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Summary
We estimate a Cox proportional hazards model where one of the covariates measures the level of a
subject's cognitive functioning by grading the total score obtained by the subject on the items of a
questionnaire. A case study is presented where the sample includes partial respondents, who did
not answer some questionnaire items. The total score takes hence the form of an interval-censored
variable and, as a result, the level of cognitive functioning is missing on some subjects. We handle
partial respondents by taking a likelihood-based approach where survival time is jointly modelled
with the censored total score and the size of the censoring interval. Estimates are obtained by an E-
M-type algorithm that reduces to the iterative maximization of three complete log-likelihood
functions derived from two augmented datasets with case weights, alternated with weights
updating. This methodology is exploited to assess the Mini Mental State Examination index as a
prognostic factor of survival in a sample of Chinese older adults.
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1. Introduction
Composite covariates are indexes that summarize the values taken by several variables and
are often exploited as predictors in regression modelling. In longevity studies, for example,
the Mini-Mental State Examination (MMSE; [1]) index is frequently used to assess the
cognitive mental status in older adults, and is often included as a covariate in a Cox [2]
proportional hazards model, to detect significant mortality differentials [3,4,5]. The MMSE
index is based on a questionnaire whose items are tests assessing orientation, attention,
language skills, and the ability to follow simple commands. A number of versions of mini-
mental examination questionnaires have been proposed in the literature: differences include
both the type and the number of items. Regardless of the structure of the questionnaire,
however, the cognitive mental status of a subject is typically assessed by summing the
scores that she/he obtained on the questionnaire items and comparing her/his total score to a
reference cut-off. This cutoff is chosen according to a specific definition of cognitive
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impairment [6] or on the basis of population-based norms [7], depending on the purpose of
the analysis. Accordingly, the MMSE index grades the questionnaire total score in two
levels, say 1 if the total score is greater than or equal to a cut-off d and 0 otherwise,
clustering subjects into cognitively normal and impaired cases, respectively.

In large studies where cognitive functioning is assessed through a MMSE, the sample often
includes partial respondents, who did not answer some questionnaire items. The MMSE
total score of partial respondents takes the form of an interval-censored variable, because the
total score is only known to lie within a censoring interval. The lower extreme of this
interval is equal to the partial score obtained by the subject on the observed part of the
questionnaire. The size of the censoring interval is given by the maximum score that can be
obtained on the missing items. Because the MMSE index is a piece-wise constant function
of the MMSE total score, with a jump at a cut-off point d, this index is missing when the
censoring interval of the total score includes d. Given this cut-off, the sample is hence
partitioned into three sub-samples that respectively include normal and impaired cases, and
cases whose MMSE index level is unknown. These three sub-samples can be geometrically
described by representing questionnaires as points whose coordinates are the maximum
score that can be obtained on the unanswered items and the partial score obtained on the
observed part of the questionnaire. In this two-dimensional questionnaires space, subjects
with a MMSE index level 0 (1) are included in a lower (upper) triangle, while subjects with
a missing MMSE index are included in a parallelogram. The sizes of these three polygons
depend on the cut-off d that have been chosen to specify the index (Figure 1: top right
corner).

We present a case study of the Chinese Longitudinal Health and Longevity Survey
(CLHLS), where cognitive functioning is assessed through a MMSE questionnaire and the
MMSE index is used as covariate in a Cox model to detect mortality differentials in older
adults. Because the sample include partial respondents, we face a missing value problem, as
standard estimation methods of a Cox model require full covariate information.

In gerontology studies that use the MMSE index to assess cognitive impairment, two are the
most popular approaches that are pursued to handle partial respondents. Referred to as
complete cases (CC) analysis, a first approach is based on discarding subjects with a missing
index from the study [8] and [9]. All the subjects with questionnaires in the parallelogram of
the questionnaires space are therefore discarded and the effect of the index is estimated by
comparing subjects with questionnaires in the lower triangle and cases included in the upper
triangle. A second approach is based on counting missing answers as incorrect answers
(missing-as-incorrect; MAI), i.e., partial respondents receive a 0 score for each question they
leave unanswered [10,11]. By pursuing a MAI analysis, the lower triangle and the
parallelogram of the questionnaire space are merged in one class of cognitively impaired
cases. The index effect is thus estimated by comparing subjects with questionnaires in the
upper triangle to the rest of the sample.

