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In this study, we present a fully automated tool, called
IDEAL-Q, for label-free quantitation analysis. It accepts
raw data in the standard mzXML format as well as search
results from major search engines, including Mascot, SE-
QUEST, and X!Tandem, as input data. To quantify as many
identified peptides as possible, IDEAL-Q uses an efficient
algorithm to predict the elution time of a peptide uniden-
tified in a specific LC-MS/MS run but identified in other
runs. Then, the predicted elution time is used to detect
peak clusters of the assigned peptide. Detected peptide
peaks are processed by statistical and computational
methods and further validated by signal-to-noise ratio,
charge state, and isotopic distribution criteria (SCI valida-
tion) to filter out noisy data. The performance of IDEAL-Q
has been evaluated by several experiments. First, a seri-
ally diluted protein mixed with Escherichia coli lysate
showed a high correlation with expected ratios and dem-
onstrated good linearity (R = 0.996). Second, in a biolog-
ical replicate experiment on the THP-1 cell lysate, IDE-
AL-Q quantified 87% (1,672 peptides) of all identified
peptides, surpassing the 45.7% (909 peptides) achieved
by the conventional identity-based approach, which only
quantifies peptides identified in all LC-MS/MS runs. Man-
ual validation on all 11,940 peptide ions in six replicate
LC-MS/MS runs revealed that 97.8% of the peptide ions
were correctly aligned, and 93.3% were correctly vali-
dated by SCI. Thus, the mean of the protein ratio, 1.00 =
0.05, demonstrates the high accuracy of IDEAL-Q without
human intervention. Finally, IDEAL-Q was applied again to
the biological replicate experiment but with an additional
SDS-PAGE step to show its compatibility for label-free
experiments with fractionation. For flexible workflow de-
sign, IDEAL-Q supports different fractionation strategies
and various normalization schemes, including multiple
spiked internal standards. User-friendly interfaces are
provided to facilitate convenient inspection, validation,
and modification of quantitation results. In summary,
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IDEAL-Q is an efficient, user-friendly, and robust quanti-
tation tool. It is available for download. Molecular &
Cellular Proteomics 9:131-144, 2010.

Quantitative analysis of protein expression promises to pro-
vide fundamental understanding of the biological changes or
biomarker discoveries in clinical applications. In recent years,
various stable isotope labeling techniques, e.g. ICAT (1), en-
zymatic labeling using '80/'°0 (2, 3), stable isotope labeling
by amino acids in cell culture (4), and isobaric tagging for
relative and absolute quantitation (2, 5), coupled with LC-
MS/MS have been widely used for large scale quantitative
proteomics. However, several factors, such as the limited
number of samples, the complexity of procedures in isotopic
labeling experiments, and the high cost of reagents, limit the
applicability of isotopic labeling techniques to high through-
put analysis. Unlike the labeling approaches, the label-free
quantitation approach quantifies protein expression across
multiple LC-MS/MS analyses directly without using any label-
ing technique (7-9). Thus, it is particularly useful for analyzing
clinical specimens in highly multiplexed quantitation (10, 11);
theoretically, it can be used to compare any number of sam-
ples. Despite these significant advantages, data analysis in
label-free experiments is an intractable problem because of
the experimental procedures. First, although high reproduc-
ibility in LC is considered a critical prerequisite, variations,
including the aging of separation columns, changes in sample
buffers, and fluctuations in temperature, will cause a chro-
matographic shift in retention time for analytes in different
LC-MS/MS runs and thus complicate the analysis. In addition,
under the label-free approach, many technical replicate anal-
yses across a large number of samples are often acquired;
however, comparing a large number of data files further com-
plicates data analysis and renders lower quantitation accu-
racy than that derived by labeling methods. Hence, an ac-
curate, automated computation tool is required to
effectively solve the problem of chromatographic shift, an-
alyze a large amount of experimental data, and provide
convenient user interfaces for manual validation of quanti-
tation results.
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The rapid emergence of new label-free techniques for bio-
marker discovery has inspired the development of a number
of bioinformatics tools in recent years. For example, Scaffold
(Proteome Software) and Census (12) process PepXML
search results to quantify relative protein expression based on
spectral counting (13-15), which uses the number of MS/MS
spectra assigned to a protein to determine the relative protein
amount. Spectral counting has demonstrated a high correla-
tion with protein abundance; however, to achieve good quan-
titation accuracy with the technique, high speed MS/MS data
acquisition is required. Moreover, manipulations of the exclu-
sion/inclusion strategy also affect the accuracy of spectral
counting significantly. Because peptide level quantitation is
also important for post-translational modification studies, the
accuracy of spectral counting on peptide level quantitation
deserves further study.

