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ABSTRACT Heterosis, or hybrid vigor, is one of the most important tools in plant breeding and has previously been dem-

onstrated for plant freezing tolerance. Freezing tolerance is an important trait because it can limit the geographical dis-

tribution of plants and their agricultural yield. Plants from temperate climates increase in freezing tolerance during

exposure to low, non-freezing temperatures in a process termed ‘cold acclimation’. Metabolite profiling has indicated

a major reprogramming of plant metabolism in the cold, but it has remained unclear in previous studies which of these

changes are related to freezing tolerance. In the present study, we have used metabolic profiling to discover combinations

of metabolites that predict freezing tolerance and its heterosis in Arabidopsis thaliana. We identified compatible solutes

and, in particular, the pathway leading to raffinose as crucial statistical predictors for freezing tolerance and its heterosis,

while some TCA cycle intermediates contribute only to predicting the heterotic phenotype. This indicates coordinate links

between heterosis and metabolic pathways, suggesting that a limited number of regulatory genes may determine the

extent of heterosis in this complex trait. In addition, several unidentified metabolites strongly contributed to the predic-

tion of both freezing tolerance and its heterosis and we present an exemplary analysis of one of these, identifying it as

a hexose conjugate.
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INTRODUCTION

The term ‘heterosis’ (Shull, 1914) originally described the

phenomenon of increased physiological performance of F1

hybrids in comparison to their parents in both animals and

plants. From a genetical standpoint, heterosis can be either

positive or negative, whereas for breeding purposes, only pos-

itive heterosis (i.e. higher performance) is of interest. Heterosis

can be defined either as a positive or negative deviation of the

F1 from the parental mean (mid-parent heterosis; MPH = F1 –

(P1 + P2)/2). Although heterosis has been used extensively by

breeders to increase the performance of crop plants (Lippman

and Zamir, 2006), its molecular basis is not understood and no

biomarkers have been identified that would allow reliable

prediction of heterosis (see Birchler et al., 2003, 2006;

Hochholdinger and Hoecker, 2007, for reviews). In an almost

exclusively selfing species like Arabidopsis thaliana (Abbott

and Gomes, 1989), accessions are largely homozygous and

may be expected to exhibit inbreeding depression. Crossing

such accessions leads to increased heterozygosity, which may re-

sult in heterosis. Indeed, heterosis in crosses betweenArabidop-

sis accessions has been demonstrated for traits such as biomass

accumulation (Barth et al., 2003; Meyer et al., 2004), phosphate

uptake (Narang and Altmann, 2001) and freezing tolerance

(Korn et al., 2008; Rohde et al., 2004).

Freezing tolerance is a primary factor that defines the geo-

graphic distribution of plants. In addition, it has a strong influ-

ence on the yield of crop plants in large parts of the world,
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where frost can lead to periodic catastrophic yield losses. Plants

from temperate and cold climates, including many important

crop species, increase in freezing tolerance during exposure to

low, but non-freezing, temperatures in a process termed ‘cold

acclimation’ (Smallwood and Bowles, 2002; Thomashow, 1999;

Xin and Browse, 2000). Plant freezing tolerance is a multigenic,

quantitative trait. Gene expression profiling with whole ge-

nome microarrays indicates that cold acclimation in the model

plant Arabidopsis thaliana involves changes in the expression

levels of several hundred genes (Hannah et al., 2005, 2006;

Kaplan et al., 2007; Vogel et al., 2005), while metabolite pro-

filing revealed changes in the content of a large part of cellular

metabolites, including those involved in central metabolism

(see Guy et al., 2008, for a recent review). It should be noted

here that exposure to 4�C is not a lethal stress for Arabidopsis.

Plants continue to grow, although at a much lower rate, and,

eventually, flower, set seeds, and successfully complete their

lifecycle under these conditions.

Attempts to understand the genetic and molecular basis of

complex quantitative traits in plants have, in recent years, fo-

cused on the analysis of natural genetic variation. Such genetic

variation between crop plant cultivars or between crop species

and their wild relatives has also been identified as a promising

tool to improve the yield and other agronomically important

traits of crop plants (Gur and Zamir, 2004). Arabidopsis repre-

sents an ideal model for such investigations, as it is a geograph-

ically widely spread species containing diverse accessions

with sufficient genetic variability to allow investigations of

genotype 3 environment interactions (see Koornneef et al.,

2004; Mitchell-Olds and Schmitt, 2006, for reviews). This is also

true for freezing tolerance, where large phenotypic variability

and clear correlations with both latitude of origin and habitat

growth temperature have been shown (Hannah et al., 2006;

