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The divergence accumulated during the evolution of protein
families translates into their internal organization as subfamilies,
and it is directly reflected in the characteristic patterns of differen-
tially conserved residues. These specifically conserved positions in
protein subfamilies are known as “specificity determining posi-
tions” (SDPs). Previous studies have limited their analysis to the
study of the relationship between these positions and ligand-
binding specificity, demonstrating significant yet limited predictive
capacity. We have systematically extended this observation to in-
clude the role of differential protein interactions in the segregation
of protein subfamilies and explored in detail the structural distri-
bution of SDPs at protein interfaces. Our results show the exten-
sive influence of protein interactions in the evolution of protein
families and the widespread association of SDPs with protein inter-
faces. The combined analysis of SDPs in interfaces and ligand-
binding sites provides a more complete picture of the organization
of protein families, constituting the necessary framework for a
large scale analysis of the evolution of protein function.

functional residues ∣ protein family evolution ∣ protein function ∣
protein–protein interfaces ∣ specificity determining positions

The structure of protein families is shaped by the sequence
divergence accumulated as a consequence of speciation, gene

duplication, and deletion events, as well as by the evolutionary
selective pressure exerted on each protein in accordance with
the corresponding 3D structure and the specific function per-
formed (1, 2). The balance between genomic rearrangements
and selective pressure to increase the functional repertoire avail-
able to organisms leads to the appearance of new subfamilies in
evolutionary time (3).

There are many aspects of protein function that contribute to
the evolution of the family organization. These may include the
global conservation of catalytic mechanisms (in the case of en-
zymes), specific binding to substrates and cofactors, as well as
the interaction with other proteins in processes such as cell sig-
naling, the regulation of reactions and the formation of macro-
molecular complexes. Interestingly, even though specific protein
interactions certainly are an important part of protein function,
the organization of protein families in relation to the specific in-
teractions of different subfamilies remains a poorly studied as-
pect of functional specificity.

Multiple sequences alignments (MSAs) provide essential in-
formation on the evolution of protein families. The positions
in MSAs can be interpreted in terms of the amino acid changes
allowed or disallowed during evolution, and therefore useful in-
formation at the residue level can be inferred from them (4). The
most obvious example is the study of fully conserved positions
that pinpoint important residues for the structure and function
of the family members (5).

A subtler pattern of conservation is represented by the positions
differentially conserved within subfamilies. A commonly accepted
working hypothesis is that whereas fully conserved positions are
related to functional features common to all the members of
the family, these other residues are related to functional specificity
(e.g., binding of different cofactors). For this reason, they have

been termed “specificity determining positions” (SDPs). A variety
of computational methods have been used to detect conserved
positions and SDPs inMSAs (6–12); for a review see ref. 13.More-
over, the implication of SDPs in determining the differential bind-
ing to substrates and interaction partners has been experimentally
followed up in a number of cases (14–16).

Despite these efforts, fundamental questions regarding the as-
sociation between subfamilies, SDPs, and function remain largely
unexplored at the systematic level. Notwithstanding, the informa-
tioncurrently availableonprotein sequences, structures, functions,
and interactions opens the door to performing more comprehen-
sive studies of the relationships between family organization and
functional divergence (17). Indeed, such studies can involve bio-
chemical function and protein interaction specificity. Similarly,
they can take into account the associated conservation at the mo-
lecular signatures level (SDPs) in fundamental regionscorrespond-
ing to ligand-binding sites and protein interaction sites.

To carry out a unified analysis of subfamilies and associated
SDPs, we have developed a protocol based onmultiple correspon-
dence analysis (MCA) (18) that can detect both entities simulta-
neously. Here we apply this methodology to the largest possible
dataset of eukaryotic protein families for which it was possible
to compile reliable informationoncatalytic activity, ligandbinding,
andprotein interactions. The results are interpreted in termsof the
relationship between the internal structure of protein families,
their functional properties, and specific molecular signatures, with
particular attention to the analysis of protein interaction sites.