Both MAI and CC analyses are based on two implicit assumptions on the probability
distribution of the failures to observe a MMSE index value, also known as the missing-data
mechanism in the literature on missing data [12,13]. According to the missing-data
terminology, data are said missing completely at random (MCAR) if the missing-data
mechanism does not depend on any data, either observed or missing. Under MCAR, subjects
with a missing MMSE index are a random sample of the data and they are not expected to
differ systematically from the complete cases with respect to the survival outcome. In this
case, the exclusion of incomplete cases, as operated by a CC analysis, does not bias the
estimates. If the data are not MCAR, however, CC estimates may be seriously biased. In the
case of MMSE partial respondents, it is difficult to motivate an MCAR assumption, because
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a missing MMSE index is the outcome of a combination of the cut-off chosen for grading
the total scores, the maximum score achievable on the missing items and the observed
partial score. Moreover, as the fraction of missing data increases, the deletion of all subjects
with missing data decreases the efficiency of CC estimates, whether or not bias is involved.
If failure to observe a MMSE index depends on the subject's cognitive functioning then the
data are said non-ignorable missing (NIM). If values of the MMSE index are NIM, then a
missing value is informative of cognitive functioning and the missing value mechanism
should be either estimated jointly with the Cox model [13,14] or at least a priori assumed to
impute missing data [15]. MAI analysis is an imputation method, where the failure to
observe an MMSE index value is assumed to occur with certainty among cognitively
impaired subjects, regardless of their covariate profile and survival outcome. If this missing-
data mechanism holds, MAI analysis is an efficient and simple strategy to account for partial
respondents. Otherwise, MAI estimates may be difficult to interpret. Beside cognitive
impairment, there are many factors that may lead to missing items in a questionnaire,
including poor physical health, depression and anxiety. The effects of these factors are
mixed with cognitive functioning when missing answers are counted as incorrect answers.
Moreover, the precision of MAI estimates may be overestimated, because subjects with a
missing MMSE index contribute to the analysis as complete cases, and, as a result, the
uncertainty that results from censored MMSE total scores is not taken into account.

As a compromise between discarding partial respondents and including them as impaired
cases, we work with a likelihood function where questionnaires contribute with different
terms, according to the complete or partial information they provide. Our analysis is based
upon the likelihood-based (LB) approach that has been suggested by Herring et al. [14], to
estimate a Cox model with non-ignorable missing covariates. Within this methodological
framework, we consider a parsimonious strategy to account for the composite nature of the
missing covariate. Parameter estimation is carried out by a E-M-type algorithm, which
essentially reduces to the iterative maximization of three complete log-likelihood functions
on two augmented datasets with case weights, alternated with weights updating.

The rest of the paper is organized as follows. After reporting some details on the CLHLS
data that motivated this study (Section 2), modelling assumptions on the observed and
missing data are outlined in Section 3. The practical implementation of the LB approach is
discussed in Section 4. In Section 5, we show the results provided by the proposed method
on the CLHLS data and compare them with those obtained by CC- and MAI-based methods.
Final comments are summarized in Section 6.

2. Data
The CLHLS data that motivated this article are drawn from the Study No. 3891 of the Inter-
University Consortium for Political and Social Research (www.icpsr.umich.edu; [16]). The
study was carried out on subjects aged between 80 and 106 in 1998 and in two subsequent
follow-up waves in 2000 and 2002. We have left-truncated, right censored survival data on
7352 subjects with a number of fully observed covariates, collected at the entry time:
gender, type of residence (rural or urban), whether the subject is sedentary or active, and
limits in activities of daily living (ADL; six activities including bathing, dressing, eating,
indoor transferring, toileting and continence), categorized into three levels: no, one, two or
more limits. In this sample, the median age upon entry into the study is 92 years, while the
lower and the upper quartiles are respectively 91 and 100 years, 59% of the subjects are
males, 64% are rural residents, 45% have a sedentary lifestyle, 14% have one limit in ADL
and finally 20% have two or more ADL limits.
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The covariate of main interest in this study is the MMSE index, which is computed from the
total score obtained by a subject on the Chinese version of the MMSE questionnaire. We
concentrate on the assessment of cognitive impairment as a prognostic factor and,
accordingly, only the MMSE index obtained by subjects upon entry into the study is
included in the analysis. Subjects who missed all MMSE items were not included in the
study: it is likely that these subjects were not examined using the MMSE questionnaire, for
reasons that are not related to cognitive impairment. The methods described in Sections 3
and 4 however allow for the inclusion of completely missing questionnaires.