McKhann et al., 2008; Zhen and Ungerer, 2008). Quantitative

trait locus (QTL) mapping was successfully employed to gain

insight into the molecular basis of the differences in accli-

mated freezing tolerance between the Arabidopsis accessions

Cape Verde Islands (Cvi) and Landsberg erecta (Ler) (Alonso-

Blanco et al., 2005). In addition, high-throughput profiling

methods have been employed to unravel the molecular basis

of natural genetic variation in other traits (see de Meaux and

Koornneef, 2008, for a review). In particular, metabolic profil-

ing has been applied to both tomato (Schauer et al., 2006) and

Arabidopsis (Keurentjes et al., 2006; Meyer et al., 2007; Rowe

et al., 2008) to elucidate the genetic basis of plant metabolism

and its relationship to physiological performance. Predictive

metabolites for biomass accumulation (Meyer et al., 2007)

and for heterosis in biomass accumulation in Arabidopsis have

been identified in recent studies (Gärtner et al., 2009). How-

ever, no metabolite profiling studies have been reported in re-

lation to heterosis in plant freezing tolerance and no

predictive metabolites have been reported for either freezing

tolerance or heterosis in freezing tolerance.

Here, we have screened a selection ofArabidopsis accessions

and their F1 progeny by metabolic profiling that have previ-

ously been shown (Korn et al., 2008) to differ widely in freez-

ing tolerance and heterosis in freezing tolerance both before

and after cold acclimation. Thus, we followed the same ana-

lytical strategy of monitoring relative changes in metabolite

pools that led to the discovery of metabolic QTL in Arabidopsis

(Keurentjes et al., 2006; Rowe et al., 2008) and tomato

(Fridman et al., 2004; Schauer et al., 2006). By statistical meth-

ods, we identify combinations of metabolites that are predic-

tive of leaf freezing tolerance and of heterosis in freezing

tolerance, thus unraveling metabolites and metabolic path-

ways that may be functionally associated with these traits.

RESULTS

Changes in Metabolite Content during Cold Acclimation

We profiled a metabolome fraction enriched in primary metab-

olites (Supplemental Table 1) by routine gas chromatography–

mass spectrometry (GC–MS) in five parental accessions (C24,

Col-0, Co-2, Ler, Te) and eight F1 populations generated by

manually crossing both C24 and Col-0 with the respective

other four accessions (Korn et al., 2008). Plants were harvested

either before or after 14 d of cold acclimation at 4�C.

Figure 1 gives an overview of the changes in metabolite

pool sizes in the parental accessions during cold acclimation.

As observed in previous studies (Cook et al., 2004; Gray and

Heath, 2005; Hannah et al., 2006; Kaplan et al., 2004, 2007),

metabolism was largely reprogrammed upon exposure of

plants to low temperature. The largest changes occurred in

C24 and Co-2, the smallest in Te, with Ler and Col-0 intermedi-

ate. The same ranking was observed before (Hannah et al.,

2006), attesting to the high degree of reproducibility of low

temperature effects on metabolism noted previously (Guy

et al., 2008).

A similar extent of changes in metabolite pool sizes as ob-

served in the parental accessions (Figure 1) was also evident in

the crosses. Both hierarchical clustering and unsupervised prin-

cipal component analysis (PCA) gave evidence for clearly dis-

tinct metabolic phenotypes comparing non-acclimated and

cold-acclimated plants (Figure 2), again emphasizing the major

reprogramming of plant metabolism in response to low tem-

perature. In addition, both the parental accessions and the F1

crosses acquire increased leaf freezing tolerance during low

temperature exposure. Acclimated and non-acclimated freez-

ing tolerances vary strongly with genotype in parental acces-

sions and F1 crosses, as determined in a previous study using an

electrolyte leakage assay (Korn et al., 2008). Supplemental

Table 2 lists the mean LT50 (freezing tolerance determined

by electrolyte leakage measurements) values for all accessions

and crosses used for metabolite profiling. However, the plants

used for metabolite profiling were grown in separate experi-

ments, independently of the plants used for the freezing tol-

erance measurements. Supplemental Table 2 also shows data

from two earlier studies (Hannah et al., 2006; Rohde et al.,

2004) on some of these genotypes that provide evidence for

the excellent reproducibility of LT50 values over several years.
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The availability of quantitative physiological (freezing toler-

ance expressed as LT50) and metabolic (metabolite pool sizes of

59 central metabolites consistently observable in all replicated

experiments) phenotype data allowed statistical analyses to

identify combinations of metabolites that predict freezing tol-

erance. For ranking metabolites according to their contribu-

tion to the prediction of freezing tolerance, we used the

‘variable importance in the projection’ (VIP; Eriksson et al.,

2001). This calculates the contribution of each metabolite to

freezing tolerance in a partial least squares model (Wold,

1975). To reduce the number of metabolites in the models,

we retained only those with a high contribution. The threshold

number of metabolites was determined by optimizing the pre-

dictive power in leave-one-out validation. Subsequently, the

model with the highest predictive power was selected as de-

scribed in detail recently (Gärtner et al., 2009). The statistical

procedures that were used for the prediction model and the

validation are outlined in a flowchart (Supplemental Figure 1)

to illustrate this approach. All input and output variables used

and generated in these analyses are listed in Table 1.

