Skip to main content
. Author manuscript; available in PMC: 2011 Feb 10.
Published in final edited form as: Stat Med. 2010 Feb 10;29(3):337–346. doi: 10.1002/sim.3782

Table 2.

Performance Metrics of Propensity Score Estimation Methods in 1000 Simulated Datasets of N=500.

Metric Method1 Scenario4

A B C D E F G

ASAM2 LGR 0.059 0.057 0.065 0.077 0.078 0.081 0.103
CART 0.143 0.138 0.152 0.155 0.151 0.142 0.149
PRUNE 0.179 0.17 0.165 0.184 0.181 0.166 0.165
BAG 0.129 0.126 0.125 0.143 0.141 0.126 0.121
RFRST 0.099 0.095 0.093 0.108 0.107 0.101 0.095
BOOST 0.089 0.085 0.084 0.096 0.094 0.088 0.086

Absolute bias LGR 11.2% 11.2% 13.8% 15.3% 17.7% 18.1% 30.3%
CART 19.0% 16.6% 21.8% 19.3% 19.0% 20.1% 21.6%
PRUNE 27.6% 22.6% 24.5% 24.8% 22.6% 22.9% 23.1%
BAG 12.6% 10.4% 13.5% 11.6% 10.3% 10.8% 11.4%
RFRST 10.7% 9.2% 11.4% 10.5% 9.5% 10.5% 11.6%
BOOST 11.0% 9.6% 9.2% 10.3% 9.3% 9.0% 8.6%

Standard error LGR 0.094 0.094 0.087 0.105 0.105 0.103 0.102
CART 0.095 0.096 0.105 0.097 0.098 0.096 0.104
PRUNE 0.085 0.085 0.097 0.089 0.089 0.088 0.097
BAG 0.08 0.079 0.085 0.081 0.079 0.081 0.082
RFRST 0.086 0.083 0.085 0.088 0.084 0.087 0.085
BOOST 0.084 0.082 0.081 0.086 0.083 0.085 0.083

95% CI3 coverage LGR 97.0% 97.3% 96.2% 91.1% 87.5% 86.5% 64.3%
CART 84.5% 88.3% 76.9% 82.4% 84.0% 81.6% 75.7%
PRUNE 65.3% 75.3% 71.5% 71.2% 75.8% 76.6% 73.8%
BAG 97.5% 98.2% 95.4% 98.7% 99.1% 99.0% 98.1%
RFRST 98.5% 99.7% 97.9% 98.5% 98.7% 99.0% 97.0%
BOOST 99.0% 99.2% 99.5% 99.1% 99.6% 99.9% 99.8%
1

LGR – logistic regression, CART – classification and regression tree, PRUNE – pruned CART, BAG – bagged CART, RFRST – random forests, BOOST – boosted CART;

2

ASAM – average standardized absolute mean distance;

3

CI – confidence interval

4

A: additivity and linearity; B: mild non-linearity; C: moderate non-linearity; D: mild non-additivity; E: mild non-additivity and non-linearity; F: moderate non-additivity; G: moderate non-additivity and non-linearity.