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An integrated phenomic approach to multivariate
allelic association

Sarah Medland*,1,2 and Michael Churton Neale2,3,4,5,6

The increased feasibility of genome-wide association has resulted in association becoming the primary method used to localize

genetic variants that cause phenotypic variation. Much attention has been focused on the vast multiple testing problems arising

from analyzing large numbers of single nucleotide polymorphisms. However, the inflation of experiment-wise type I error rates

through testing numerous phenotypes has received less attention. Multivariate analyses can be used to detect both pleiotropic

effects that influence a latent common factor, and monotropic effects that operate at a variable-specific levels, whilst controlling

for non-independence between phenotypes. In this study, we present a maximum likelihood approach, which combines both

latent and variable-specific tests and which may be used with either individual or family data. Simulation results indicate that in

the presence of factor-level association, the combined multivariate (CMV) analysis approach performs well with a minimal loss

of power as compared with a univariate analysis of a factor or sum score (SS). As the deviation between the pattern of allelic

effects and the factor loadings increases, the power of univariate analyses of both factor and SSs decreases dramatically,

whereas the power of the CMV approach is maintained. We show the utility of the approach by examining the association

between dopamine receptor D2 TaqIA and the initiation of marijuana, tranquilizers and stimulants in data from the Add Health

Study. Perl scripts that takes ped and dat files as input and produces Mx scripts and data for running the CMV approach can be

downloaded from www.vipbg.vcu.edu/Bsarahme/WriteMx.
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INTRODUCTION

Although most genome-wide association studies collect information
on a set of symptoms or related traits, the analytical approaches
employed and the hypotheses being tested are almost exclusively
univariate in nature with respect to phenotype. One simple approach
to multivariate analysis is to reduce the number of traits analyzed
through factor analysis. This popular method of summarizing multi-
variate data is essentially an extension of multivariate multiple
regression that permits the specification of latent variables to assess
the effects of variables that are thought to exist, but which have not
been measured. Typically, some or all of the observed variables are
specified to regress onto one or more latent factors. These factors
therefore summarize the covariance between the observed variables.
Non-shared variance and measurement error are subsumed into an
additional set of latent variables (residuals), which are specific to each
of the observed variables.

However, factor scores – or any other weighted combination of the
traits – combine both factor-level and trait-specific effects, and
whereas genetic association with a latent factor is inherently pleio-
tropic, association with a residual variance component is not. Should
these two types of effect counteract then false negatives (type II errors)
may occur. Lange et al1 have implemented a multivariate association
analysis based on a principal component analysis within the FBAT-PC

software. Similarly, the Lange et al2 FBAT-GEE approach allows testing
for association to multiple phenotypes using an omnibus approach,
which results in a multivariate test with degrees of freedom equal to
the number of phenotypes being tested. However, both FBAT-PC and
FBAT-GEE require family-based data. In addition, these approaches
do not distinguish between factor-level and trait-level association. In
this study, we present a maximum likelihood approach, which
combines both latent and variable-specific tests and which may be
used with either individual or family data.

MATERIALS AND METHODS
Within the combined maximum likelihood-based approach, we model the full

multivariate covariance structure by maximizing the natural log of the normal

theory likelihood of the data:

L ¼ P
N

i¼1
ð2pÞ�ki=2 Sijj �1=2e�1=2 ðyi�miÞ0S�1

i ðyi�miÞ½ �

with respect to
P

i and mi, where k is the number of data observations for

family i (in the univariate case ki is equal to the number of family members for

whom data are collected; in the case of a sample of unrelated individuals, k is

equal to the number of variables with observed data for that individual; and in

general ki ¼
Pni

q¼1
miq where miq is the number of variables observed on
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individual q in family i and ni is the number of individuals in family (i);
P

i is

the expected covariance matrix among the variables for family i, yi is a vector

of observed scores obtained for the k variables for family i, mi is the

vector of expected means for family i and N is the number families. The

covariance matrix
P

i may be user-specified to allow for alternative models;

if the data were collected from a family-based sample, then the variance may

be decomposed into genetic and environmental components, and simul-

taneous tests for linkage, heritability or other variance components could be

incorporated.

Against this multivariate background, we estimate the following three mean

effects models:

� The first specifies an association with the latent trait: yj1 ¼
m+F � balgj, where m is the grand mean, F is a full matrix v by 1
containing the estimated factor loadings, bal is a 1 by 1 matrix
containing the estimated allelic effect and gj represents the geno-
type of individual j, coded as the number of reference alleles at the
locus minus 1.