Questions in a MMSE questionnaire are typically compound and include a number of single
items to be separately asked to the subject. Scores on each item are normally binary (e.g., 1
for a correct answer and 0 otherwise). The scoring range of each question hence includes all
the integer values between zero and the number of compounding items. With respect to the
popular 30-items MMSE [1], the 23-items Chinese MMSE adopts some appropriate
adjustments to make the questions more understandable and answerable among ordinary
oldest old Chinese, the majority of whom are illiterate [16]. Overall, respondents were asked
a 5-items orientation-related question (naming the current time, animal year, season, festival,
and county), a 12-items language-related question (6 items on word recalling, 3 items on
word repetition and 3 items on sentence comprehension), a 5-items calculation question
(respondents are asked to subtract 3 from 20, then 3 from the previous result, and so on) and
a single-item drawing question (drawing a figure that is shown to the respondent).
Orientation, language, calculation and drawing are therefore the four dimensions of
cognitive impairment that are captured by the questionnaire and can be exploited to cluster
the questionnaire items into G = 4 homogeneous groups. In the application (Section 5), we
take this approach, although the proposed methodology (Sections 3 and 4) is described for a
generic partitioning of the MMSE items into G groups.

Figure 1 displays the distribution of the questionnaires used in this study, clustered by the
number of unanswered single items and the partial score obtained on the answered items.
The effect of these two variables on survival is shown in Table I, which displays the results
obtained after fitting the survival data by a Cox proportional hazards model, whose
covariates include the percentage of missing items and correct answers. Conditionally on the
percentage of correct answers, mortality risks significantly increase with the amount of
unanswered questionnaire items, even after controlling for the remaining covariates in this
study.

The distribution of the MMSE index depends on the cut-off chosen for defining the index.
As the cut-off increases from d = 10 to d = 17, percentages of the cognitively normal
(impaired) cases monotonically decrease (increase). Percentages of the missing cases
monotonically increase from 10% to 17%, as the cut-off increases from d = 10 to d = 17,
then monotonically decrease down to 10%.

3. Modelling
3.1. Likelihood-based analysis

In the present study, the data are available for n subjects as vectors (ei, yi, δi, xi, zi, mi), i =
1… n. For each subject i, ei and yi are respectively the entry and exit time, while δi is a
failure indicator (δi = 1 if a death occurred at yi, and 0 otherwise) and xi is a row profile of K
fully observed covariates. Furthermore, the components of the row vector zi = (zi1 … zij …
ziJ) indicate the subject's scores on the J single items of a MMSE questionnaire, some of
which may be missing. Because single items are binary (zij = 0 or 1), J is the maximum
score achievable on a MMSE questionnaire. The information available after a MMSE
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interview is completed by the row vector mi = (mi1 … mij …miJ) of missing indicators,
where mij = 1 if zij is missing and 0 otherwise.

For each questionnaire i, we partition the items set {1… J} into the set M(i) = {j : mij = 1}
of the missing items and the set O(i) = {j : mij = 0} of the observed items. Accordingly zM(i)

denotes the vector of the  missing scores, while zO(i) indicates the vector of the

J – mi· observed scores. Furthermore,  and

 respectively denote the partial and the unobserved scores
obtained by the ith subject. Because the unobserved score  may take any integer value
between 0 and mi·, the total score  is an interval-censored variable, with

censoring interval .

Information provided by zi is summarized by the MMSE index D(zi) = D(zi·), which is equal
to 1 if zi· ≥ d and 0 otherwise. In other words, this index is a piece-wise constant function of
the total score zi·, with jump at the cut-off d. In the presence of missing items, only the
partial score  is known and, as result, index D is equal to 1 if , it alternatively
takes the value 0 if , and it is otherwise missing.

Conditionally on the fully observed covariates, xi, and the entry time, ei, we model the joint
distribution of the missing pattern mi, the exit time yi and the MMSE scores zi of subject i by
the product of three conditional distributions:

(1)

The first distribution on the right hand side of (1) is the missing-data mechanism, which we
assume known up to a vector of unknown parameters α. Given her/his MMSE scores zi =
(zO(i), zM(i)), we denote the likelihood contribution that subject i provides to the missing-data
mechanism as

(2)

to stress the dependence on the missing MMSE scores zM(i), whereas subscript i indicates
dependence on the remaining data.