Another type of quantitation analysis determines peptide
abundance by MS' peak signals. According to some studies,
MS' peak signals across different LC-MS/MS runs can be
highly reproducible and correlate well with protein abundance
in complex biological samples (7-9). Quantitation analysis
methods based on MS' peak signals can be classified into
three categories: identity-based, pattern-based, and hybrid-
based methods (16). Identity-based methods (7-9) depend on
the results of MS/MS sequencing to identify and detect peptide
signals in MS' data. However, because the data acquisition
speed of MS scanning is insufficient, a considerable number of
low abundance peptides may not be selected for limited
MS/MS sequencing. Only a few peptides can be repetitively
identified in all LC-MS/MS runs and subsequently quantified;
thus, only a small fraction of identified peptides are quantified,
resulting in a small number of quantifiable peptides/proteins.

In contrast to identity-based methods, pattern-based meth-
ods (17-23), including the publicly available MSight (20),
MZmine (21, 22), and msinspect (23), tend to quantify all
peptide peaks in MS" data to increase the number of quan-
tifiable peptides. These methods first detect all peaks in each
MS' data and then align the detected peaks across different
LC-MS/MS runs. However, in pattern-based methods, effi-
cient detection and alignment of the peaks between each pair
of LC-MS/MS runs are a major challenge. To align the peaks,
several methods based on dynamic programming or image
pattern recognition have been proposed (24-26). The algo-
rithms applied in these methods require intensive computa-
tion, and their computation time increases dramatically as the
number of compared samples increases because all the LC-
MS/MS runs must be processed. Therefore, pattern-based
approaches are infeasible for processing a large number of
samples. Furthermore, pattern recognition algorithms may fail
on data containing noise or overlapping peptide signal (i.e.
co-eluting peptides). The hybrid-based quantitation approach
(16, 27-30) combines a pattern recognition algorithm with pep-
tide identification results to align shifted peptides for quantita-
tion. The pioneering accurate mass and time tag strategy (27)

takes advantage of very sensitive, highly accurate mass meas-
urement instruments with a wide dynamic range, e.g.
FTICR-MS and TOF-MS, for quantitation analysis. PEPPeR (16)
and SuperHirn (28) apply pattern recognition algorithms to align
peaks and use the peptide identification results as landmarks to
improve the alignment. However, because these methods still
align all peaks in MS" data, they suffer the same computation
time problem as pattern-based methods.

To resolve the computation-intensive problem in the hybrid
approach, we present a fully automated software system,
called IDEAL-Q, for label-free quantitation including differen-
tial protein expression and protein modification analysis. In-
stead of using computation-intensive pattern recognition
methods, IDEAL-Q uses a computation-efficient fragmental
regression method for identity-based alignment of all confi-
dently identified peptides in a local elution time domain. It
then performs peptide cross-assignment by mapping pre-
dicted elution time profiles across multiple LC-MS experi-
ments. To improve the quantitation accuracy, IDEAL-Q ap-
plies three validation criteria to the detected peptide peak
clusters to filter out noisy signals, false peptide peak clusters,
and co-eluting peaks. Because of the above key features, i.e.
fragmental regression and stringent validation, IDEAL-Q can
substantially increase the number of quantifiable proteins as
well as the quantitation accuracy compared with other ex-
tracted ion chromatogram (XIC)'-based tools. Notably, to ac-
commodate different designs, IDEAL-Q supports various
built-in normalization procedures, including normalization
based on multiple internal standards, to eliminate systematic
biases. It also adapts to different fractionation strategies for
in-depth proteomics profiling.