These analyses revealed that 20 metabolites were sufficient

to predict freezing tolerance in C24-crosses and the parental

accessions, while 14 metabolites were sufficient to predict

freezing tolerance in the Col-crosses and their corresponding

parental accessions (Tables 1 and 2). In addition, the total of 21

highly predictive metabolites identified in the two indepen-

dent crossing experiments (Table 2) showed a large overlap

of 13 metabolites that appeared in the analysis of both experi-

ments. The predictive power of the respectively optimal selec-

tion of metabolites was 0.91 for C24-crosses and 0.93 for

Col-crosses (Table 1), which was clearly not inferior to the pre-

dictive power of combining all measured metabolites for the

analysis. To test for the significance of the correlation between

observed freezing tolerance and the freezing tolerance pre-

dicted from the optimal set of predictive metabolites in

cross-validation (compare Supplemental Figure 1), we per-

formed 5000 different random permutations of the observed

response Y, freezing tolerance. Panels A and B in Supplemental

Figure 2 correspond to the prediction models for freezing tol-

erance in the C24-crosses and Col-crosses, respectively. The

Figure 1. Hierarchical Clustering of Changes in Metabolite Pool Sizes in the Five Parental Accessions during 14 d of Cold Acclimation at 4�C.

Relative signal intensities for each metabolite were normalized to the mean intensity over all samples and Euclidean distance was used for
clustering. Red indicates the smallest and yellow the biggest differences in metabolite content between samples from non-acclimated and
cold-acclimated plants. The color key indicates the Z-scores of the distributions of these differences, namely the magnitude and direction of
variation from the mean for every metabolite. Metabolites are identified by the ID numbers listed in Supplemental Table 1.
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Figure 2. Hierarchical Clustering and Principal Component Analysis (PCA) of the Metabolite Contents in all Crosses before (N) and After (A)
Cold Acclimation.

Relative signal intensities for each metabolite were normalized to the mean intensity over all samples and Euclidean distance was used for
clustering. Red indicates the lowest and yellow the highest metabolite content. The color key indicates the Z-scores of the distributions of
the content of each metabolite, namely the magnitude and direction of variation from the mean. White indicates missing values. The cold-
acclimated samples are highlighted by blue boxing. Metabolites are identified by the ID numbers listed in Supplemental Table 1. The PCA
results are shown for the Principle Components (PC) 1 and 2, which together explain 65.4% of the total variance in the dataset. Non-
acclimated samples are enclosed by a red line, acclimated samples by a blue line.

Table 1. Response Variable, Samples, and Number of Input Variables Used to Train the Different Prediction Models and the Resulting
Predictive Power in Cross-Validation.

Response Y Freezing tolerance C24-crosses Freezing tolerance Col-crosses MPH in freezing tolerance

Samples C24-crosses: Col-crosses C24-crosses:

4 NA + 4 ACC (without Col3C24): 3 NA + 3 ACC 4 NA + 4 ACC

Col3C24: Parental lines Col-crosses:

1 NA + 1 ACC (without C24): 4 NA + 4 ACC

Parental lines: 4 NA + 4 ACC

5 NA + 5 ACC

Sample size N 20 14 16

Variables with missing values Maltitol (MVI) Maltitol (MVI) Maltitol (deleted)

Tryptophan (MVI) Tryptophan (deleted) Tryptophan (deleted)

Unknown 44 (MVI)

Number p of variables X 59 58 57

PP of all p variables 0.87 0.82 0.32

Optimal number j.opt of variables 20 14 17

PP of j.opt selected variables 0.91 0.93 0.85

MVI, missing value imputation (column-wise mean substitution for metabolites with not more than 10% missing values). Metabolites with more
than 10% missing values were deleted from the analysis. PP, predictive power (Pearson-correlation between observed response and predicted
response in leave-one-out validation).
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correlation R between the actually observed response Y and

the response vector YCV predicted in cross-validation is indi-

cated in the figures (compare Table 1). The distance of R from

the mean of the random correlations with YCV aggregates

more than three standard deviations away from R and the es-

timated P-value is smaller than 0.001 in both cases.

