
Immulite 1000 High Sensitive CRP Kit (LKCRP1) on the
Immulite 1000 (Siemens Medical Solutions Diagnostics, Los
Angeles, CA). Urinary 8-hydroxydeoxyguanosine (8-OHdG)
was measured by a monoclonal antibody enzyme-linked im-
munosorbent assay kit (EKS-350; Assay Designs, Ann Arbor,
MI). Briefly, ’10 lL of urine collected from each participant
after a 12-h overnight period was thawed after storage at 280�C
and diluted 20-fold before analysis. Diluted urine samples were
measured in duplicate with a standard provided by the vendor in
a 96-well plate format. Concentrations of urinary 8-OHdG were
calculated by the multiplication of the measured concentration

by the total volume of 12-h urine, and then normalized by uri-
nary creatinine concentrations.

Statistical analysis

Statistical analyses were performed with the use of SAS for
Windows, version 9.0 (SAS Institute, Cary, NC). A logarithmic
transformation was applied to plasma concentrations of CRP,
PLP, urinary 8-OHdG, and triglycerides to normalize the dis-
tribution of data. Partial Pearson’s correlation was applied to
examine the relation between plasma PLP and clinical and
biochemical measurements. Analysis of covariance was used to
compare mean differences across quartiles of plasma PLP with
Tukey adjustment for multiple comparisons. Covariates included
age, sex, BMI, smoking (current smoker, never smoked, or past
smoker), alcohol consumption (current drinker, never drank, or
past drinker), medication use (treatment of hypertension, di-
abetes, hyperlipidemia, and use of hormone therapy by women),
physical activity, urinary creatinine, serum homocysteine, vita-
min B-6 and folate intake (diet and supplements), protein, and
total energy intake. A 2-tailed P value of ,0.05 was considered
statistically significant.

RESULTS

Baseline characteristics for 1205 participants across quartiles
of plasma PLP concentrations are presented in Table 1. Because
no significant modification by sex was observed, men and
women were analyzed together. There were significant associ-
ations between plasma PLP concentration and BMI and waist
circumference: participants in the highest quartile of PLP had
a lower BMI and waist circumference than those in lower
quartiles of PLP, after adjustment for age and sex (P , 0.001).
Higher plasma PLP concentrations were associated with higher
intake of vitamin B-6 (P , 0.001), folate (P , 0.001), and
vitamin B-12 (P , 0.001); higher antioxidants, which included
vitamin C (P , 0.001), b-carotene (P = 0.006), and vitamin E
(P , 0.001); and higher intake of vegetables (P = 0.012).
High plasma PLP concentrations were also associated with
a higher physical activity score (P , 0.001), higher current
drinking status (P = 0.018), and lower current smoking status
(P , 0.001).

There were significant correlations between plasma PLP and
plasma fasting glucose (P = 0.0006), glycated hemoglobin (Hb
Alc) (P = 0.0058), and homeostasis model assessment (HOMA)
of b cell function (P = 0.005), but no significant associations
with insulin or HOMA of insulin resistance (Table 2). Partic-
ipants in the highest quartile of plasma PLP had lower plasma
fasting glucose and Hb Alc concentrations than those in the
lower quartiles. Higher plasma PLP was significantly correlated
with higher HDL cholesterol (P = 0.039). No significant asso-
ciations were observed for other lipid measures or for blood
pressure. Plasma homocysteine was negatively correlated with
plasma PLP (P , 0.0001).

There was a strong dose-response relation of plasma PLP with
plasma CRP (Figure 1) after adjustment for age, sex, BMI,
smoking status, alcohol intake, physical activity, diabetes status,
hormone use among women, and dietary intakes of vitamin B-6,
folate, protein, and total energy. Participants in higher quartiles
of plasma PLP had lower plasma CRP concentrations than those
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in lower quartiles, with geometric means of 4.7, 3.6, 3.1, and
2.5 mg/L across quartiles (P for trend , 0.0001). Similarly,
urinary 8-OHdG was significantly associated with plasma PLP
concentrations with decreasing geometric means of 124, 124,
117, and 108 ng/mg creatinine across quartiles of increasing
PLP (P for trend: 0.025) in the multivariate adjusted model
(Figure 1). This negative association persisted even after plasma
homocysteine was controlled for.