We evaluated the performance of IDEAL-Q on three levels:
1) quantitation of a standard protein mixture, 2) large scale
proteome quantitation using replicate cell lysate, and 3) pro-
teome scale quantitative analysis of protein expression that
incorporates an additional fractionation step. We demon-
strated that IDEAL-Q can quantify up to 89% of identified
proteins (703 proteins) in the replicate THP-1 cell lysate.
Moreover, by manual validation of the entire 11,940 peptide
ions corresponding to 1,990 identified peptides, 93% of pep-
tide ions were accurately quantified. In another experiment on
replicate data containing huge chromatographic shifts ob-
tained from two independent LC-MS/MS instruments,
IDEAL-Q demonstrated its robust quantitation and its ability
to rectify such shifts. Finally, we applied IDEAL-Q to the
THP-1 replicate experiment with an additional SDS-PAGE
fractionation step. Equipped with user-friendly visualization

" The abbreviations used are: XIC, extracted ion chromatogram;
IDEAL, Identity-based elution time prediction by fragmental regres-
sion; CV, coefficient of variation; SCI, signal-to-noise ratio, charge
state, and isotope pattern (it represents a three-dimensional peptide
validation procedure); S/N, signal-to-noise ratio; TEABC, triethylam-
monium bicarbonate; FA, formic acid; ID, identity.
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interfaces and convenient data output for publication, IDE-
AL-Q represents a generic, robust, and comprehensive tool
for label-free quantitative proteomics.

EXPERIMENTAL PROCEDURES
Sample Preparation
Materials

Triethylammonium bicarbonate (TEABC) was purchased from Sig-
ma-Aldrich. The BCA™ protein assay reagent kit was obtained from
Pierce. Ammonium persulfate and N,N,N’,N’-tetramethylenediamine
were purchased from Amersham Biosciences. TFA, formic acid (FA),
and HPLC grade ACN were purchased from Sigma-Aldrich. Modified,
sequencing grade trypsin was purchased from Promega (Madison,
WI). Standard protein mixture 1 (25 fmol/ul glycogen phosphorylase,
serum albumin precursor, enolase 1, and alcohol dehydrogenase 1)
and mixture 2 (12.5 fmol/ul glycogen phosphorylase, 200 fmol/ul
serum albumin precursor, 50 fmol/ul enolase 1, and 25 fmol/ul alco-
hol dehydrogenase 1) were purchased from Waters Corp.; 0.4 fmol/ul
Escherichia coli was also purchased from Waters Corp.

Cell Culture

THP-1 (human acute monocytic leukemia, The American Type
Culture Collection) cell lines were grown in RPMI 1640 medium sup-
plemented with 10% fetal bovine serum and 1% penicillin G at 37 °C
in a 5% CO, atmosphere. Cell lines were harvested, washed three
times with PBS, and lysed in lysis buffer (0.25 m Tris-HCI, pH 6.8, 1%
SDS).

Preparative SDS-PAGE Separation

The protein concentrations in cell lysate were determined by BCA
assay (Pierce) before tryptic digestion. For large scale identification of
the THP-1 cell line, 70 png of cell lysate was separated by 10%
SDS-PAGE (31) (0.5 cm X 4.0 cm X 0.75 mm). The remaining gel was
then excised into five gel slices based on molecular weight. Each slice
was cut into pieces, washed with Milli-Q water, and destained twice
with 25 mm TEABC, pH 8 in 50% (v/v) ACN for 15 min after which the
slices were dehydrated with 100% ACN and dried for 10 min under
vacuum. Next, the dry gel pieces were rehydrated in 25 mm TEABC,
pH 8 containing an additional 3-casein as the internal standard prior
to in-gel digestion (in this study, we used B-casein as an internal
standard to normalize XIC area readings of endogenous peptides).
Following the addition of trypsin (10 ng/ul), the gel pieces were
incubated at 37 °C overnight. The tryptic peptides were then ex-
tracted twice with 5% (v/v) FA in 50% (v/v) ACN for 30 min, dried
completely under vacuum, and stored at —30 °C.

LC-MS/MS and Protein Identification

Samples were reconstituted in 4 ul of buffer A (0.1% FA in H,0)
and analyzed by LC-MS/MS (Waters Q-TOF™ Premier from Waters
Corp.). Samples were injected into a 2-cm X 180-um capillary trap
column and separated by a 25-cm X 75-um nanoACQUITY™ 1.7-um
Bridged Ethyl Hybrid C,4 column using the nanoACQUITY Ultra Per-
formance LC™ system (Waters Corp.). The column was maintained at
35 °C, and bound peptides were eluted with a linear gradient of
0-80% buffer B (buffer A, 0.1% FA in H,O; buffer B, 0.1% FA in ACN)
for 120 min. The MS system was operated in ESI positive V mode with
a resolving power of 10,000. The NanoLockSpray source was used
for accurate mass measurement, and the lock mass channel was
sampled every 30 s. The mass spectrometer was calibrated with a
synthetic human [Glu']-fibrinopeptide B solution (1 pmol/ul; from
Sigma-Aldrich) delivered through the NanolLockSpray source. Data

were acquired via data-directed analysis. The method included a full
sequential MS scan (m/z 400-1600, 0.6 s) and three MS/MS scans
(m/z 100-1990, 1.2 s per scan) on the three most intense ions present
in the full-scan mass spectrum.