On a physiological level, this analysis points to a crucial role

of compatible solutes, such as sugars and proline, in determin-

ing plant freezing tolerance. In particular, metabolites of the

raffinose biosynthetic pathway (galactinol, sucrose, raffinose,

but not myo-inositol) make a substantial contribution to the

prediction of the freezing tolerance phenotype. In addition,

it is interesting to note that of the 13 metabolites highly

ranked in both crossing experiments, four are structurally un-

known, pointing to the presence of as yet unidentified metab-

olites in Arabidopsis that are, in combination with other

metabolites, highly predictive for a complex trait such as freez-

ing tolerance.

Heterosis in Metabolite Pool Sizes

Heterotic effects on metabolite pool sizes were analyzed by

comparing the mean metabolite level of the parental accessions

to the metabolite content of the respective F1 plants (MPH).

Figure 3 gives an overview of MPH in the pool sizes of all reli-

ably identified metabolites (compare Supplemental Table 1) in

all crosses calculated from the mean pool sizes over all three

experiments. Supplemental Table 3 indicates the statistical sig-

nificance of MPH for each metabolite and F1, tested separately

for each experiment. At most, three experiments were available

for each combination, resulting in 2377 statistical tests. In 742

cases, MPH was highly significant, with a threshold of 0.01 for

the estimated FDR in the multiple testing set-up. With a thresh-

old of 0.05 for the FDR, MPH was significant in 1061 cases. There

were strongly and weakly affected metabolites and while most

metabolites showed positive MPH in all crosses, some showed

positive or negative MPH in different crosses and some mostly

negative MPH, depending on the hybrid.

Figure 4 shows an analysis of the MPH levels in all metabo-

lites by hierarchical clustering and PCA. Both analyses show

that there were large differences in the extent of metabolic

heterosis in different crosses. In contrast to the division be-

tween non-acclimated and acclimated plants that we obtained

from their metabolic profiles (Figure 2), MPH of the metab-

olite pools was not obviously separating acclimated from

non-acclimated plants (Figure 4). This implies that although

cold acclimation is accompanied by a general shift in metab-

olism, there is no evidence for a principal shift in the extent of

metabolic heterosis, which seems rather to be associated with

genetic factors.

To identify the relationship between different metabolite

pool sizes and metabolic pathways and the extent of heterosis

in freezing tolerance, we performed the same type of statisti-

cal analysis as for freezing tolerance (Supplemental Figure 1).

However, in this case, we used the heterosis in metabolite con-

tent as the input values to predict heterosis in freezing toler-

ance (Table 1). There was clear overlap between the two lists of

highly predictive metabolites (compare Tables 2 and 3) with 13

of the 17 metabolites selected for prediction of heterosis in

freezing tolerance in common with those selected for the pre-

diction of freezing tolerance. Most of these were either com-

patible solutes (six) or unknown metabolites (four). Of the

raffinose pathway, galactinol and raffinose were identified

as highly predictive, while sucrose and myo-inositol were

not in this list. Interestingly, the importance of a second met-

abolic pathway for heterosis in freezing tolerance was indi-

cated by the presence of aspartic acid, fumaric acid, malic

acid, succinic acid, and pyroglutamic acid (this GC peak con-

tains a mixture of glutamine, glutamic acid, and pyroglutamic

acid). These metabolites all belong to a central metabolic path-

way, the tricarboxylic acid (TCA) cycle (Figure 5).

Table 2. Metabolites that Contribute to the Optimal Prediction
Model for Freezing Tolerance.