� The second, alternate, model of the mean effects allows for
variable-specific association at the level of the individual trait:
yj2 ¼ m+gj � bar, where bar is a v by 1 matrix containing the
estimated allelic effects for each of the k phenotypes.

� The null model yj0¼m, in which no association effects are
estimated.

The minus twice log-likelihoods of the two alternate models are compared with

the null model using likelihood ratio w2-test with degrees of freedom equal

to the number of parameters being tested; one in the case of the factor-level

test (w2
1) and v for the variable-specific test (wn2). As the two tests provide

complementary information, it is suggested that the results of both tests should

be reported. As discussed below, conducting both factor-level and variable-

specific tests results in an inflated type I error rate, which may be corrected by

applying a Bonferroni correction to the factor-level and variable-specific tests.

Adjusted P-values may be obtained by multiplying the observed P-values, by the

Bonferroni correction factor.

In the case of family data, allelic effects may be partitioned into between (bb)

and within (bw) family effects at either the latent or variable-specific level

(eg bbal and bbar).3 For a test of association robust to population stratification,

the within-family test may be used, in which case these three models may be

parameterized as follows, for the jth sib from the ith family:

yij1 ¼ m+F � bbalAbi+F � bwalAwij

yij2 ¼ m+bbarAbi+bwarAwij

yij3 ¼ m+bbarAbi

where Abi is the derived coefficient for the between-families additive genetic

effect for the ith family, and Awij is the coefficient for the within-families

additive genetic effect for the jth sib from the ith family, as summarized in

Table 1. Alternatively, in the absence of population stratification, a between-

families test in which the bw parameters are constrained to equal the bb

parameters may be used, in which case:

yij3 ¼ m

Simulations studies
To examine the type I error and power of the combined multivariate

(CMV) approach, data were simulated in R under nine scenarios. In each

scenario, covariation between variables was due to a single factor, which

loaded on all variables. Algebraically, this covariation may be written as

F*F¢, where F is a full matrix v by 1, where v is the number of variables.

Uncorrelated residuals were added as D*D¢, where D is a v by v diagonal

matrix. The factor loadings and residuals for each scenario are summarized in

Table 2. Data from unrelated individuals (N¼1000) were simulated for six (a–f)

scenarios; in the remaining three (g–i), data for full sib-pairs (Npairs¼1000)

were simulated.

Data for each of the nine scenarios were simulated under six association

models: (1) Null effect (to assess type I error); (2) single-variable association;

(3) factor-level association; (4) residual-level association in which all variables

are equally associated; (5) a mixed effects model and (6) a contrasting effects

model. A total of 5000 replicates were simulated for each association model

using a single SNP (single nucleotide polymorphism) with a 0.2 minor allele

frequency throughout.

To compare the power of the CMV approach to univariate analyses of factor

scores or sum scores (SSs), we computed the following: a SS; a ‘regression’ (aka

Thompson) factor score,4 in which the sum of squared discrepancies between

true and estimated factors over individuals is minimized and a ‘Bartlett’ factor

score (BFS),5,6 in which the sum of squares of the unique factors over the range

of items is minimized. Using the raw multivariate data for each replicate, we

ran the CMV association test and univariate association tests of (i) the SS, (ii)

the Bartlett and (iii) the regression factor scores (RFS). For the sibling data

from scenarios g–i, a between-families test of association was used.

To examine the effect of missing phenotypic data on the power of the CMV

approach, two additional conditions were investigated using data simulated

under the parameters from scenario i. In the first simulation, 10% of the data

for each variable were set to missing. Missing status was randomly assigned

across individuals and variables. In the second simulation, the third variable

was randomly set to missing for half of the participants to mimic a situation in

which not all participants were assessed on all variables. Each of these missing

data scenarios was simulated for unrelated individuals under the single-variable

and factor-level association models (described in association models 2 and 3 in

Table 2). A total of 5000 replicates were simulated for each case using a single

SNP with a 0.2 minor allele frequency. Although the effects of missingness are

not exhaustively explored, it is expected that the results of these simulations will

generalize to other situations in which data is missing at random (and missing

completely at random), including the case of sib-pairs in which missingness

may be correlated.

All analyses were conducted using Mx,7 a freeware structural equation

modeling program. The scripts used in these analyses are available from

(www.vipbg.vcu.edu/~sarahme/WriteMx) and may be modified to explore

other conditions.