The third distribution on the right hand side of equation (1) is the conditional distribution of
the MMSE scores given the observed covariates, which we assume known up to a vector of
unknown parameters γ. Consistently with the notation exploited in (2), we denote the
individual likelihood contribution as

(3)

To specify the exit time distribution p(yi∣ei, δi, zi, xi; β), time up to death t is modelled by a
semi-parametric Cox proportional hazards model. Precisely, we assume that the survival
time of subject i is drawn from a positive random variable T with hazard function
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(4)

where h0(t) is a nonparametric baseline hazard function, β = (β0, βK) is a vector of fixed
effects to be estimated and ri(β) is a parametric hazards ratio. Accordingly, the cumulative

hazard is given by H(t∣xi, zi) = H0(t)ri(β) where  is the baseline cumulative
hazard. Under the hypothesis of noninformative censoring, the likelihood contribution of a
left-truncated, right-censored subject is thus proportional to

(5)

Under model (1), therefore, the survival outcome (ei, yi, δi) of a subject with profile (zO(i), xi,
mi) contributes to the likelihood with a term proportional to

(6)

where θ = (α, β, γ, h0) denotes all the parameters to be estimated.

In this study, the parameter of main interest is the effect β0 of being cognitively normal, as
measured by the MMSE index. Parameters α and γ are instead treated as nuisance
parameters. Because parameter estimation may become too computationally intensive and
unstable with many nuisance parameters, we need to employ strategies to reduce the number
of nuisance parameters in the specification of both the missing data mechanism p(mi∣α) and
the MMSE score vector distribution p(zi∣γ). These two joint distributions could be, for
example, modelled as a product of one-dimensional conditional distributions, a strategy that
greatly reduces the number of nuisance parameters [18]. Unfortunately, this idea is
unpractical when the dimension of a MMSE questionnaire is large, as happens in the case of
the Folstein's (J = 30) and the Chinese MMSE questionnaires (J = 23). We therefore propose
an alternative parsimonious specification of the two distributions, by clustering the
questionnaire items in a number of homogeneous groups. Specifically, we partition the

MMSE questionnaire in G groups of J1 … Jg … JG questions, , and introduce a
G × J matrix B, whose generic element bgj is equal to 1 if item j belongs to group g and 0

otherwise. We accordingly refer to  as the (censored) group-specific MMSE

score (i.e., the censored number of correct answers in group g) and to  as
the number of unanswered questions in group g.

3.2. The missing value mechanism
An outcome often reported by the literature is the observation that missing scores on tests of
cognitive impairment occur more frequently among cognitively impaired and/or physically
disable patients [19,20,21]. Moreover, occurrences of missing data may systematically vary
with the type and the difficulty of the unanswered questions. Motivated by this, we consider
a binomial regression model where, conditionally on the fully observed covariates and the
survival outcome, the expected number of missing items in each group of questions depends
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on the number of correct answers in that group. More precisely, the missing-data mechanism
(2) is specified by

(7)

where the subject-specific conditional probability of a missing item in group g, namely
pig(α) = pig(zig, xi, ei, yi), depends on zi only through zig. We complete the specification of
the binomial regression model by assuming a canonical link transformation logit pig(α) =
ηig(α), where ηig(α) is a linear predictor that is defined on the basis of the variables (ei, yi, xi,
zig). The following linear predictor was exploited in the application (Section 5):

(8)

where α0g (Σg α0g = 0, for identifiability) and α1g capture the effect of the type and the
difficulty of the gth group of questions, after correcting for other factors that may be
influential in the individual coping with the questionnaire (age at interview, follow-up
length, gender, type of residence, physical disabilities and life style).

3.3. The MMSE score distribution
Studies on the same CLHLS data considered in this paper have shown significant gender
differentials in cognitive impairment [23] and a strong link between cognitive functioning
and limits in daily activities [22]. A mixed logistic regression model is a parsimonious
specification that allows us to include the effects of these covariates and simultaneously
accounts for correlated scores between groups of questions. Specifically, we assume that,
conditionally on a subject-specific random effect, scores obtained on different groups of
questions are independent. More precisely, the MMSE score vector zi is assumed to be
distributed according to

(9)

where Jg is the maximum score achievable within the gth group of questions, f(u∣σ2) = N(0,
σ2) is a centered normal density with unknown variance σ2, and pig (u, γ) is the probability
of a correct answer in group g. The specification of the MMSE score distribution is
completed by logit pig(u, γ) = u + ηig(γ), where ηig(γ) is a linear predictor that is defined on
the basis of the fully observed covariates xi and the entry time ei. The following linear
predictor was exploited in the application (Section 5):

