Skip to main content
. Author manuscript; available in PMC: 2011 Feb 10.
Published in final edited form as: Stat Med. 2010 Feb 10;29(3):337–346. doi: 10.1002/sim.3782

Table 3.

Performance Metrics of Propensity Score Estimation Methods in 1000 Simulated Datasets of N=2000.

Metric Method1 Scenario4

A B C D E F G

ASAM2 LGR 0.029 0.031 0.052 0.047 0.05 0.057 0.09
CART 0.177 0.165 0.142 0.186 0.178 0.165 0.153
PRUNE 0.181 0.171 0.143 0.189 0.182 0.168 0.156
BAG 0.155 0.146 0.127 0.164 0.158 0.137 0.121
RFRST 0.062 0.061 0.059 0.068 0.067 0.058 0.057
BOOST 0.052 0.049 0.054 0.054 0.053 0.048 0.053

Absolute bias LGR 5.5% 6.8% 13.5% 10.9% 14.7% 16.1% 30.2%
CART 27.6% 18.8% 16.5% 25.1% 18.9% 32.2% 21.1%
PRUNE 29.2% 20.9% 16.7% 25.8% 19.9% 32.7% 21.7%
BAG 19.9% 13.0% 11.3% 16.7% 11.6% 16.3% 9.1%
RFRST 5.0% 4.5% 7.5% 5.2% 5.2% 5.5% 8.0%
BOOST 5.6% 4.7% 4.8% 4.7% 4.1% 4.1% 4.7%

Standard error LGR 0.047 0.047 0.043 0.054 0.053 0.054 0.051
CART 0.039 0.039 0.045 0.04 0.04 0.041 0.044
PRUNE 0.039 0.039 0.045 0.04 0.04 0.041 0.044
BAG 0.038 0.038 0.042 0.038 0.038 0.039 0.04
RFRST 0.045 0.043 0.048 0.046 0.044 0.046 0.047
BOOST 0.042 0.041 0.042 0.043 0.042 0.043 0.042

95% CI3 coverage LGR 98.1% 95.9% 77.6% 78.8% 63.4% 57.6% 2.9%
CART 18.1% 45.0% 55.6% 27.3% 47.5% 20.4% 41.6%
PRUNE 15.5% 39.0% 54.4% 26.0% 43.9% 20.0% 40.1%
BAG 31.6% 69.8% 76.1% 51.9% 78.5% 52.9% 85.8%
RFRST 99.2% 99.3% 90.8% 98.1% 98.3% 98.2% 89.5%
BOOST 99.0% 99.9% 99.9% 99.8% 99.9% 99.9% 99.1%
1

LGR – logistic regression, CART – classification and regression tree, PRUNE – pruned CART, BAG – bagged CART, RFRST – random forests, BOOST – boosted CART;

2

ASAM – average standardized absolute mean distance;

3

CI – confidence interval

4

A: additivity and linearity; B: mild non-linearity; C: moderate non-linearity; D: mild non-additivity; E: mild non-additivity and non-linearity; F: moderate non-additivity; G: moderate non-additivity and non-linearity.