Results
Functions in Protein Families: Biochemical andProtein InteractionSpec-
ificity. This work evaluates the influence of functional constraints
on protein family evolution by studying the functional features
associated with their subfamily organization and their correspond-
ing SDPs. For this purpose, we developed a multivariate-based
protocol capable of detecting protein subfamilies and SDPs in a
concomitant way and applied it to a collection of eukaryotic Pfam
families (seeMethods). In this section, the internal organization of
protein families in subfamilieswas analyzedona collectionof cases
for which functional information is available regarding (i) their
catalytic mechanism as defined in the Enzyme Commission (EC)
classes, and (ii) the specificity of protein interactors for Saccharo-
myces cerevisiae and Homo sapiens, as inferred from “small scale”
experiments, which provides a sound basis for the definition of
interaction specificities within protein families (see Methods).

When 149 families with a representative number of EC
labels and 72 families with a representative number of identified
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interactions were analyzed (Fig. 1 and Table S2), there was a gen-
eral agreement between the subfamilies and the two functional
labels considered: EC classes and specific interactors. Similar re-
sults were obtained for a larger set of families when compared to
classes based on SwissProt IDs equivalences (Fig. S1). Indeed,
this correspondence between functional classes and subfamilies
can be observed in the receiver operating characteristic (ROC)
space (Fig. 1; see Methods). In these plots a sensitivity of 1.0 im-
plies that all the proteins with the same functional label belong to
the same subfamily, and a specificity of 1.0 implies that all the
proteins in a subfamily have the same label. Therefore, a perfect
agreement would be represented in the Upper Left (0.0, 1.0) cor-
ner. Fig. 1 shows that most of the families displayed very good
specificity and sensitivity, reflecting a good agreement between
their organization and the functional labels. This agreement held

true for the two datasets of EC and interaction labels, indicating
that differential protein interaction patterns are integrated in a
coherent manner within the subfamily composition, at a level si-
milar to that of the better characterized biochemical functions
represented by the EC classification. Similar results were ob-
tained for other methodologies explicitly reporting subfamilies
(see SI Text and Fig. S2).

Examples of the Sequence SpacesDefinedby a Protein Family and Their
Relationship with Functional Specificities and the Associated Positions
Theprocedure used to automatically define the sequence subfami-
lies (seeMethods) is illustrated for the class III aminotransferases
family (Pfam PF00202) in Fig. 2. The agreement between the EC
numbers (beside theprotein names) and the subfamilies defined as
clusters in the sequence space can be observed.

As an example of the relationship between the subfamilies and
their interaction specificity, we report the results for the E2F/
TDP family of transcription factors (Pfam PF02319), whose
members show a number of different interaction specificities.
The protocol we used clearly distinguished between the E2F
and TDP types. The biological meaning of such a division can
indeed be inferred from the full list of positive and negative in-
teractions extracted for this family (see SI Text and Fig. S3). Thus,
it was evident how these groupings reflected the different ability
of E2F proteins to form homodimers or heterodimers interacting
with TDPs, leading to different DNA binding properties (19).

Thepositions in thealignment responsible for the segregationare
classified simultaneouslywith thedetectionof the subfamily compo-
sition. For instance, the “residue space” of the class III aminotrans-
ferase family above mentioned reflects the natural equivalence
between the protein and the residue spaces (Fig. 2) with the SDPs
corresponding to the various subfamilies at equivalent positions. In
addition, most of the SDPsmap to the interaction surface in the 3D
structure of the homodimer, and are close to the ligand-binding site
(Fig. 2 andMovie S1). The SDPs include 3 positions that have been
experimentally mutated, demonstrating their implication in deter-
mining substrate specificity (20). Despite not directly contacting
the substrate, one of these positions has been experimentally shown
to be one of the main determinants of substrate specificity (corre-
sponding to residue 85 in PDB 1oat). Interestingly, this position
is in contact with another SDP (114 of the other chain) located at
the homodimerization interface. These results point to the possibi-
lity thatmodifications tohomodimerizationcould regulate the inter-
actionwith the ligandandhence,determine thesubstrate specificity.

Relationship Between SDPs and Functional Regions. The relationship
between SDPs and functional regions was investigated in terms of
their structural proximity to (i) ligand-binding sites of small mo-
lecules and (ii) protein interaction sites. Ligand-binding sites are
conceptually associated to biochemical functions, typically corre-
sponding to the EC numbers analyzed in the previous section.
Similarly, protein interaction sites are also related to the protein
interaction specificity analyzed above. As explained in Methods,
we gathered reliable structural information for 208 Pfam (21)
protein domain families with a known ligand-binding site and
for 276 families with detectable interaction regions defined from
complexes of known structure (Table S2).