(10)

where parameters γ0g (Σg γ0g = 0, for identifiability) capture the effect of the type of the gth
group of questions, after correcting for age and the remaining fully observed covariates.
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4. Data augmentation and parameter estimation
Parameter θ = (α, β, γ, h0) can be computed by an E-M-type algorithm [14,17]. This
algorithm reduces to the iterative evaluation of a set of weighted score equations, alternated
with weights updating, and can be conveniently illustrated by using the counting process
notation. Using this notation, the information contained in (ei, yi, δi) is represented by the
bivariate process (Ni(t), Ri(t)), where the death process Ni(t) = 1 if the subject dies at or
before time t and 0 otherwise, while the risk process Ri(t) = 1 if the subject is in the study at
time t and 0 otherwise.

At each step of the iteration, the estimate θ ̂ available from the previous iteration is exploited
to compute the predictive distribution of the missing MMSE scores in the ith case (E-step),
namely

(11)

Given γ ̂, the probabilities pi(zi∣γ ̂) must be approximated numerically, by exploiting, for
example, standard quadrature techniques, because the integral in (9) cannot be computed in
an analytical closed form. Parameter estimates are then updated (M-step) by solving the
following set of weighted likelihood score equations

(12)

where

while
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The first two components of (12) are the K + 1 score equations suggested by Herring and
Ibrahim ([17]; eq. 3.2) to update the parameters of a Cox model with missing covariates.
These equations provide an updated estimate β̃ that can be exploited in ui(h0∣D(zi)) to update
the baseline hazard and computing a new Breslow's estimate H ̃0 of the cumulative hazard
[24]. The last two components of (12) separately provide us with the updated estimates α̃
and γ̃. To obtain γ̃, likelihood contributions Li(γ∣zM(i)) must be approximated numerically
exploiting standard quadrature techniques. Estimate θ̃ = (β̃, H ̃0, α̃, β̃) is then used to update
the weighting schemes (11). The algorithm is iterated up to convergence of the estimates.

Significant simplifications arise in the practical implementation of this algorithm, under the
parsimonious specification considered in this paper. Under the modelling assumption (5), (7)
and (9), the predictive weights depend on zi only through the vector  of the G partial

scores  and the vector  of the G unobserved scores

, as follows

where j = (j1 … jG). As a result, the last two components of the score vector (12) reduce to

(13)

where . The roots of the equation above
can be computed by separately fitting a binomial regression model and a mixed logistic
regression model on an augmented dataset D1, obtained by including all the subjects with no
missing items, each weighted by w = 1, and replacing each partial respondent i with

 pseudo-profiles, each given a total MMSE score  and a case weight
wi(j1 … jG; θ ͂).

The first two components of (12) reduce to

(14)

where
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Estimates β̃ can be hence found by exploiting an augmented dataset D2, obtained by
including all the subjects with an observed MMSE index D, each weighted by 1, and
replacing each subject i with a missing MMSE index with two pseudo-subjects with
composite index equal to 0 and 1, respectively weighted by Wi0(θ ̂) and Wi1(θ ̂). Finally the
baseline hazard can be updated as follows:

In keeping with the well known limitations of the EM algorithm, the sequence of the
estimates that results from the M-steps of the algorithm can converge to a local maximum of
the likelihood surface, depending on the initial parameter estimates that must be provided
for initialization. It is hence necessary to repeatedly run the algorithm for a number of initial
estimates. This procedure can be quite demanding from a computational point of view if the
number of nuisance parameters is large. Because the number of parameters in the model
increases with the number of items groups G, the partitioning of the questionnaire in a small
number of groups is preferable. Working with a small number of groups of questions is also
advisable as the algorithm includes the estimation of a mixed logistic model, as in our case
study. With G = 4 groups, we found that a 10-points Gauss-Hermite quadrature
approximation of Li(γ∣zM(i)) is numerically stable. For larger values of G, more sophisticated
approximation methods may be necessary [25]. We also remark that the size of the
augmented dataset D1 increases with G, because the number of pseudo-profiles that need to

be included for each subject is given by . Large values of G may therefore lead to
memory limits issues. In summary, the computational complexity of the algorithm increases
with the number G of groups of questions.