Raw MS/MS data were converted into peak lists using Distiller
(Matrix Science, London, UK; version 2.0) with the default parame-
ters. All MS/MS samples were analyzed using Mascot (Matrix Sci-
ence; version 2.2.1). Mascot was set up to search the ipi_HU-
MAN_3.29 database (version 3.29; 68,161 entries) for the THP-1 cell
line and the Swisssprot_Metazoa_Animals database (version 54.2;
17,170 entries) for standard proteins, assuming trypsin as the diges-
tion enzyme. Mascot was set up to search with a fragment ion mass
tolerance of 0.1 Da and a parent ion tolerance of 0.1 Da. Two missed
cleavages were allowed during trypsin digestion. Oxidation (Met) was
selected as a variable modification. To determine the false discovery
rate of protein identification, we repeated the search using identical
search parameters and validation criteria on a randomized decoy
database created by Mascot. We accepted identified peptides with
Mascot scores above the statistically significant threshold (p < 0.05).
The unique MS/MS spectra and assignment of identified peptides are
shown in the supplemental figures.

Protein Quantitation by IDEAL-Q

IDEAL-Q quantifies label-free experiments with multiple LC-
MS/MS runs and different fractionation strategies, such as strong
cation exchange and SDS-PAGE. The numbers of samples, fractions,
and runs are unrestricted. As shown in Fig. 1, the workflow involves
four steps: 1) data preparation and construction of the ID database; 2)
processing of data from each LC-MS/MS run, 3) peptide level proc-
essing, and 4) protein level processing.

Data Preparation and Construction of ID Database

IDEAL-Q accepts spectral data in the mzXML format and peptide
and protein identification results from different pipelines, namely Mas-
cot, SEQUEST, and X!Tandem followed by PeptideProphet and Pro-
teinProphet. It also provides two filtering criteria as user options: 1) a
confidence score threshold to filter out low confidence identification
results and 2) an elution time range to determine the range of peptides
that should be included.

Confidently identified peptides in the search results are then used
to construct an ID database of the identification results from all
LC-MS/MS runs. The identified peptide ions are deemed to be the
same entry in the database if their following attributes are the same:
1) sequence, 2) precursor m/z value (tolerance range, =0.2 Da), 3)
charge state, 4) modification, and 5) modification site. Note that, in
this study, we treat a peptide with different charge states as different
peptides. The protein list and associated peptide lists are constructed
in the database. If a peptide is only identified in some of the LC-
MS/MS runs, information about the peptide will be assigned to the
LC-MS/MS runs in which the peptide is not identified. The failure to
identify a peptide in some runs is probably because of a low identi-
fication score or because the precursor m/z was not selected for
MS/MS sequencing. In such runs, the peptide is denoted as an
unidentified peptide. Therefore, each LC-MS/MS run contains iden-
tified and unidentified peptides. Note that the peptides cannot be
quantified by IDEAL-Q if they were not identified by MS/MS in any of
the MS runs.

Processing of Each LC-MS/MS Run Data

In each LC-MS/MS run, IDEAL-Q sequentially processes all pep-
tides, both identified and unidentified, to quantify as many peptides
as possible. For an identified peptide, IDEAL-Q uses the identified
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retention time to detect the peak cluster. However, for an unidentified
peptide, IDEAL-Q uses the proposed ID-based elution time prediction
by fragmental regression (IDEAL) algorithm (described under “IDEAL
Algorithm”) to predict the retention time of the peptide in the current
run after which it detects the peak cluster based on the predicted
time. A detected peak cluster of an unidentified peptide is called an
assigned peptide. The detected peak clusters of both identified and
assigned peptides are validated by the SCI criteria (described under
“SCI: Three-dimensional Peptide Cluster Validation”). A peak cluster
that passes SCI validation is used to construct the XIC for quantifying
peptide abundance in the current run. IDEAL-Q automatically detects
the retention time and m/z ranges to construct the XIC. Various
normalization procedures are provided in IDEAL-Q (described under
“Peptide Abundance Determination and Normalization at LC-MS/MS
Run Level”). Users can decide whether or not to perform
normalization.

