Skip to main content
. Author manuscript; available in PMC: 2011 Feb 10.
Published in final edited form as: Stat Med. 2010 Feb 10;29(3):337–346. doi: 10.1002/sim.3782

Table 1.

Performance Metrics of Propensity Score Estimation Methods in 1000 Simulated Datasets of N=1000.

Metric Method1 Scenario4

A B C D E F G

ASAM2 LGR 0.041 0.042 0.058 0.056 0.061 0.068 0.094
CART 0.159 0.148 0.143 0.171 0.162 0.15 0.143
PRUNE 0.175 0.164 0.148 0.182 0.173 0.161 0.151
BAG 0.132 0.127 0.121 0.144 0.141 0.119 0.112
RFRST 0.08 0.076 0.076 0.089 0.086 0.077 0.075
BOOST 0.068 0.065 0.067 0.073 0.071 0.065 0.067

Absolute bias LGR 7.6% 8.3% 13.9% 12.1% 16.0% 16.8% 29.6%
CART 20.5% 15.2% 18.2% 20.1% 16.9% 22.5% 19.0%
PRUNE 26.3% 19.5% 19.1% 22.9% 19.1% 23.9% 19.9%
BAG 12.3% 9.1% 11.0% 11.2% 9.0% 10.2% 9.4%
RFRST 7.4% 6.2% 8.9% 7.6% 7.3% 7.5% 9.0%
BOOST 8.1% 6.9% 6.8% 7.0% 6.4% 6.1% 6.2%

Standard error LGR 0.066 0.066 0.062 0.075 0.076 0.075 0.071
CART 0.059 0.059 0.068 0.06 0.06 0.061 0.066
PRUNE 0.057 0.057 0.066 0.059 0.059 0.059 0.065
BAG 0.055 0.055 0.06 0.056 0.055 0.056 0.058
RFRST 0.062 0.06 0.064 0.064 0.061 0.063 0.062
BOOST 0.059 0.058 0.059 0.061 0.059 0.06 0.059

95% CI3 coverage LGR 97.9% 96.8% 89.7% 88.5% 80.0% 76.0% 32.5%
CART 63.3% 78.2% 69.5% 63.7% 74.7% 58.3% 67.2%
PRUNE 49.1% 66.0% 68.0% 56.6% 68.4% 54.9% 65.7%
BAG 90.9% 96.8% 90.4% 91.8% 95.7% 93.6% 94.7%
RFRST 98.3% 99.6% 95.3% 98.2% 98.6% 98.4% 95.1%
BOOST 98.6% 99.8% 99.5% 99.9% 99.9% 100.0% 99.8%
1

LGR – logistic regression, CART – classification and regression tree, PRUNE – pruned CART, BAG – bagged CART, RFRST – random forests, BOOST – boosted CART;

2

ASAM – average standardized absolute mean distance;

3

CI – confidence interval

4

A: additivity and linearity; B: mild non-linearity; C: moderate non-linearity; D: mild non-additivity; E: mild non-additivity and non-linearity; F: moderate non-additivity; G: moderate non-additivity and non-linearity.