Standard errors of the parameters of interest can be computed on the basis of the predictive
distribution of the missing MMSE index, as obtained from the estimates of the last iteration
of the E-M algorithm [26]. We impute missing data by sampling values from this
distribution, and obtain naive point estimates and variance estimates of the parameters.
Finally, the variance of the EM estimator is obtained as a weighted sum of the mean of the
imputation variances and the empirical variance of the imputation point estimates, with
weights 1 and m, where m is the number of imputation used. For the CLHLS data considered
in this study, stable variance estimates can be obtained with m = 50. Values of D can be
imputed by sampling values from the predictive distribution of the unobserved scores within
each group of questions, namely

(15)
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where γ ̂ is the point estimate of γ that is obtained at the last iteration of the algorithm.

5. Results
The structure of the missing value problem considered in this paper depends on the choice of
the cut-off point d that specifies the MMSE index. Specifically, the partitioning of the
questionnaire space (Figure 1) in subsamples of normal, impaired and missing cases depends
on d. The outcomes of alternative estimation strategies can be therefore conveniently
compared by repeating the analysis for a sequence of different cut-offs. Although the
analysis could be in principle be carried out for each possible cut-off value from d = 0 to d =
23, we have chosen to present the results only for cut-offs larger than or equal to d = 10,
because MMSE indexes that are based on lower cut-offs are not reliable indicators of
variation in cognitive impairment. We have thus considered a battery of 14 MMSE indexes,
as defined by a sequence of cut-off points (d = 10 … 23). These indexes have been then
separately included among the covariates of 14 Cox models which have been estimated
under a CC, MAI and LB analysis. LB estimates were obtained jointly with the estimates of
the nuisance parameters of the two models (8) and (10), that are exploited by the LB method
to weight partial respondents.

The estimates of model (8) are displayed in Figures 2 and 3. Figure 2 indicates that missing
values occur more frequently among language and orientation questions than in calculation
and drawing questions. The level of cognitive functioning in each of the four dimensions of
the questionnaire (measured by the count of correct items in each group of questions)
significantly reduces the probability of missing items, especially when calculation questions
are asked to the subject. The effects displayed in Figure 3 however indicate that the
occurrence of unanswered items also depends on factors that are not related to cognitive
impairment. For example, partial respondents occur more frequently among sedentary
subjects who live in rural areas. Strong physical disabilities (two or more ADL limits) and
age at the interview increase the probability of leaving an item unanswered. Males answer
the MMSE questionnaire items more often than females.

Figure 4 displays the effects on cognitive functioning (model (10)), as measured by the
number of correct answers on each compound question, after adjusting for intra-subject
correlation. Impairment in orientation and language occur less often than impairment in
calculation and drawing. Overall, males are less cognitively impaired than females,
confirming the results on gender differentials found by Zhang [23] on the same data used in
this paper. In keeping with the outcomes reported by [22], urban residents are less
cognitively impaired than rural residents, while physical disabilities and life styles
negatively influence a subject's cognitive functioning, even after correcting for age at the
interview.

Figures 5 and 6 depict the impact of the fully observed covariates and the MMSE index on
survival, as estimated by a Cox model, under the three estimation strategies (black/white
symbols indicate significant/not significant estimates at a .95 confidence level), while Figure
7 displays the standard errors. With regards to the influence of the fully observed covariates,
there are not substantial differences between the alternative estimation strategies. The
individual physical status, as measured by ADL limits and life style, is strongly significant,
while the type of residence does not seem to have a significant impact on survival. As
expected, males have a significantly higher mortality risk than females. Viewed as functions
of the threshold d, LB and MAI estimates appear smoother than those resulting from a CC
analysis. It is possible that cut-off-specific exclusions and replacements of partial
respondents affect the pattern of CC estimates.
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Regardless of the estimation method and the MMSE cut-off point, the estimated effect of the
MMSE index is never positive (Figure 6), indicating that, overall, the mortality risk among
normal subjects is not higher than the risk experienced by impaired subjects, even after
adjusting for age at entry, gender, type of residence, physical disabilities and life style.
Differences between CC and MAI estimates are due to the way partial respondents are
treated by the two estimation methods. Under a MAI analysis, partial respondents are treated
as impaired cases if their partial MMSE score is less than the threshold d. For lower values
of the cut-off point (10 ≤ d ≤ 12), most of these partial respondents are discarded by a CC
analysis. When these subjects are excluded from the analysis, the significant effect of
cognitive impairment, as detected by a MAI analysis, becomes not significant under a CC
analysis. As the cut-off increases, partial respondents with lower MMSE scores are
progressively re-placed in the sample under a CC analysis, and treated as impaired cases
under both a MAI and a CC analysis. As a result, differences between MAI and CC
estimates decrease. LB estimates appear as a reasonable compromise between the outcomes
of the MAI and CC analysis, because they appropriately include subjects who are discarded
by a CC methodology and, simultaneously, do not treat all partial respondents as cognitively
impaired cases. Nevertheless, the LB estimation method essentially confirms the effects of
the fully observed covariates (age, gender, type of residence, physical disabilities and life
style), as estimated by pursuing a CC or a MAI procedure (Figure 5).