IDEAL Algorithm for Peptide Elution Time Prediction—Reproduci-
ble LC separation is a crucial prerequisite in most XIC-based label-
free strategies. However, because of variations in LC, a peptide rarely
elutes at the same time in replicate experiments, which could lead to
construction of an incorrect XIC and thereby render an incorrect
quantitation result. To quantify an unidentified peptide, its elution time
needs to be accurately predicted from experimental data containing
chromatographic shifts caused by possible variations in LC. The
IDEAL algorithm tries to accurately predict the elution time of each
unidentified peptide.

The algorithm consists of two parts: a linear regression function
and a fragmental refining function. For any two LC-MS/MS runs, a
linear regression model is constructed by only using peptides identi-
fied in both runs. Let x; and y; represent the identified elution time of
peptide i in the two LC-MS/MS runs, respectively. The linear regres-
sion model is defined as

y=f(x)=ax+b (Eg. 1)

where b =y — ax and a = X((x; — X)(y; — ¥))/2(x; — X)>. The constructed
regression model, which represents the correlation of the peptide
elution time in both LC-MS/MS runs, is used to estimate the elution
time of an unidentified peptide in one run given the elution time of the
peptide identified in the other run.

However, in some cases, the elution time predicted by the regres-
sion model may deviate from the actual elution time beyond a certain
tolerance range. Therefore, to rectify the prediction error of f(x), we
introduce a fragmental refining function F(x) given that x represents
the elution time of the peptide identified in one run. F(x) is determined
by the deviations between y; (the actual elution time) and f(x) (the
predicted elution time) with all x; in the range of [x — 2, x + 2] as
defined in Equation 2,

k
> yi—fx)

X=2<X<x+2

F(x) = P

(Eq.2)
where k is the number of (x;, y) pairs in the range. Given the identified
elution time, x, of a peptide in a reference LC-MS/MS run, the IDEAL
algorithm takes f(x) + F(x) as the predicted elution time of the uni-
dentified peptide in a specific run.

Because an unidentified peptide generally has multiple reference
LC-MS/MS runs in label-free experiments, i.e. it is unidentified in the
current run but identified in several other runs, IDEAL-Q uses the
weighted average of all predictions derived by different reference runs
to determine the final prediction of the elution time as

< R
y = 2Lfx) + F)] % g

i=1

(Eq. 3)

where S = 3 ,R(). We use the R? value of the prediction model as
the weight factor R(j), i.e. the more accurate the prediction model, the
higher the assigned weight will be.

For example, when processing a peptide in the ID database, given
that the peptide is identified in some LC-MS/MS runs, say, {X;, X, ...,
Xy} at elution time {x;, x5, ..., X5} and unidentified in a specific
LC-MS/MS run r, we construct N prediction models (f(x) + F(x)) for run
r versus each run of X; (Equations 1 and 2) to calculate the predicted
elution time y of the peptide by Equation 3.

SCI: Three-dimensional Peptide Peak Cluster Validation—When
quantifying a specific peptide in an LC-MS/MS run, i.e. given the
elution time (predicted by IDEAL for an unidentified peptide or derived
from the search results for an identified peptide) and m/z, IDEAL-Q
first extracts the MS' data within the range of the elution time =3 min
and the precursor m/z = 3.5 Da. (Note that the range of the elution
time can be adjusted for different instruments.) Next, peak cluster
detection is performed on the extracted MS' data after which the
detected peak cluster, which contains three isotopic peaks, will be
validated by the SCI process. SCI stands for the three criteria used for
peptide validation: 1) signal-to-noise (S/N) ratio, 2) charge state, and
3) isotope pattern. These three criteria are checked sequentially un-
less violation of a criterion is detected.

The S/N criterion checks whether the precursor peak, i.e. the
monoisotopic peak, has a valid S/N ratio (=2). The charge state
criterion is used to eliminate peak clusters that have an incorrect
charge state by examining whether the distance between adjacent
peaks is equal to 1/z. Finally, the isotope pattern criterion examines
the correlation between the isotopic distribution of the observed peak
intensities and the theoretical isotopic distribution (32) of the peptide.
The correlation is evaluated by the x® goodness of fit test. Any peptide
that does not satisfy this criterion is eliminated because of the occur-
rence of possible co-eluting peptides with close m/z values.