Applied example
To illustrate the explanatory strengths of the CMV approach, we applied it to

data from the National Longitudinal Study of Adolescent Health (Add Health;

http://www.cpc.unc.edu/Add Health). This nationally representative longitudi-

nal study is designed to assess the causes and consequences of health-related

behaviors of adolescents initially recruited in grades 7 through 12 as they

transition into adulthood.

During the third wave of data collection (2001–2002), saliva samples were

collected, which were used to genotype polymorphisms in the dopamine

receptor D2 (DRD2) TaqIA snp (dbSNP rs1800497; g.32806C4T; 11q23;

OMIM *126450; for details of the sample processing and genotyping see

Table 1 Example scoring of Abi and Awij in a sibling pair (following

Fulker et al 3)

Genotype Genotypic effect Abi Awij

Sib1 Sib2 Sib1 Sib2 Family j Sib1 Sib2

GG GG 1 1 1 0 0

GG Gg 1 0 ½ ½ �½

GG gg 1 �1 0 1 �1

Gg GG 0 1 ½ �½ ½

Gg Gg 0 0 0 0 0

Gg gg 0 �1 �½ ½ �½

Gg GG �1 1 0 �1 1

Gg Gg �1 0 �½ �½ ½

Gg gg �1 �1 �1 0 0
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Haberstick and Smolen8). The DRD2 Taq1A1 (T) allele has been associated

with a range of substance use phenotypes including alcoholism,9,10 nicotine use

and cessation.11–13 In addition, the degree of pleasure gained from the effects of

psychostimulants has been found to correlate with the density of dopamine D2

receptors in the striatum,14 which is in turn associated with DRD2 Taq1A1.15 In

this study, we consider association between the DRD2 TaqIA polymorphism

and initiation (ever-use) of three substances: marijuana, tranquilizers and

stimulants, using data from 864 Caucasian males.

The characteristics of the sample are summarized in Table 3. The phenotypic

data were analyzed employing a multifactorial threshold model, which specifies

that ordinal data represent subdivisions on an underlying normal distribution

of liability.16

RESULTS

Type I error
As shown in Table 4, across scenarios the factor-level and variable-
specific tests showed the expected type I error rates for when
considered individually. The distributions of the P-values for the
factor-level and variable-specific tests were uniform (see Supplemen-
tary Figures 1–4). The CMV approach resulted in an inflated type I
error, mean a¼0.084. To control for this inflation in type I error rates,
we adopted an a level of 0.025 for each of the factor-level and variable-
specific tests, which resulted in a slightly conservative test, mean
a¼0.043. This reduced a level was used in all further analyses. The
conservative nature of the CMV approach is due to the covariation
between the factor-level and variable-specific tests. However, as the
magnitude of this covariation is dependent on the factor structure of
the observed data, researchers may either estimate an exact Bonferroni
correction for their data through permutation or simulation, or adopt
the slightly conservative a level of 0.025.

Power
Figures 1a–c summarize the results of the power analyses for the five
association models under the nine multivariate scenarios. In each case,
power is shown for the CMV approach and for univariate analyses of
the SS (SS), RFS and BFS.T
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Table 3 Characteristics of the Add Health Sample

Age Range 18–26, mean 22.0, SD 1.7

Genotypes Allele frequency: T (A1) 22.9%, C (A2) 77.1%

Genotype frequency: TT 5.7%, TC 34.6%, CC 59.7%

Hardy–Weinberg equilibrium test w1
2¼0.43

Polychoric correlations Stimulants Tranquilizers Marijuana

Stimulants 1

Tranquilizers 0.44 1

Marijuana 0.63 0.39 1

Multivariate analysis Factor loadings Residual loadings

Stimulants 0.839 0.544

Tranquilizers 0.875 0.483

Marijuana 0.752 0.660

Prevalence of initiation by genotype

Drug Full sample TT TC CC

Stimulants 9.8% 14.6% 11.8% 8.2%

Tranquilizers 9.8% 6.1% 8.8% 10.7%

Marijuana 53.1% 38.8% 53.0% 54.5%
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The situations in which the association affected all variables, either
at the factor level (association model 3) or to an equal extent across all
variables (association model 4), all the four association tests per-
formed well. In these scenarios, the slightly conservative nature of the
a correction for the combined tests is evident as a slight loss of power,
which is most obvious when the factor loadings are high. However, the
power of the sum and factor score analyses decreases sharply as the
pattern of association effects diverges from that of the factor loadings
(association model 2, 5 and 6). This effect is seen most clearly in
contrasting effects simulations (association model 6), in which the
direction of association differs between variables. For the univariate
analyses of the sum and factor scores, the power to detect this type of
allelic effect is very low and often does not differ from chance. This is
consistent with previous work that has shown that multivariate
linkage analyses are most powerful when the covariation induced by
a QTL differs in direction from the background correlation.17