We analyzed the distribution of the Cβ-Cβ atom distances
(Fig. S4) between SDPs, ligand-binding sites, and interaction
surfaces, averaged per family and per structurally redundant
group (see Methods). SDPs were significantly closer to the “func-
tional regions” (median 9.4� 5.3 Å for sites and 7.6� 6.0 Å for
interfaces) than the average of the positions (background, 11.8�
4.0 Å and 9.1� 4.8 Å, respectively). For comparison, the con-
served positions (defined as >90% identity) were also close to
the functional regions (7.9� 4.4 Å and 7.2� 5.5 Å) and on aver-
age, even closer than the SDPs. These differences were associated
with a p-value lower than 1e−13 for SDPs and <1e−15 for the

Fig. 1. Correspondence between the different subfamilies, and the EC
groups (Top) and specific interactors (Bottom) for each protein family repre-
sented in the ROC space, where the distribution of the families is shown as a
bidimensional histogram. The size of the colored boxes in each bin of the ROC
space represents the percentage of protein families they contain, whereas the
number shows the actual percentage. For the sake of simplicity, percentage
values are rounded to the nearest integer (so that theymaynot addup to 100).
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conserved positions when considering ligand binding, whereas the
corresponding figures for the interaction surfaces were <1e−9
for SDPs and <1e−15 for the conserved positions (Wilcoxon test
for paired data; see Methods).

The shift of SDPs and the conserved residues towards binding
sites was significant, even taking into account that the current
knowledge of the functional regions is not complete. That is,
the sites structurally solved are a subset of all the biological
catalytic/active sites, and the interfaces reported in the 3D struc-
tures of protein complexes represent a fraction of the actual
interactions of a given protein. Additionally, positions close to
a ligand-binding site but far from an interface would be consid-
ered as “noninterface residues” (Fig. S5A), and conversely for
binding sites. This means that we are overestimating the number
of “negatives” by excluding a number of actual binding sites.

Amore demanding experiment is to not just evaluate whether a
givenSDP is close to a functional regionbutwhether it is part of the
region itself (annotated as a site or being part of the interface,
Fig. 3). For this purpose, we calculated whether a given set of posi-
tions (SDPs or conserved) is “enriched” at annotated sites or inter-
face residues, andwe applied aWilcoxon rank sum test to the list of
the enrichment values corresponding to the structurally nonredun-
dant set of Pfam groups (seeMethods). Both SDPs and conserved
positions were clearly enriched in (i) annotated sites, (ii) interface
residues, and (iii) in the combination of sites and interfaces as a
whole (Table 1). It can also be observed that those enrichments
were generally higher for binding sites than for protein interaction
surfaces. These results were consistent when SDPs reported by dif-
ferent methodologies were considered (see SI Text and Table S3).
All these tests were done assuming the existence of sequence
information alone, because the SDPs and conserved positions
were only extracted from the MSAs. When these tests were

restricted to the positions in the surface of the proteins [similarly
to (7)], the aforementioned enrichments of SDPs and conserved
positions increased their significance (Table 1).

Functional Association of SDPs in Proteins with Both Ligand-Binding
Sites andProtein InteractionRegions.Once the relationship between
SDPs and ligand or protein interaction sites was statistically estab-
lished in the previous section, we assessed whether there is a pref-
erence for the involvement of SDPs between them. Here we
focused on the 168 families for which both types of regions are
known, and we analyzed the joint distribution of the distances
from the SDPs to the sites and interfaces (Fig. S5A). To disentan-
gle this association, we assigned importance to the amount of
SDPs that were close to one type of region but far from the other,
or close to both regions at the same time. This approach provided
a viewpoint complementary to that of the previous tests that quan-
tified these tendencies corrected by the respective region sizes.

If we take a typical contact distance of 8ÅbetweenCβ atoms, we
coulddefine four regimes: (i)positions thatwerecontacting toboth
sites and interfaces (approximately 24%SDPs/approximately 27%
conservation), (ii) positions that contacted sites but not interfaces
(approximately 16%/approximately 22%), (iii) those that con-
tacted interfaces but not sites (approximately 29%/approximately
26%), and (iv) finally positions that were not in direct contact with
either (approximately 25%/approximately 22%). This distribution
shows that the distance of SDPs is similar for ligand and protein
interaction sites. An analogous joint distribution for the averaged
distances per family can also be found in Fig S5B.