Metabolite number
Metabolite
name

C24-crosses Col-crosses
VIP VIP

3 Fumaric acid 2.2143 1.4084

7 Succinic acid 2.0124 not selected

8 Fructose 1.6657 1.7774

9 Galactose 1.6557 1.9322

10 Glucose 1.6072 1.2923

13 Raffinose 2.1335 2.7135

14 Sucrose 1.0619 1.2245

18 Galactinol 1.5055 2.1000

20 Maltitol Not selected 1.1885

21 Glycine 1.0737 Not selected

22 Proline [+CO2] 1.1567 Not selected

23 Proline 1.5450 1.3678

30 Dehydroascorbic
acid dimer

1.1416 1.3948

36 Hexadecanoic acid 0.9456 Not selected

38 Itaconic acid 0.9644 Not selected

39 Ethanolamine 1.0949 Not selected

48 NA 1.6438 1.6560

50 NA 0.9593 1.2818

51 NA 0.9857 1.2442

52 NA 1.0154 Not selected

59 NA 1.0534 1.5046

Data from both non-acclimated and acclimated plants were combined.
Freezing tolerance data from electrolyte leakage measurements were
taken from Korn et al. (2008) (compare Supplemental Table 2). The
calculations were performed separately for Col-0- and C24-crosses and
included the respective parental accessions, since the LT50 values for
these groups were measured separately, leading to a small systematic
shift in all LT50 values (C24-crosses: N = 20 (including C243Col and
Col3C24); Col-crosses: N = 14). Metabolite numbers refer to the
numbers in Supplemental Table 1. VIP, variable importance in the
projection. Higher VIP scores indicate greater importance of the
selected metabolite in the prediction model. All 59 metabolites were
included in the analysis for the C24-crosses, while for the Col-crosses,
tryptophan was excluded because of more than 10% missing values.
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In cross-validation, the predictive power of the heterosis lev-

els in the pool sizes of the selected 17 metabolites for MPH in

freezing tolerance was 0.85, which is clearly superior to the

predictive power of the heterosis levels of all quantified

metabolites (Table 1). As in the case of freezing tolerance

per se, a permutation test using 5000 different random permu-

tations of the observed response Y indicated high significance

of the correlation between observed MPH in freezing toler-

ance and the predictions for heterosis in freezing tolerance

from metabolic heterosis data from cross-validation (Supple-

mental Figure 2C).

Characterization of the Mass Spectral Tag A196004

(Metabolite 48)

GC–MS-based metabolite profiling, like other metabolomic

technologies, yields high numbers of not yet identified meta-

bolic components (Bino et al., 2004). The structural elucidation

of such metabolites represents one of the grand metabolomic

challenges, as the chemical identification of each single sub-

stance is a complex and time-demanding task (Kopka, 2006).

In GC–MS-based profiling experiments, these non-identified

components are called mass spectral tags (MSTs). MSTs are ar-

chived by the publicly available Golm Metabolome Database

(GMD, Kopka et al., 2005) for an evidence-based exchange

of information in the international metabolomic field. Using

preliminary MST identifiers, such as A196004 (Supplemental

Table 1), GMD provides physicochemical information about

MSTs, such as mass spectral fragmentation and chromato-

graphic retention index (RI). The GMD reference data support

both the recognition of such compounds in independent pro-

filing experiments and the spectral interpretation prior to the

tedious chemical elucidation of the underlying structure. In

the following, we will shortly summarize the available infor-

mation on MST A196004, which has been discovered as a

potential biomarker in this study (metabolite 48 in Tables 2

and 3).

By comparison to previously established non-supervised li-

braries (Wagner et al., 2003) comprising mass spectra (MS)

and retention indices (RI), MST A196004 was found to be pres-

ent in Arabidopsis and tobacco leaf tissue and in tomato fruit.

Therefore, A196004 does not represent a secondary product

specific to Arabidopsis. Using a representative mass spectrum

(Figure 6A), a search for the best MS match was performed,

yielding 1-thioisopropyl-b-D-galactopyranoside, a salicylic acid

glucopyranoside, disaccharides and with lower mass spectral

agreement an epimeric set of hexonic acid-1,4-lactones,

among others, gluconic acid-1,4-lactone. However, none of

these compounds fulfilled the second identification criterion,

namely a match of the RI property. The RI was calculated using

n-alkane reference compounds (Strehmel et al., 2008). As di-

rect matching failed, a classification based on mass spectral

fragmentation will remain the final option. A196004 exhibited

a mass shift upon 13C-labeling (Figure 6) of not more than six

atomic mass units (amu) and showed all fragments typical of

a glycoside. Furthermore, the RI indicates a higher chromato-

graphic retention compared to possible glycosidic monomers,

such as glucose, galactose, or mannose, but a much smaller RI

than disaccharides. Taken together, this evidence indicates

that A196004 may represent a small hexose conjugate. Unfor-

tunately, the mass spectral fragmentation gives no clear evi-

dence concerning the chemical nature of this moiety. The

next steps of structural elucidation may be directed towards

enrichment of the glycoside fraction and analysis of chemical

cleavage products.

DISCUSSION

Metabolite profiling of plant tissues by GC–MS quantifies a ma-

jor part of the metabolites of central metabolism. Obviously,

not all cellular metabolites can be detected with this method

and recent results also show that secondary metabolites such

as flavonols, that can be analyzed by LC–MS, may play a role

in plant freezing tolerance (Korn et al., 2008). Previous metab-

olite profiling studies (Guy et al., 2008) indicated a major

restructuring of plant metabolism during cold acclimation.