The presence of chronic conditions, such as MetS, obesity, and
type 2 diabetes, was strongly associated with lower plasma PLP
concentrations (P = 0.011, 0.0007, and 0.004, respectively)
(Figure 2). The prevalence of vitamin B-6 inadequacy among
participants with MetS was higher than in those without this
condition (12% compared with 7%, P = 0.0016). Similarly, 13%
of participants with type 2 diabetes were vitamin B-6 inadequate
compared with 9% of those without diabetes (P = 0.014). Obese

TABLE 2

Clinical and biochemical measurements across quartiles (Q) of plasma pyridoxal 5#-phosphate (PLP)1

Pearson

correlation (r)

PLP

Q1 (5.5–28.3 nmol/L) Q2 (28.4–42.4 nmol/L) Q3 (42.5–65.2 nmol/L) Q4 (65.3–737 nmol/L)

n — 292 290 299 295

Glucose (mg/dL) 20.102 137 6 43 120 6 3 119 6 3 113 6 3

Hb Alc (%) 20.084 7.5 6 0.1 7.0 6 0.1 6.9 6 0.1 6.8 6 0.1

Insulin (uIU/mL) 0.010 21.0 6 1.7 18.2 6 1.2 17.0 6 0.9 16.4 6 0.9

HOMA-IR 20.03 8.8 6 1.7 6.0 6 0.6 5.5 6 0.5 4.7 6 0.3

HOMA–b cell function 0.084 141 6 11 158 6 12 153 6 17 166 6 16

Triglycerides (mg/dL) 0.02 156 6 6 159 6 7 172 6 9 168 6 6

Total cholesterol (mg/dL) 0.01 177 6 2 185 6 2 186 6 2 187 6 3

LDL-C (mg/dL) 20.01 103 6 2 109 6 2 109 6 2 108 6 2

HDL-C (mg/dL) 0.065 43.0 6 0.7 44.4 6 0.6 45.6 6 0.7 46.6 6 0.8

Homocysteine (lm/L) 20.112 9.9 6 0.3 9.5 6 0.3 8.9 6 0.3 8.3 6 0.2

Diastolic BP (mm Hg) 20.04 81.2 6 0.6 81.7 6 0.6 81.0 6 0.6 80.0 6 0.6

Systolic BP (mm Hg) 20.02 137 6 1.2 135 6 1 136 6 1 136 6 1

1 Hb Alc, glycated hemoglobin; HOMA-IR, homeostasis model assessment of insulin resistance; HOMA–b cell function, homeostasis model assessment

of b cell function; LDL-C, LDL cholesterol; HDL-C, HDL cholesterol; BP, blood pressure. Partial Pearson’s correlation coefficient was adjusted for age, sex,

BMI, smoking status, alcohol intake, physical activity, and intake of dietary vitamin B-6 and total energy.
2 P , 0.001.
3 Mean 6 SEM (all such values).
4 P , 0.01.
5 P , 0.05.

TABLE 1

Participant characteristics across quartiles (Q) of plasma pyridoxal 5#-phosphate (PLP)1

Variables

PLP

P for trendQ1 (5.5–28.3 nmol/L) Q2 (28.4–42.4 nmol/L) Q3 (42.5–65.2 nmol/L) Q4 (65.3–737 nmol/L)

n 301 305 299 300 —

Mean PLP (nmol/L) 20.4 6 5.32 34.8 6 4.1 52.0 6 6.4 128.2 6 92.1 —

Age3 (y) 57.4 6 7.5 56.9 6 7.3 57.1 6 7.6 58.3 6 7.8 0.27

Female4 [n (%)] 235 (71) 234 (72) 231 (72) 225 (69) 0.36

BMI (kg/m2) 32.9 6 7.7 32.3 6 6.6 31.7 6 6.5 30.7 6 5.6 ,0.001

Waist (cm) 104 6 17 103 6 16 101 6 14 99 6 13 ,0.001

Current smoker [n (%)] 106 (32) 90 (28) 73 (23) 49 (15) ,0.001

Current drinker [n (%)] 109 (33) 129 (40) 136 (42) 145 (45) 0.019

Total energy intake (kcal/d) 2315 6 1170 2380 6 1218 2360 6 1198 2282 6 1274 0.78

Vitamin B-6 intake5 (mg/d) 2.49 6 1.31 2.54 6 1.19 2.76 6 1.31 2.99 6 1.59 ,0.001