To compare the three methods, we have computed the risk score ri(β ̂) of all the subjects in
the lower and upper triangles of the questionnaire space, for each cut-off d. Within each
triangle, we created groups of subjects based on deciles of risk and compared the observed
number of deaths to the expected number of deaths, as predicted by the Cox model, under
the three estimation strategies considered in this study. For brevity, Figure 8 depicts the
results that were obtained under a LB approach, for the cut-off points d = 10, 17, 22.

The three methods perform similarly on predicting survival in cognitively normal subjects.
Remarkable differences however appear in the prediction of survival among impaired
subjects. For the lowest cut-off (d = 10), CC (MAI) estimates tend to underestimate
(overestimate) the observed counts, in contrast with the unbiased performance of the LB-
based expected counts. These differences decrease for larger cut-offs, reflecting the
convergence of the outcomes displayed in Figure 5. Nevertheless, differences between
expected and observed counts, as obtained under a LB strategy, are always smaller than or
equal to those resulting from either a CC or MAI procedure.

In summary, the MAI-based inclusion of partial respondents with low MMSE scores as
impaired cases enhances the significance of the effect of the MMSE index on survival. On
the other side, the exclusion of partial respondents with low MMSE scores, as operated by a
CC analysis, leads to an effect of the MMSE index that is smaller than that estimated by a
MAI analysis and even not significant for the lowest cut-offs. Because partial respondents
leave some questionnaire items unanswered for reasons that are not only related to cognitive
impairment (Figure 3), a MAI methodology tends to overestimate the effect of cognitive
impairment on survival. On the other hand, a CC method tends to underestimate the effect of
cognitive impairment on survival, because most of the excluded subjects experience a higher
mortality risk than that experienced by those with similar scores that have been included in
the analysis (Table I).

LB-based standard errors (Figure 7) of the effects of the fully observed covariates are
always much smaller that those computed under a CC analysis. Differences increase with
the proportion of missing values that varies with the cut-off chosen. Only in the case of the
MMSE index, LB standard errors are slightly lower than those computed by a CC-based
procedure. As expected, LB standard errors are always larger than those computed under a
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MAI analysis, regardless of the cut-off, reflecting the uncertainty about the missing MMSE
scores.

6. Discussion
Motivated by a specific case study, we have presented a likelihood-based strategy to
estimate the Cox model when one of the covariates is a piece-wise constant function of the
total score obtained by a subject on a questionnaire, but some of the questionnaires in the
sample are partially observed. We have shown that this particular missing value problem can
be naturally handled by a likelihood-based approach where the survival outcome is jointly
modelled with the missing value mechanism and the total score distribution. A parsimonious
specification of the latter two models greatly reduces the number of nuisance parameters and
the computational complexity of the estimation algorithm, through an appropriate
augmentation of the observed data. The proposed LB approach enhances the outcomes that
are obtained when subjects with missing values are removed from the analysis or when
missing answers are counted as incorrect answers. The signs of the nuisance parameters are
in keeping with the findings reported by the literature about both the relationship between
cognitive impairment and physical disabilities, and the factors that are influential in the
occurrence of unanswered items in a MMSE questionnaire.

Although the proposed LB methodology allows including subjects who missed completely a
MMSE questionnaire, we have decided to present the results after discarding these cases
from the sample. There is not a standard protocol for handling such subjects under a MAI
methodology. The inclusion of fully missing questionnaires therefore makes it difficult to
compare MAI and LB estimates. Moreover, it is likely that subjects who missed out
completely the questionnaire were not actually examined for reasons that are not related to
cognitive impairment. In this case, including these subjects in a MAI analysis with a zero
MMSE score would increase the bias of the MAI estimates and make the comparison
between MAI and LB estimates unfair.