As might be expected, of the three univariate analyses, the SS was
the least powerful across situations, whereas the BFS outperformed the
RFS. Conversely, across the range of situations considered here, the
CMV approach is robust and generally has equal or greater statistical
power than the univariate analyses of summary measures. As shown in
Table 5, an overall missingness rate of 30% resulted in an approximate
4.5% reduction in power (from 0.922 to 0.879 for the single variable
association and 0.775 to 0.740 for the factor-level association).
However, when the ‘true’ association effect was at the level of the
factor, a substantial missingness (50% of variable 3) had only a minor
impact on the power to detect association, resulting in a reduction in
power of B1% (0.775 vs 0.769).

Applied example
To show the CMV approach, we analyzed association between the
DRD2 TaqIA polymorphism and initiation (ever-use) of three sub-
stances – marijuana, tranquilizers and stimulants – using data from
864 Caucasian males. Marijuana, tranquilizer and stimulant initiation
were moderately correlated and all three loaded strongly on a common
factor (Table 3). There was no evidence of factor-level association
(w1

2¼0.65, bFactor¼0.06). However, a significant association was obser-
ved at the variable-specific level (w3

2¼13.91; a¼0.025; Pcorrected¼0.006;

bStimulants¼�0.19, bTranquilizers¼0.14, bMarijuana¼0.11). These results
suggest that the T-allele increases the risk of stimulant use, but
decreases the risk of tranquilizer and marijuana use, which is con-
sistent with the patterns of prevalence by genotype shown in Table 3.
Interestingly, in these data the differences in the direction of the allelic
effects at the variable-specific level cancel each other out at the factor
level. To determine whether these results would have been evident
from univariate analyses, we conducted post-hoc analyses of each
variable. The association between stimulant use and DRD2 was
nominally significant (at the 0.05 level) before correcting for multiple
testing (w1

2¼3.88, P¼0.049, b¼�0.18). However, there was no evi-
dence for association with either tranquilizer (w1

2¼1.65, b¼0.13) or
marijuana use (w1

2¼2.60, b¼0.11), and none of the univariate tests of
association for the different drugs would remain significant following
Bonferroni correction. The increase in power associated with the
multivariate analysis within an association framework is analogous
to that observed in linkage.17,18

These results may seem counterintuitive given the published
reports9,12,19 that the DRD2 A1 (T) allele is a risk allele for a range
of different substance use phenotypes and that the majority of
covariation in substance use phenotypes can be explained by common
etiological factors. However, the effects of stimulants (including
elevated activity, mood and euphoria) are markedly different from
those of tranquilizer and marijuana use (which typically include
relaxation, lethargy, mild euphoria and anxiety-reduction). To the
extent that individuals with higher D2 receptor density, which is
associated with DRD2 Taq1A1 (T-allele),15 are more likely to report
the effects of a psychostimulant drug (methylphenidate which, like
cocaine, blocks the dopamine transporters) as unpleasant,14 it is
possible that individuals with T-alleles may be more likely to try
drugs that are perceived to increase exhilaration and animation than
those that are thought to have the opposite effect. Although this
association has yet to be replicated, the finding illustrates the increased
explanatory power of the CMV approach.

DISCUSSION

Although univariate analysis of a factor score can detect an association
at the factor level and univariate analyses of each phenotype in turn
may detect allelic effects, the need to correct for multiple testing is
disadvantageous. Furthermore, such a procedure does not exploit the
gain in power derived from multivariate analysis. The suitability of the
current approach to some extent depends on the phenotypes under
analysis. The performance exceeds that of alternatives when the
phenotypic covariance arising from other genetic and environmental
influences differs from that generated by the QTL.17 We expect that
the multivariate approach will prove useful in the analysis of complex
traits that involve behavioral, psychological or other factors that are
inherently difficult to measure. It should be especially valuable when
analyzing data that contain missing values, perhaps due to a structured
data collection format, or when a subsample has been chosen for more
detailed or expensive assessments. Extension of the method to factor
mixture models would provide a natural framework for the analysis of
traits such as migraine and ADHD, in which symptom patterns
suggest the presence of subtypes. The framework is directly suitable
for repeated measures of either one trait or many, and can be used in
situations in which there is measurement non-invariance.20,21