To complement these figures, we assessed the number of
families that contain SDPs in one and/or the other type of func-
tional region (Fig. S6). This analysis should provide a qualitative
indication of the type of region responsible for the functional

Fig. 2. Workflow implemented to simultaneously detect the protein subfamilies and those residues responsible for such segregation (SDPs). This process is
depicted for the class III aminotransferase family (Pfam PF00202). The homodimeric structure of the human ornithine aminotransferase (PDB 1oat) bound to
Pyridoxal-5’-phosphate (in red spheres) is represented. The two subunits of the complex are shown as brown cartoon representation and with a gray surface.
SDPs are highlighted in a yellow/violet spacefill and with a green surface. The figure was generated with Pymol (pymol.sourceforge.com).

Table 1. Results of the Wilcoxon rank sum tests evaluating the enrichment of SDPs and the conserved positions
at the annotated sites.

p-value Site and total interface Site Total interface Hetero Homo Intra

Out of total SDPs 1.67E−05 4.25E−04 1.89E−02 1.75E−02 5.13E−01 4.99E−01
Cons 1.92E−27 4.73E−20 1.92E−09 5.32E−02 9.09E−03 4.29E−07

Given surface SDPs 1.00E−07 2.79E−04 4.02E−04 1.56E−02 8.75E−01 1.13E−01
Cons 2.65E−30 1.21E−18 2.54E−15 1.19E−03 1.27E−04 1.60E−10

Median difference Site + total interface Site Total interface Hetero Homo Intra

Out of total SDPs 5.32% 3.97% 2.00% 4.77% −0.01% 0.00%
Cons 15.25% 14.60% 6.34% 1.84% 1.99% 6.76%

Given surface SDPs 8.69% 5.53% 4.28% 7.40% 1.32% 1.30%
Cons 22.73% 18.66% 11.71% 5.60% 4.30% 11.27%
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diversity within a family. These results seem to indicate that the
protein families do not have a preference for their SDPs being
part of one or the other type of region, but they have a tendency
to have SDPs at least in one of them.

Involvement of SDPs in Intra, Homo-, and Heterocomplexes.To further
characterize the involvement of SDPs in protein interactions, we
analyzed the enrichment of SDPs at intra (between domains of the
sameprotein),homo-, andheterointerfaces independently (Fig.3).
Thus, different subsets of families were considered according to
these types of interfaces (170, 171, and 87 cases, respectively;
Table S2). The equivalent enrichment tests corresponding to these
interaction types were assessed (Table 1, the same test as described
above). We observed that the enrichment for SDPs was significant
at interfaces for heterocomplexes (p < 0.05). However, such
enrichment was not evident in a significant number of cases for
the other types of interfaces when considered in isolation. In con-
trast, there was a statistical association between the complet-
ely conserved positions and the three types of interfaces. Again,
these results were consistent when SDPs reported by different
methodologies were considered (see SI Text and Table S3). When
the test was restricted to the positions in the surface, the enrich-
ments remain significant and they have better p-values.

In termsoftheE2F/TDPfamilyoftranscriptionfactorspreviously
mentioned, therewas a clear relationship between the SDPs and the
determination of interaction specificity. The hetero-complex E2F/
TDP bound to DNA (Fig. S3) had a number of SDPs in each chain
that were located at the interacting surface, complementing the
other SDPs that were in contact with DNA, and highlighting their
potential role in determining specific heteromeric recognition.

Discussion
The current expansion in the information available on the se-
quences, structures, functions, and interactions of proteins makes
it possible to assess concepts and relationships that have been dis-
cussed for years in the absenceof harddata. In thisworkwepresent
a large scale assessment of how protein families are organized in
functional terms, and of how the residues associated with this
organization (SDPs) relate to the fundamental functional regions
that correspond to the ligand binding and protein interaction sites.
Of special interest is the study of the relationship between differ-

ential protein interactions andboth subfamilies andSDPs, an anal-
ysis that is presented here in a unique and exhaustive way.