Folate intake5 (lg/d) 495 6 241 512 6 236 548 6 268 610 6 317 ,0.001

Vitamin B-12 intake5 (lg/d) 9.8 6 8.9 9.8 6 8.8 10.3 6 8 11 6 10 0.006

Vitamin C intake5 (mg/d) 143 6 104 135 6 89 151 6 114 169 6 109 ,0.001

b-Carotene intake5 (mg/d) 3228 6 3464 3026 6 2824 3524 6 4193 3634 6 3117 0.006

Vitamin E intake5 (mg/d) 13.4 6 11.3 15.4 6 11.9 17.7 6 14.4 22.5 6 16.2 ,0.001

Fruit intake5 (servings/d) 2.0 6 1.9 2.0 6 1.7 2.1 6 1.8 2.2 6 1.9 0.13

Vegetable intake5 (servings/d) 3.6 6 3.2 3.6 6 2.8 3.7 6 2.7 4.3 6 3.5 0.012

Physical activity 30.6 6 3.8 31.7 6 5.3 31.6 6 4.5 32.1 6 5.0 ,0.001

1 Values were adjusted for age and sex, except where otherwise indicated, by using a general linear model.
2 Mean 6 SD (all such values).
3 Adjusted for sex.
4 Adjusted for age.
5 Additionally adjusted for energy intake.
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participants tended to show more vitamin B-6 inadequacy
compared with nonobese participants, but this association was
not statistically significant (11% compared with 9%, P = 0.14).

DISCUSSION

In the present study, we observed strong inverse associations
between vitamin B-6 status, measured as plasma PLP concen-
tration, and the systematic inflammatory marker CRP in a cohort
of older Puerto Ricans who were living in Massachusetts, a group
which has been identified previously to be at higher risk of several
age-related diseases (18). Furthermore, chronic inflammatory
conditions, such as MetS, diabetes, and obesity, were signifi-
cantly associated with lower plasma PLP, and participants with
those conditions were more likely to have vitamin B-6 in-
adequacy. Additionally, lower PLP was associated with oxidative
stress, as reflected by a higher concentration of the urinary DNA
damage marker, 8-OHdG.

Our data confirm previous reports from both healthy subjects
and patients with various inflammatory conditions such as CVD
(11, 15, 29) that showed that plasma CRP concentrations are
associated with lower plasma PLP. CRP is an important down-
stream inflammatory marker that integrates the action of several
activated cytokines. Plasma CRP not only predicts future CVD
events (30) but also actively participates in the pathogenesis of
atherosclerosis (31). On the other hand, low vitamin B-6 has been
shown to increase CVD risk (4, 5). The observed inverse asso-
ciation between plasma CRP and PLP supports the notion that
inflammationmay represent the common link between low vitamin
B-6 status and CVD risk. Although the causal factor remains to be

clarified, inflammation has been suggested as facilitating re-
distribution of PLP from circulation to tissues with high demand.
This compartmentalization of PLP could be an important
adaptive response under certain circumstances (32). Because of
the integral involvement of vitamin B-6 in the synthesis of
nucleic acids and consequently in mRNA and protein synthesis,
the production of cytokines and inflammatory mediators during
the inflammatory response might increase the use of PLP (11).

More than 40% of our study population had type 2 diabetes and
more than one-half were obese or had MetS. This confirms the
findings of a previous report that Puerto Ricans who live in the
United States have a high prevalence of CVD risk factors (18).
Furthermore, participants with those metabolic conditions had
lower plasma PLP compared with those without the conditions.
This observation is in agreement with recent studies that sug-
gested that MetS, obesity, and diabetes are negatively associated
with the status of vitamins C, B-6, and E, and carotenoids (13, 33,
34). However, the mechanisms responsible for altered vitamin B-
6 among subjects with those conditions are unclear. Given that
those disorders were significantly associated with elevated
CRP, chronic inflammation could be an underlying cause of low
vitamin B-6 status. Although the majority of participants had
intakes of vitamin B-6 above the current RDA, with a mean
(6SD) intake of 3.0 6 1.5 mg for men and 2.5 6 1.3 mg
for women, the prevalence of vitamin B-6 inadequacy in par-
ticipants with MetS, obesity, or diabetes was substantial and
significantly higher than that in participants without these con-
ditions. Our results, thus, support the notion that the current
RDA for vitamin B-6 may not guarantee adequate vitamin B-6
status in certain subgroups (3). In this regard, improved dietary

FIGURE 2. Mean (6SE) association of plasma pyridoxal 5#-phosphate (PLP) concentration and chronic disease status. P values for mean differences
between groups with and without a condition were adjusted for age, sex, smoking status, alcohol intake, physical activity, hormone use among women, dietary
vitamin B-6, and folate, protein, and total energy intake in a general linear model. Black bars represent the percentage of vitamin B-6 inadequacy (PLP , 20
nmol/L). MetS, metabolic syndrome.