Peptide Abundance Determination and Normalization at LC-
MS/MS Run Level—For each peptide in an LC-MS/MS run that
passes SCI validation, we construct the XIC of the selected peak
cluster by summing the MS signals within the m/z width and elution
time range of the precursor peak. (Both the m/z width and elution time
range are determined by peak detection.) Then, we use the B-spline
algorithm (33) for curve smoothing. The area under the XIC curve is
used to determine the peptide abundance in the LC-MS/MS run,
called the peptide run abundance. Note that when a peptide fails SCI
validation it is regarded as absent from the LC-MS/MS run. In this
case, the peptide run abundance is reported as zero, so it will not be
involved in the subsequent normalization and peptide ratio calculation
procedures.

After determining all peptide run abundances in the LC-MS/MS
run, we normalize them to eliminate systematic errors. IDEAL-Q sup-
ports four normalization strategies in an LC-MS/MS run: 1) the XIC
areas of spiked internal standard proteins used to support both single
and multiple spiked internal standards, 2) the median of all peptide
run abundances in the LC-MS/MS run, 3) the mean of all peptide run
abundances in the LC-MS/MS run, and 4) a user-defined normaliza-
tion factor.

Determination of Peptide Ratios and Protein Ratios at Sample
Level—In addition to peptide run abundance, based on different
experiment designs, IDEAL-Q defines the following levels of peptide
abundance: peptide abundance in the fraction level (called peptide
fraction abundance) and peptide abundance in the sample level
(called peptide sample abundance). A number of fractionation strat-
egies, such as strong cation exchange and SDS-PAGE, have been
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proposed to reduce the complexity of a sample mixture before LC-
MS/MS analysis. If a prefractionation strategy is not adopted, the
peptide sample abundance is retrieved directly from the peptide
fraction abundance. For experiments with multiple fractions and
where each fraction is used to conduct multiple LC-MS/MS runs,
peptide fraction abundance is defined as the average of the peptide
run abundances of the LC-MS/MS runs in the fraction. Then, the
peptide abundances in all the fractions are summed to represent the
peptide sample abundance. After determining peptide sample abun-
dances, the peptide ratio of any two samples can be calculated.

Before determining the protein ratio, IDEAL-Q supports the following
mechanisms to normalize the peptide ratios of sample i versus sample
J: central tendency normalization, linear regression normalization, and
quantile normalization (34), which can be used to further reduce sys-
tematic biases. For protein ratios, IDEAL-Q provides the flexibility to
calculate each ratio by only the non-degenerate peptides of the protein
(the default setting) or by all detected peptides. It is noted that the
degeneracy of peptide/protein identification was based on the database
search results. It also provides an option to further eliminate the outlier
peptide ratios of a protein by using Dixon’s Q-test (35). The protein ratio
R;; of sample i to sample j is determined by a weighted average of the
peptide ratios where the weight of each peptide ratio is determined by
the corresponding peptide sample abundance.

RESULTS AND DISCUSSION

We conducted four experiments to evaluate the perform-
ance of IDEAL-Q in terms of the accuracy of elution time
prediction, quantitation coverage (i.e. the percentages of
quantified peptides/proteins in all identified peptides/pro-
teins), and quantitation accuracy. In the first experiment, the
workflow and the quantitation performance of IDEAL-Q were
demonstrated on a serially diluted standard protein mixture
spiked into E. coli cell lysate. The quantitation coverage and
accuracy on the proteome scale were demonstrated on the
biological replicates of THP-1 cell lysate. In this experiment,
we also manually validated all the quantified peptide ions in a
large scale data set for unbiased evaluation of the true quan-
titation accuracy. To demonstrate the features of robust pep-
tide elution time prediction for alignment and stringent pep-
tide quantitation assurance for unreproducible LC-MS/MS,
we generated a special data set from the biological replicate
experiment of THP-1 cell lysate using different LC-MS/MS
instruments. In the data set, dramatic chromatographic shifts
appeared between different LC-MS/MS runs.

For comprehensive quantitation of a proteome profile, an
additional fractionation step, such as SDS-PAGE, is usually
incorporated to increase the number of identified/quantified
peptides. However, label-free quantitation experiments fre-
quently suffer from low resolution and variations in fraction-
ation reproducibility because a peptide or a protein usually
appears in two or more consecutive fractions. Therefore, pep-
tide abundance in only one fraction does not necessarily
represent the actual peptide expression and could lead to
inaccurate peptide ratios. To improve the quantitation accu-
racy, IDEAL-Q is designed to be compatible with label-free
quantitation experiments using different fractionation strate-
gies. The quantitation accuracy is demonstrated by a biolog-
ical replicate of the THP-1 cell lysate with an additional SDS-

PAGE fractionation followed by the shotgun approach. The
complete quantitation results are shown in the supplemental
figures.