To analyze both the entities (subfamilies and SDPs) involved in
this study in a uniform and self-consistent manner, we used a pro-
tocol basedonmultiple correspondence analysis (MCA).MCAis a
multivariate descriptive technique that is conceptually related to
but essentially different from the principal components analysis
(PCA) we have used in our previous works (6). The power of the
multivariate approach is that it enables the significant sources of
information within a MSA to be disentangled, in such a way that
the subfamily structure and the corresponding SDPs are deter-
minedsimultaneously.Therationale is that thepositionsdetermine
the separationof the sequencesand, at the same time, the sequence
separation weights the contribution of the positions to such
segregation. Therefore, itmakes it possible to analyze both entities
simultaneously. The results obtained with this approach were qua-
litatively similar tothoseproducedbyfourothermethodsdedicated
to thedetectionofSDPs.Thequalityof the results togetherwith the
capacity of MCA to produce a simultaneous classification of resi-
dues and subfamilies,made it particularly adequate for the analysis
proposed here (see SI Text).

By applying this methodology to the large set of eukaryotic
protein families available in the Pfam database at the domain
level, we obtained a robust and large dataset of subfamilies and
SDPs. This dataset gave us the opportunity to systematically study
the distribution of sequences and key residues in relation to two
major aspects of their biological function: (i) the biochemical
function associated to their catalytic binding activity, and (ii) their
specific binding to other proteins.

We show how the specificity of protein interactions is corre-
lated with the internal organization of the protein families, at
a level similar to that which might be expected for the better
characterized biochemical functions (22, 23). Indeed, the clear
relationship between subfamilies and both the protein interaction
and biochemical classes quantitatively supports the generally
assumed functionally driven divergence between subfamilies
(22–24). These observations could be interpreted in the context
of the acquisition of new functions after gene duplication [sub-
functionalization versus neofunctionalization, see (25)].

Additionally, we characterized the set of protein residues
robustly connected to the subfamily structure (SDPs) using a

Fig. 3. Percentage of SDPs in the functional regions (Top) compared to the corresponding percentage of protein residues in these functional regions (medium)
in each Pfam family. The data are grouped according to the type of functional region detected in each family (Bottom), whereas the number of families in each
category is shown in parentheses. Ligand-binding sites shown in blue, heterodimeric interfaces in green, homodimeric interface in red, and their combinations
in yellow. The intrachain interfaces have been omitted for the sake of simplicity.
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representative set of reliably identified bound small ligands (26)
and a set of protein interaction sites inferred from the correspond-
ing protein structures.Our results show that SDPs fit verywell with
the organization of binding sites, measured both in distance dis-
tributions and in rigorous enrichments. At the same time, we show
how SDPs accumulate in protein interaction regions (Fig. 3), in-
dicating their possible role in the selection of interacting partners.
Whereas functional specificity in the context of differential ligand
binding has been examined extensively, an equivalent study of dif-
ferential interactions was missing in the literature. This might be
due to the prevalence of detailed biochemical studies for indivi-
dual proteins (enzymes) in contrast to the more recent interest
in protein interactions and networks.Our results suggest that func-
tional modulation via differential interactions could be a more
widespread phenomenon than previously suspected.

To better study the relationship between ligand binding and
interaction sites, we concentrated the analysis on the SDPs of
families in which both types of regions have been experimentally
detected. The relevant number of families in which SDPs map to
both types of regions could either point to a concerted action of
these residues in both functions, or to their role as compensating
mutations that allow the evolution of one region at the expense of
the other. This possibility has indeed been previously illustrated
for the class III aminotransferase family, where we see how SDPs
linking the ligand-binding site with the homodimerization inter-
face determine the specificity of the protein. At this moment, it is
interesting to point out that the definition of SDPs is to some
degree related with the concept of “correlated mutations” (27),
and that the physical proximity of SDPs to protein-binding re-
gions resembles the distributions of correlated positions (28–31).

We further characterized the distribution of SDPs in protein
interaction regions by analyzing their distribution in intra-
(between domains of the same protein), homo-, and heteromeric
interfaces. In the first two types, we did not detect a significant
enrichment of SDPs, even if in specific cases SDPs were clearly
distributed at the homodimeric interface and they are potentially
implicated in modulating the specificity of protein interactions, as
in the class III aminotransferase family. In contrast, the analysis
showed how fully conserved residues in protein families are sta-
tistically involved in both homomeric and intraprotein interfaces,
consistently with previous analysis (32, 33). The specific involve-
ment of SDPs in the heteromeric interfaces detected is similar to
that observed for conserved residues, which are also signifi-
cant in heteromeric interfaces, although less than in the case of
homomeric and intraprotein interfaces. Unfortunately, the num-
ber of protein families with different subfamily members known
to complex with different interactors is still not sufficiently large
to carry out a more detailed study. The observation of the indi-
vidual cases allows to propose that binding specificity evolves by
selecting key residues differentially conserved in the subfamilies
as pivotal points indicative of binding with their effectors (see, for
example, the case of the E2F/TDP family in Results).