FIGURE 1. Geometric means (with 95% CIs) of plasma C-reactive protein (CRP) (A) and urinary 8-hydroxydeoxyguanosine (8OHdG) concentrations (B)
by quartiles (Q) of plasma pyridoxal 5#-phosphate (PLP). P values for trend, in general linear models, were adjusted for age, sex, smoking status, alcohol
intake, physical activity, hormone use among women, dietary vitamin B-6, folate intake, protein and total energy intake, and plasma homocysteine.
*, **Significantly different from the lowest quartile: *P , 0.05, **P , 0.001.
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intake or nutritional supplementation may benefit older Puerto
Rican adults and other subgroups with a high prevalence of
chronic conditions, by helping them maintain normal function of
various metabolic processes and lower risk of future disease,
such as CVD.

Our results suggest that low plasma PLP was associated with
higher fasting glucose and Hb Alc, whereas higher plasma PLP
was significantly correlated with improved HOMA index for
b cell function. Vitamin B-6 deficiency has been shown to cause
degenerative changes in b cells in the islets of Langerhans and to
decrease both pancreatic and circulating insulin (35, 36). Like-
wise, pyridoxamine treatment of streptozotocin-induced diabetic
hamsters improves glucose tolerance and restores b cell function
(37). Moreover, supplementation with pyridoxine lowers blood
glucose and decreases Hb Alc in diabetic patients (38, 39). We
also observed a positive correlation between plasma PLP and
HDL-cholesterol concentrations in this population, which is
consistent with a report in European subjects (40).We postulate
that, as a coenzyme of d6-desaturase (7), The effect of PLP on
HDL may be mediated through its effect on the metabolism of
polyunsaturated fatty acids, which regulates the expression of
genes involved in lipid metabolism (41).

In this study, low plasma PLP was significantly associated with
higher urinary 8-OHdG, which suggests that low vitamin B-6
status may contribute to oxidative DNA damage. 8-OHdG is
a product of the oxidative modification of the DNA base
deoxyguanosine, and elevation of 8-OHdG may reflect oxidative
damage induced by reactive oxygen species (42). Urinary 8-OHdG
has been shown to be associated with atherosclerosis-related
risk factors (43) and diabetes (44). A vitamin B-6–deficient
diet increases plasma lipid peroxidation and decreases plasma
vitamins E and C concentrations in rats (45). Experimental models
have further shown that supplementation with vitamin B-6
suppresses the colonic concentrations of 8-OHdG induced by
colonic carcinogen (46) and decreases plasma 8-OHdG and
malonaldehyde in hyperglycemia-induced oxidative stress (37).
Vitamin B-6 compounds can prevent the oxygen radical gener-
ation and lipid peroxidation caused by hydrogen peroxide in
U937 monocytes as well (47). In this study the association be-
tween plasma PLP and the DNA damage marker persisted even
after plasma homocysteine was controlled for, which indicates
that higher oxidative stress was not mediated through homo-
cysteine. Because PLP serves as a coenzyme for cystathionine
b-synthase and cystathionine c-lyase, both of which are required
for the synthesis of cysteine, which is the precursor of gluta-
thione (6, 48), inadequate vitamin B-6 status may decrease the
production of glutathione and thus impair the antioxidant de-
fense system (49). Oxidative stress, therefore, may represent
a mechanistic pathway through which low vitamin B-6 may lead
to CVD.

Several limitations of this study need to be addressed. First, the
cross-sectional associations cannot be translated into a clear
cause–effect relation. Prospective studies and randomized trials
are needed. Second, as with any observational study, there may be
unknown residual confounding. Third, despite the fact that CRP
and 8-OHdG are widely used markers, results with only one
marker of inflammation and one marker of oxidative stress may
not satisfactorily reflect the full complexity of these associations.
Future studies with multiple measurements may substantiate our
findings. Finally, in this particular high-risk population, low

plasma PLP concentrations could be due to the redistribution of
PLP from circulation to tissues in response to inflammation, and
may not necessarily indicate deficiency. Therefore, measurement
of PLP concentrations in intracellular depots, such as red blood
cells, may be a useful measure of vitamin B-6 status in pop-
ulations with inflammatory conditions (50).

In conclusion, there was a strong inverse association between
plasma PLP and the inflammatory marker CRP in older Puerto
Ricans who were living in Massachusetts. Moreover, participants
with metabolic conditions—namely MetS, diabetes, or obesity—
had a lower vitaminB-6 status and a higher prevalence of vitaminB-6
inadequacy than those without these conditions. Low plasma PLP
was also associated with oxidative stress. Our results suggest
a potential link between vitamin B-6 and CVD, independent of
the homocysteine-mediated pathway. In addition, our findings
support the notion that nutritional status, particularly vitamin B-6
status, may influence the association between life stress, phys-
iologic responses, and chronic diseases in this population. This
information may help develop more effective dietary recom-
mendations and future dietary interventions to help improve the
health of, and decrease health disparities among, Puerto Ricans.
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