Workflow of IDEAL-Q

As shown in Fig. 1, quantitation under IDEAL-Q involves
four steps. 1) For data preparation, IDEAL-Q is designed to
accept search results from major search engines and data in
the common mzXML format, which can be converted easily
from spectral data files generated by different mass spec-
trometers. After loading the database search results and
mzXML files, an ID database containing the identified pep-
tides and proteins in all LC-MS/MS runs is constructed. 2) For
peptide cross-assignment and SCI validation in each LC-
MS/MS run, we process all peptides in the ID database and
classify them as identified or unidentified. To quantify an
identified peptide, i.e. a confidently matched peptide gener-
ated by the database search engine, in an LC-MS/MS run, the
elution time and precursor m/z of the identified MS/MS spec-
trum are acquired to extract the spectral data of the peptide
that will be processed by SCI validation. Meanwhile, to quan-
tify an unidentified peptide, we first detect the peptide peaks
by using the IDEAL algorithm to predict the elution time of the
peptide for peptide alignment. Then, we use the predicted
elution time and precursor m/z to extract local LC-MS/MS
data for detecting the peptide peak cluster; this procedure is
called peptide cross-assignment. The detected peptide peak
cluster, i.e. the assigned peptide, is processed by SCI valida-
tion (described under “Experimental Procedures”). If an iden-
tified peptide or an assigned peptide passes SCI validation,
its peak cluster is used to construct the XIC to determine
peptide abundance; otherwise, it is regarded as unquantifi-
able. 3) For peptide ratio determination, first, we construct the
XIC of the selected peak cluster by summing the MS signals
within the m/z width and elution time range of the precursor
peak and perform curve smoothing using the B-spline algo-
rithm. Then, the peptide abundance is determined by the XIC
area. To correct systematic errors, IDEAL-Q supports four
strategies, described under “Peptide Abundance Determina-
tion and Normalization at LC-MS/MS Run Level”, to normalize
peptide abundance in each LC-MS/MS run. Then, the peptide
ratio is calculated accordingly. 4) For protein ratio determina-
tion, the protein abundance ratio is determined by the
weighted average of non-degenerate peptides. Prior to pro-
tein ratio determination, IDEAL-Q allows further normalization
based on the peptide ratio distribution. It also provides the
option to further eliminate outlier peptide ratios of a protein by
using Dixon’s Q-test.

Quantitation Performance Evaluation of IDEAL-Q

Highly Accurate Quantitation Evidenced by Standard Pro-
tein Mixture—To demonstrate the performance of IDEAL-Q,
different concentrations of four standard proteins (glycogen
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phosphorylase, serum albumin precursor, enolase 1, and al-
cohol dehydrogenase 1) were spiked into E. coli cell lysate
and analyzed by LC-MS/MS. A total of 51 proteins was iden-
tified by Mascot and quantified by IDEAL-Q. The protein ratios
of 47 E. coli proteins that were unchanged had a mean of
1.05 = 0.17, as shown in Fig. 2A. The ratios of the other four
spiked proteins were consistent with the expected ratio with
small deviations (2.9-19.9%), as shown in Table I. Furthermore,
the calculated protein ratios for serially diluted BSA (1, 5, 10, 25,
and 50 fmol) were highly correlated with the expected ratios and
demonstrated good linearity (R® = 0.996), as shown in Fig. 2B.
These results demonstrate that IDEAL-Q can calculate protein
expression ratios with high accuracy and precision.
Substantially Increased Quantitation Coverage on Proteome
Scale with High Quantitation Accuracy— Achieving high quan-
titation coverage in terms of the percentages of quantified
peptides/proteins in all identified peptides/proteins is a chal-
lenge in label-free quantitative proteomics. Normally, a pep-
tide is quantified only if it can be identified in all LC-MS/MS
runs. Here, we demonstrate the ability of IDEAL-Q to increase
the quantitation coverage by cross-assignment of confidently
identified peptides in all LC-MS/MS runs. To evaluate the per-
formance of IDEAL-Q on a complex sample, we conducted an
experiment on biological duplicate of the THP-1 cell lysate and
performed triplicate LC-MS/MS analysis. A total of 1,990 pep-
tides corresponding to 703 proteins was identified (score, >39;
false discovery rate, 0.05-2.3%). The elution times of any two
LC-MS/MS runs from the two samples exhibited a high corre-

Protein level processing

1. Peptide ratio level normalization (optional)
2. Non-degenerate peptide selection

3. Qutlier elimination by Dixon's Test

4. Protein ratio calculation

peptide selection

o I Calculate
Protein ratio .
[ weighted average

lation; for example, in Fig. 3, there is a high correlation between
the first runs of the two samples.