The persistence of SDPs in protein interaction interfaces in
combination with their relationship to ligand-binding sites sug-
gests that the previous success using SDPs to guide protein dock-
ing, to predict functional sites and to design mutants (14–16, 30)
is far from anecdotal. This work demonstrates the crucial role of
protein interactions in protein evolution driven by functional spe-
cificity and it extends the conceptual framework of SDPs to a
more comprehensive definition of protein function.

Methods
Dataset of Protein Families. We started with the whole Pfam-A database of
multiple sequence alignments for protein families (21) (release 22.0) and
filtered it, without realigning them. The complete details of the filtering
process are given in SI Text but it mainly involved using only eukaryotic
sequences with evidence at protein or transcript level [following Uniprot/
SwissProt (34)], removing “gappy” sequences (>30% gaps), removing redun-
dancy (>95% ID), removing outliers (<40% ID), removing gappy columns

(>10% gaps), and ignoring alignments with <12 sequences or <25 positions.
Our final dataset contains 1262 domains (Table S2).

Detection of Subfamilies and SDPs Within a MSA. To carry out the joint func-
tional analysis of subfamilies and associated SDPs we have developed a pro-
tocol able to detect both entities together in a concomitant way (Fig. 2). MCA
provides the framework for this protocol (18). MCA is a multivariate descrip-
tive technique that can be viewed as an equivalent to PCAwhen dealing with
qualitative/binary data (35). MCA provides the orthogonal decomposition of
the sources of variation within the initial MSA. These sources are disen-
tangled by each of the principal axes, which can be prioritized through their
associated eigenvalues. It allows to evaluate the statistical confidence of each
dimension for being informative by means of a nonparametric Wilcoxon test
(36). Sequences and residues are then represented in equivalent spaces
where their natural association is revealed.

An unsupervised k-means clustering algorithm as implemented in ref. 37
was performed on the space of sequences. Clustering solutions are gathered
for a prespecified number of groups ranging from 2 to 1∕4 of the number of
proteins (with a maximum of 50) and the solution maximizing the CHindex (38)
is selected. This procedure automatically identifies the putative groups of
proteins that are regarded as different subfamilies within the MSA (Fig. 2
and SI Text). Protein subfamilies are then linked with the corresponding
regions in the space of residues to automatically assign the set of residues
that uniquely characterizes each group. Positions within the MSA whose
residues follow the subfamily segregation are defined as the SDPs of the
family. Full details of the mathematical procedure are given in SI Text.

Analysis of the Functional Organization of Protein Subfamilies. This analysis is
done in terms of EC code and interaction specificity. The EC classification is
taken from the UniprotKB database (34). EC groups are defined as proteins
sharing the 4 digits of the EC code.

Highly reliable protein interactions for the two most complete eukaryotic
interactomes (S. cerevisiae and H. sapiens) are taken from the small scale
experiment of the Database of Interacting Proteins (39) core datasets. Nega-
tive (noninteracting) sets are constructed for these two organisms with pairs
of proteins for which (i) both members are manually annotated in the Kyoto
Encyclopedia of Genes and Genomes (40) as belonging to two different path-
ways or (ii) both members do not share subcellular location experimentally
determined, as annotated in MIPS (41) and eSLDB (42) (see SI Text). As a
further requirement to define a noninteracting pair, we check that it has
not been reported in BIOGRID (release 2.0.49) (43), a general repository
for interaction datasets that considers high-throughput experiments.

The agreement between subfamilies and EC groups or differential inter-
actions is assessed in terms of specificity/sensitivity with a ROC analysis. For
each Pfam, we calculate the sensitivity as TP∕ðTPþ FNÞ, and specificity as
TN∕ðTNþ FPÞ, where TP (True Positives) is the number of protein pairs that
agree both in “functional label” and subfamily; TN (true negatives) the num-
ber of protein pairs that disagree both in functional label and subfamily; FN
(false negatives) the number of protein pairs that agree in functional label
but disagree in subfamily and FP (false positives) the number of protein pairs
that share subfamily but not functional label. Only cases for which
TPþ FN > 0, FPþ TN > 0, TPþ FP > 0, and FNþ TN > 0 were considered.