Figure 3. Mid-Parent Heterosis (MPH) in the Metabolite Content of
Leaf Tissue from Eight F1 Populations Before (NA; a) or After (ACC;
b) 14 d of Cold Acclimation at 4�C.

MPH was calculated as F1 – (P1 + P2)/2 from the mean pool sizes
over the three parallel experiments. For computing MPH of cold-
acclimated plants, the mean pool sizes of the corresponding
cold-acclimated parental plants were used.
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The total magnitude of these metabolic changes, however,

was not related to the increase in freezing tolerance of differ-

ent Arabidopsis accessions during acclimation (Hannah et al.,

2006). This is not surprising, considering the fact that plants

need to adapt their metabolism not only to increase freezing

tolerance, but also to assure growth and development after

a drastic temperature shift. Due to these confounding effects

and the multitude of metabolic changes, it has not been pos-

sible to identify metabolites that are of particular relevance to

freezing tolerance. We therefore used a statistical method to

identify groups of metabolites that together can accurately

predict either freezing tolerance or MPH in freezing tolerance.

In both cases, several substances were identified as important

that are generally considered as compatible solutes.

Compatible solutes are synthesized by many organisms

ranging from bacteria to animals and plants in response to var-

ious environmental stress conditions. This chemically hetero-

geneous group of compounds comprises, among others,

amino acids such as proline and many sugars and sugar alco-

hols such as glucose, fructose, sucrose, raffinose, and galacti-

nol (see Somero, 1992; Yancey et al., 1982, for reviews).

Compatible solutes should have no adverse metabolic effects,

even at very high concentrations, and stabilize sensitive cellu-

lar components under stress conditions. During freezing, they

may act colligatively by decreasing the freezing point of the

cytoplasm, thereby increasing the unfrozen cell volume in

equilibrium with extracellular ice. In addition, they stabilize

proteins by preferential exclusion from the hydration shell

(Timasheff, 1993), assist refolding of unfolded polypeptides

by chaperone proteins (Diamant et al., 2001), and stabilize

membranes during freezing and drying (Crowe et al., 1990;

Hincha et al., 2006).

Several of the metabolites forming a complete pathway in-

volved in compatible solute biosynthesis, namely the raffinose

pathway (Keller and Pharr, 1996; Peterbauer and Richter,

2001), were identified as contributing substantially to the pre-

diction of both freezing tolerance and heterosis in freezing

tolerance. Compatible solutes act rather non-specifically to in-

crease stress tolerance and it has been suggested that they con-

stitute a redundant cellular protection system (Hincha et al.,

2005). It has been shown that neither a moderate increase

in raffinose content through overexpression of a gene encod-

ing the enzyme galactinol synthase nor the knockout of the

gene encoding raffinose synthase had any measurable influ-

ence on Arabidopsis freezing tolerance (Zuther et al., 2004).

However, from a recent metabolomic study comparing wild-

type Arabidopsis plants under control, drought, and cold con-

ditions with plants overexpressing the transcription factors

DREB1A (CBF3) and DREB2A, it was also concluded that raffi-

nose metabolism plays a crucial role in plant freezing tolerance

Figure 4. Hierarchical Clustering and Principal Component Analysis (PCA) of the Mid-Parent Heterosis (MPH) in the Metabolite Content of
Leaf Tissue from Eight F1 Populations Before (N) or After (A) 14 d of Cold Acclimation at 4�C.

Euclidian distance was used for clustering. Red indicates the smallest and yellow the largest MPH values. The color key indicates the Z-scores
of the distributions of the MPH values in the metabolite pool sizes, namely the magnitude and direction of variation from the mean MPH for
each metabolite. White indicates missing values. Metabolites are identified by the ID numbers listed in Supplemental Table 1. The PCA
results are shown for the Principle Components (PC) 1 and 2, which together explain 76.5% of the total variance in the dataset. The
two most extreme groups of non-acclimated and acclimated samples are highlighted in red and blue, respectively.
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(Murayama et al., 2009). Interestingly, in the knockout mutant

plants that contained no raffinose, galactinol content was

strongly increased (Zuther et al., 2004), suggesting that galac-

tinol might be able to substitute for raffinose in protecting

cells from freezing damage. Our approach of identifying com-

binations of metabolites with predictive power for a complex

trait seems well suited to such redundant functional systems

with several nonspecific components.