To facilitate application of the CMV approach, we have developed a
perl script, which can be downloaded from (www.vipbg.vcu.edu/
~sarahme/WriteMx). This script can be used with either family or
individual data. It reads standard Merlin .ped and .dat files, and writes
a data file and customized scripts for running the analysis in Mx

Table 4 Type I errors for the nine simulation scenarios

a¼0.05 a¼0.025

Scenario FL VS CMV FL VS CMV

Unrelated individuals – 3 variables

a 0.0518 0.0464 0.0804 0.0268 0.0238 0.0414

b 0.0574 0.0560 0.0866 0.0318 0.0324 0.0508

c 0.0488 0.0502 0.0800 0.0230 0.0252 0.0390

Unrelated individuals – 5 variables

d 0.0496 0.0516 0.0860 0.0258 0.0248 0.0440

e 0.0518 0.0474 0.0846 0.0220 0.0258 0.0420

f 0.0510 0.0538 0.0912 0.0256 0.0244 0.0444

Sibling pairs – 3 variables

g 0.0534 0.0552 0.0858 0.0300 0.0296 0.0480

h 0.0526 0.0486 0.0820 0.0250 0.0224 0.0400

i 0.0498 0.0446 0.0782 0.0244 0.0228 0.0398

CMV, combined multivariate approach; FL, factor-level test; VS, variable-specific test.
For the combined multivariate approach, the type I error is defined as probability of observing a
significant association, for either the FL or VS test at the given alpha level.
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Figure 1 (a) Power to detect association (defined as the proportion of tests significant at an a of 0.05) under multivariate backgrounds a, b and c, for
association models 2–6 (described in Table 2). In each case power is shown for the Combined multivariate approach (CMV) and for univariate analyses of the

sum score (SS), Regression factor score (RFS) and Bartlett factor score (BFS). (b) Power to detect association under multivariate backgrounds d, e and f, for

association models 2–6. (c) Power to detect association under multivariate backgrounds g, h and i, for association models 2–6.
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(which can be freely downloaded for a range of operating systems
http://www.vcu.edu/mx/). Mx allows full user specification; as such
the approach described here can easily be extended to allow for
analysis of multiple factors, and scripts showing this extension can
be downloaded from (www.vipbg.vcu.edu/~sarahme/WriteMx). In
addition, the method can be extended to accommodate data from
different types of relatives (parents, grandparents etc).

The current implementation within Mx has some limitations. It is
not presently possible to impute missing genotypes within the CMV
approach, and at present individuals with missing genotypes will be
excluded from the analysis. However, pre-imputed genotypes can
easily be analyzed within Mx, and information regarding the precision
of imputation can be incorporated through the use of mixture
modeling. In addition, Mx can analyze either continuous or ordinal
(binary and/or polychotomous) data. However, there is no straight-
forward general approach to the joint analysis of binary and contin-
uous variables in the current version of Mx, although it is practical to
do this when the number of patterns of missing continuous variables

is small. An R-language Open Source version of the software, currently
under development, will implement this functionality directly. In
the meantime, one solution to this problem is to transform conti-
nuous variables to ordinal, using deciles and conduct a multivariate
ordinal analysis.

To summarize, this article has three main contributions. First, it
introduces an integrated model for allelic association, which permits
testing for association to either a common factor or to a set of
variable-specific components. The approach improves the explanatory
power of analysis, analogous to that derived from using pathway-
based association approaches to complement traditional single SNP
analysis.22 Second, it presents freely available software that facilitates
the use of the combined association approach by producing scripts
and data for Mx analysis from Merlin format ped and dat files. Third,
it illustrates the approach using substance use data from the Add
Health study. We encourage researchers to look beyond diagnosis or
SS analyses when working with complex traits in the hope that doing
so will lead to the identification of novel susceptibility genes and a
deeper understanding of the ways in which identified variants influ-
ence behavior and complex traits.
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Figure 1 Continued.

Table 5 Power to detect association under differing degrees of

missingness, for multivariate background i (tri-variate with low factor

loadings) with association models 2 and 3

Missingness

Association model 0% 30% 50% of variable 3

(2) Single variable 0.922 0.879 0.908

(3) Factor level 0.775 0.740 0.769
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