For EC code, defining pairs of proteins with the same or different func-
tional labels is trivial. However, for the interactions the situation is slightly
more complicated. For each pair of proteins within the MSA, we calculate
a shared interactors ratio as Pþþ∕ðPþþ þ Pþ−Þ, where Pþþ is the number of
interacting partners common to both proteins and Pþ− is the number of
partners interacting with one protein and “noninteracting” with the other.
Whereas in the case of EC for each pair of proteins we have a binary (0∕1)
value representing whether the two proteins belong to the same EC group or
not, for the interactions this value is continuous from 0.0 (no interactors
shared) to 1.0 (all the interactors shared). Consequently, we calculate speci-
ficity and sensitivity for each family with the formulas above adapted to this
new continuous value: TP ¼ ΣðSIRÞ over the protein pairs in the same subfam-
ily, TN ¼ Σð1 − SIRÞ over the protein pairs where both proteins are in different
subfamily, FN ¼ ΣðSIRÞ over the protein pairs in different subfamily, and
FP ¼ Σð1 − SIRÞ over the protein pairs in the same subfamily.

The groups of proteins known to interact with the same protein are
smaller than those labeled with the same EC, which tend to be rather large.
As a consequence of this difference in granularity, the analysis of protein
families based on their interactions tends to show higher sensitivity, whereas
the one based on their EC code higher specificity.

Structural Information About Ligand-Binding Sites and Interfaces. All the se-
quences within a Pfam family with structural information available are
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aligned to sequences of the PDB crystal structures. Only structureswith a struc-
tural domain assigned by the Structural Classification of Proteins (SCOP) (44)
were considered. Structural domains with <80% alignment overlap with the
corresponding Pfam domain are removed. Additionally, Pfam families map-
ping to >1 SCOP superfamily are disregarded. Finally, Pfam families mapping
to the same SCOP superfamily are considered structurally redundant groups.
These groups are used to further perform the structurally nonredundant ana-
lyses (see below) to avoid bias due to uneven SCOP superfamily representation
within the Pfam family database.

Ligand binding and catalytic residues are retrieved from FireDB database
(26). FireDB integrates data from the close atomic contacts in PDB structures
and reliably annotated catalytic residues from the Catalytic Site Atlas (45).
The dataset of PDB complexes are retrieved from the 3D complex database
(May 25, 2008) (46). From these data, cases annotated as errors by the PiQSi
manual curation effort (May 25, 2008) (47) are disregarded. Protein chains
with <60 residues were removed to avoid interactions with protein frag-
ments and protein–peptide interactions. Protein–protein interaction sites
are defined according to the standard criteria based on change of accessibil-
ity upon interaction (48). Surface residues are those with relative accessible
surface area (RSA) of 5% or more. RSA is calculated with the Naccess program
(see SI Text). Residues in interaction surfaces are defined as those that fulfill
the accessibility criteria only when the chain is considered in isolation. Inter-
action surfaces are classified in homo-, hetero-, and intrainteractions depend-
ing on whether they involve two chains representing the same protein
(according to the Swissprot AC), two different proteins, or two structural do-
mains of the same protein [according to SCOP (44)].

Finally, for each MSA only one of their structures is selected as a family’s
representative and the structural information of the others (ligand-binding
residues and protein binding sites) is projected on it.

Enrichment Tests. The sets of SDPs and conserved residues (identity >90%) are
compared to the sets of binding residues using an enrichment test. This test is
intended to quantify the improvement of the predictions with respect to the
corresponding background. For each family, we calculate the proportion of
SDPs annotated as part of a binding region and the proportion of the whole
protein annotated. The enrichment is defined as the difference between
these two percentages. Enrichments are averaged within each structurally
redundant group of Pfam families. Finally, a Wilcoxon rank sum test is per-
formed on the whole list of enrichments (one per SCOP superfamily). This test
assesses a p-value for the null hypothesis that there is no difference between
the target subset of positions and a random one. The procedure is repeated
for the different types of positions (SDPs and conserved) and the different
types of binding sites (ligand-binding, hetero-, homo-, and intrainteractions),
as well as for combinations of them.
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