The second metabolic pathway that was identified through

our analyses was the TCA cycle, which seemed to be specifically

related to heterosis in freezing tolerance. Increased amounts

of some TCA cycle intermediates during cold acclimation have

been reported previously (Guy et al., 2008), but the functional

significance of these increases is unclear, as are the molecular

mechanisms underlying these changes in metabolite pool

sizes. One crucial enzyme of the TCA cycle (a-ketoglutarate de-

hydrogenase) was found to be highly sensitive to oxidative

stress, leading to a block in this metabolic pathway (Baxter

et al., 2007). Whether this effect has contributed to the ob-

served involvement of TCA cycle intermediates in the heterosis

in freezing tolerance remains to be investigated. Also, the

changes in TCA cycle intermediates could indicate either

changes of flux into or from the TCA cycle for respiratory en-

ergy production or for biosynthetic processes coupled to TCA

cycle activity. This has to be resolved by flux analysis and feed-

ing of isotopically labeled precursors.

The coordinate involvement of metabolic pathways sug-

gested by our analyses may indicate that heterosis could be re-

lated to effects on regulatory genetical elements, which might

be identified as distinct loci through heterotic QTL mapping.

The analysis of the underlying genes may lead to a new level of

understanding of the phenomenon of heterosis. In addition,

both combinations of metabolites as identified here and

DNA polymorphisms to be identified through QTL mapping

could be used in marker-assisted breeding approaches to im-

prove the yield and stress tolerance of crop plants.

METHODS

Plant Material

We used Arabidopsis thaliana plants from the accessions C24,

Coimbra-2 (Co-2), Columbia-0 (Col-0), Landsberg erecta (Ler),

and Tenela (Te). The sources of the different seed stocks have

been described in a recent publication (Schmid et al., 2006).

Seeds for our experiments have been generated through sin-

gle seed descent to assure genetic homogeneity of the plants

(Törjek et al., 2003). F1 crosses were generated by manual

pollination. Plants were grown in soil in a greenhouse at

16-h day length with light supplementation to reach at least

200 lE m�2 s�1 and a temperature of 20�C during the day, 18�C
during the night until bolting. For cold acclimation, plants

were transferred to a 4�C growth cabinet at 16-h day length

with 90 lE m�2 s�1 for an additional 14 d (Hannah et al.,

2006). Freezing damage was determined as electrolyte leakage

Table 3. Metabolites that Contribute to the Optimal Prediction
Model for MPH in the Freezing Tolerance of Arabidopsis.

Number Metabolite name VIP

2 Aspartic acid 1.3736

3 Fumaric acid 2.9162

6 Malic acid 0.9644

7 Succinic acid 0.9973

8 Fructose 1.4157

9 Galactose 1.4190

10 Glucose 2.6296

13 Raffinose 1.3597

16 Xylose 1.1764

18 Galactinol 1.2550

22 Proline [+CO2] 1.1315

23 Proline 1.3730

24 Pyroglutamic acid 1.0668

48 NA 2.2898

50 NA 0.9858

51 NA 0.9020

59 NA 1.0576

Data from both non-acclimated and acclimated plants were combined
(N = 16; Table 1) and included significant and non-significant MPH
values for both freezing tolerance and metabolites. Data for heterosis
in freezing tolerance from electrolyte leakage measurements were
taken from Korn et al. (2008). Metabolite numbers refer to the numbers
in Supplemental Table 1. VIP, variable importance in the projection.
Higher VIP scores indicate greater importance of the selected
metabolite MPH in the prediction model. The metabolites maltitol and
tryptophan were excluded from the analysis because of more than 10%
missing values.

Figure 5. Schematic Representation of the TCA Cycle.

Metabolite names are shown in the boxes and the names of the
relevant enzymes inside the cycle. Metabolites boxed in blue were
identified as contributing to the prediction of MPH in freezing tol-
erance (Table 2). Metabolites boxed in black were either not mea-
sured or were not selected in the prediction model for heterosis in
freezing tolerance (cis-aconitate and isocitrate).
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after freezing of detached leaves to different temperatures as

described previously (Hannah et al., 2006; Rohde et al., 2004).

Between 12 and 24 plants were analyzed in each experiment

from each genotype and treatment. All experiments were per-

formed at least twice (Korn et al., 2008).