The outcomes of a LB strategy depend on the explicit assumptions that have been made on
the distributions of both the missing and observed data. Through this paper, we have
assumed that the items within a group of questions are homogeneous. Specifically, scores on
the single items were assumed to be conditionally independent, given a subject-specific
random effect. The inclusion of a random effect simultaneously allows for unobserved
heterogeneity between subjects and correlated scores within the questionnaire of each
subject, strategically compensating for unobserved covariates (e.g., educational level) that
could be influential in the measurement of cognitive functioning. On the other side, the
model exploited in this study could be generalized by increasing the number G of items
groups. Because more flexible models would typically involve a greater number of nuisance
parameters and massive augmented datasets, we have based our analysis on G = 4 groups of
questions, as a reasonable compromise between realism and parsimony. Items homogeneity
within each groups of questions was also assumed in the specification of the missing value
mechanism. Conditionally on cognitive impairment, we have assumed that the pattern of the
unanswered items is (within each group) drawn at random by a Binomial distribution. This
can be a shortcoming when factors such as fatigue or anxiety are responsible for a
dependence structure between answered and unanswered items belonging to the same group.
The availability of detailed information on the MMSE interview would allow to check this
independence assumption and perhaps to try more complex models. On the basis of the
available data, a binomial regression model parsimoniously captures the relationship
between the number of missing items and the cognitive impairment experienced by a subject
in orientation, language, calculation and drawing skills.
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Although with these limitations, the LB estimation strategy presented here can reduce the
bias and improve the efficiency of the estimates in survival analysis applications that involve
composite covariates and partial respondents. In our study of the effect of mental health on
survival, a LB approach allowed for a sharper validation of the Chinese MMSE index as a
prognostic factor, compared to popular protocols that are based upon either the exclusion or
the deterministic classification of partial respondents.
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Figure 1.
The 7352 questionnaires in the CLHLS dataset, clustered by the number of unanswered
questions and the partial score obtained on the answered questions. Top right corner: the
questionnaires space, where subjects that are examined by a MMSE questionnaire are
represented as points whose coordinates are the maximum score that can be obtained on the
unanswered items of the questionnaire and the partial score that has been obtained on the
answered items, in an example when the maximum total score that can be obtained is equal
to J. If the MMSE index grades the total score according to a cut-off d, subjects in the lower
(upper) triangle receive an index level 0 (1), while the index level is missing for all the
questionnaires that are included in the parallelogram.
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Figure 2.
Differences between question-specific log-odds of leaving a MMSE item unanswered and
effects of cognitive functioning (score) in language, orientation, calculation and drawing, as
estimated by a binomial regression model, for each MMSE cut-off point, under a LB
estimation strategy.
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Figure 3.
Effects of the fully observed covariates on a subject's probability to leave a questionnaire
item unanswered, as estimated by a binomial regression model, for each MMSE cut-off
point, under a LB estimation strategy. Black (white) symbols indicate significant (not
significant) estimates at a .95 confidence level.
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Figure 4.
Effects of the fully observed covariates on cognitive functioning in orientation, language,
calculation and drawing, as estimated by a mixed logistic regression model, including the
random effect standard deviation, for each MMSE cut-off point, under a LB approach.
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Figure 5.
The effect of a number of covariates, as estimated by a battery of Cox models that include
different definitions of the MMSE index, according to a sequence of cut-off points. Results
under a MAI approach (dotted lines), a CC analysis (dashed lines) and a LB strategy (solid
lines).
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Figure 6.
CC (point-up triangles), MAI (point-down triangles) and LB (circles) estimates of the effect
of being cognitively normal, as estimated by a battery of Cox models that include different
definitions of the MMSE index, according to a sequence of cut-off points. Black (white)
symbols indicate significant (not significant) estimates at a .95 confidence level.
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Figure 7.
Standard errors of the estimates displayed in Figures 5 and 6, under a MAI approach (dotted
lines), a CC analysis (dashed lines) and a LB strategy (solid lines).
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Figure 8.
Expected versus observed counts of deaths in cognitively impaired and normal subjects,
under a LB estimation strategy, for three MMSE index cut-offs d.
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Table I

Cox model estimates

estimate standard error

age at entry (months) -0.045400 0.000515

male 0.25348 0.029287

rural residence -0.00703 0.029344

sedentary 0.29669 0.031279

one ADL limit 0.24574 0.041029

two or more ADL limits 0.50045 0.037261

% missing items 0.00438 0.000625

% correct answers -0.00211 0.000677
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