Metabolite Profiling by Gas Chromatography–Mass

Spectrometry (GC–MS)

We have profiled primary metabolites (Supplemental Table 1)

by gas chromatography–mass spectrometry (GC–MS) in five pa-

rental accessions (C24, Col-0, Co-2, Ler, Te) and eight F1 pop-

ulations generated by crossing both C24 and Col-0 with the

other four accessions (Korn et al., 2008). In three independent

experiments, single mature leaves were harvested from 25

plants of each genotype, either before or after 14 d of cold

acclimation at 4�C. Leaves were randomly pooled to generate

five (experiments 1 and 2) to 10 (experiment 3) replicate sam-

ples for GC–MS analysis. Methods for the extraction of polar

metabolites, GC–MS measurements, and metabolite identifica-

tion and quantification were performed as previously pub-

lished (Kopka et al., 2005; Lüdemann et al., 2008). All mass

spectra and metabolite data will be made available upon re-

quest to either Alexander Erban (erban@mpimp-golm.mpg.de)

or Joachim Kopka (kopka@mpimp-golm.mpg.de).

Statistical Methods

For all subsequent statistical analyses, the relative signal inten-

sities for the detected metabolites were normalized to the

mean intensity of all samples. Hierarchical clustering was per-

formed using the hclust function in the software R (publicly

available at www.r-project.org) that uses Euclidean distance

as a measure of similarity between data points. The heatmap

function in R was used to visualize the clustering results. Prin-

cipal component analysis (PCA) was conducted employing the

pcaMethods software package in R. This Probabilistic PCA

(ppca) allows evaluation of incomplete datasets by estimating

10–15% missing values (Stacklies et al., 2007).

To train the prediction models, a partial least squares (PLS)

regression (Wold, 1975) was performed by applying the func-

tion plsr within the R package pls. The variable importance in

projection (VIP; Eriksson et al., 2001) was used to rank the pre-

dictor variables, namely the metabolites, according to their

contribution to the response in the respective PLS model. Fea-

ture selection was adopted by optimizing the predictive power

of the PLS model with respect to the number of predictor var-

iables in the model (for details, see Gärtner et al., 2009). Here,

the Pearson correlation between observed and in leave-one-

out validation (n-fold cross-validation)-predicted response

was consulted for determining the predictive power. To test

the significance of this correlation, we compared it to the cor-

relations between the predicted response and 5000 different

random permutations of the observed response (see Supple-

mental Figures 1 and 2 and Table 1 for additional details of

the statistical analyses).

To analyze the significance of MPH in the content of each

metabolite in each cross, the R functions sam and sam2excel

from the R package siggenes were used. The significance anal-

ysis of microarrays (SAM), originally conceived for gene expres-

sion data (Tusher et al., 2001), is a multiple testing method that

estimates the false discovery rate (FDR). We considered the two

class case for unpaired data assuming unequal variances and

tested the respective metabolite levels in the F1 plants against

the mean metabolite levels of the respective parents. The anal-

ysis was performed for a threshold of both 0.05 and 0.01 for

the estimated FDR.

In case of the F1 plants, the data from all replicates could be

used directly for the test. However, the parental means could

not be calculated directly from the data from both parents, as

these were not derived from paired samples. In some cases,

even the number of replicate measurements was not the same

for both parents, due to loss of samples during processing.

Therefore, assuming independent normal distribution for

each metabolite in every parental accession, 10 random num-

bers were generated following a normal distribution with

mean and variation estimated from both parental metabolite

levels (l = (l1 + l2)/2 and var = (var1 + var2)/4). These 10 ran-

dom numbers were then tested against the F1 metabolite

Figure 6. Mass Spectral Tag (MST) Information of Analyte A196004
as Archived in the Golm Metabolome Database (GMD).

A196004 is represented in GMD by ambient mass spectra (A). In ad-
dition, a 13C-enriched variant (B) was obtained after 13CO2 in vivo
labeling of Arabidopsis thaliana plants as described recently
(Huege et al., 2007). The 13C-enriched variant proves metabolic or-
igin of this MST and supports spectral interpretation by indicating
the number of carbon atoms in each major mass fragment. Frag-
ments that contain carbon atoms originating from the metabolite
structure exhibit a respective mass shift; for example, the fragment
at m/z 361 was shifted to 367 and thus contains six carbon atoms.
Mass spectra were normalized to the base peak and are visualized
by percent of base peak intensity.
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levels using the SAM procedure. To compute the values of the

test statistics that would be expected under the null hypothesis

(Tusher et al., 2001), 1000 random permutations were gener-

ated. The number of tests was 2494, namely 59 metabolites

were tested for eight crosses in three experiments for both

the acclimated and non-acclimated case (not all crosses were

available in each experiment); 117 tests were removed because

there was not more than one non-missing value. All other miss-

ing values were replaced by a row-wise mean.

For all statistical analyses other than the SAM analysis, me-

tabolite contents were averaged across the three experiments

after normalization. Freezing tolerance data were also aver-

aged over all measurements.

SUPPLEMENTARY DATA

Supplementary Data are available at Molecular Plant Online.
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