In the data set, 1,990 peptides were confidently identified in
at least one of the six LC-MS/MS runs in the two biological
replicates. Among these peptides, 1,596, 1,289, and 1,107
peptides were identified in at least one, two, and three LC-
MS/MS runs for both biological replicates, respectively. The
above four peptide sets represent increasingly reliable pep-
tide sets. We use N(m, n) to denote the set of peptides
identified in at least m LC-MS/MS runs of one biological
replicate and at least n LC-MS/MS runs of the other replicate.
Denoting |N(m, n)| as the number of peptides in N(m, n), we
have |N(, 7) U N(7, 0)] = 1,990, |N(7, )| = 1,596, [N(2, 2)| =
1,289, and |N(3, 3)| = 1,107. Many identity-based quantitation
methods only quantify peptides that are identified in all LC-
MS/MS runs; for example, they quantify peptides in the peptide
set N(3, 3), which only accounts for 55% of all identified pep-
tides. In contrast, IDEAL-Q tries to quantify all identified pep-
tides, i.e. peptides identified in at least one LC-MS/MS run, by
peptide cross-assignment using the predicted elution time.

Although we focused on comparing the quantitation strat-
egies of the conventional identity-based approach and IDE-
AL-Q, we also used IDEAL-Q to quantify the above four pep-
tide sets to evaluate its performance in terms of the
quantitation coverage and quantitation accuracy. In this sub-
section, we examine how the quantitation coverage is af-
fected by quantifying different peptide sets represented by
the above N(m,n) and assess the accuracy based on the
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coefficients of variation (CVs) of protein ratios. The quantita-
tion accuracy was further examined by manual validation. (We
discuss this aspect in the next subsection.) The conventional
identity-based approach quantified peptides in N(3, 3).
Among them, only 909 peptides corresponded to 353 pro-
teins, i.e. 45.7% of all identified peptides and 50.2% of all
identified proteins were quantified. IDEAL-Q quantified N(O, 1)
U N(1, 0) by peptide cross-assignment. Among them, 1,672

Fold change (BSA)

peptides corresponded to 626 proteins, i.e. 84% of all iden-
tified peptides and 89% of all identified proteins were quan-
tified. The protein and peptide quantitation coverage rates for
different peptide sets are shown in Fig. 4. The results show
that peptide cross-assignment can achieve a substantial im-
provement in the quantitation coverage.

Next, we investigated whether using peptide cross-assign-
ment to increase the quantitation coverage affects the quan-
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TABLE |
Quantitation results of four proteins with different concentrations

No. of No. of Ratio -
Protein name Molecular identified quantified Quantitation
mass peptides peptides IDEAL-Q Expected error
Da %
Glycogen phosphorylase 97,228 19 19 0.53 0.5 6
Serum albumin precursor 69,248 13 11 6.40 8 —-19.9
Enolase 1 46,773 7 5 1.80 2 -9.7
Alcohol dehydrogenase 1 36,800 11 10 0.97 1 -2.9
T 120 A 100%
-1 y=1.011x-1.14 =s=No. of quantifiable peptides
E 100 - R?=0.9999 1800 =g=No. of quantifiable proteins 1672 (84%) | 0%
'r'i' 1600 =e=C\Vs of protein ratio 1380 (60 B0%
S &0 - 1400 ’ 70%
g 1200 14 672 60% o
o
5 o0 E 1000 | 909 (45.7 50% g
£ o
% 2 800 626 (89%) 40% 8
528 (75.1%
2 600 444 (63.2%) Stt il
';'; 20 i 353 (50.2%) e
o
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Fic. 3. Correlation of peptide elution times of THP-1 cell line
biological replicate. The elution times of commonly identified pep- B
tides in the first runs of two replicate samples are used to show the 250
correlation. The R? value of 0.9999 and the slope of 1.011 demon-
strate that the LC system is stable and reproducible. * N(©O,1) UN(1,0)
200 {| * N(.1)
o . . « N(2.2
titation accuracy. The average CVs of the protein ratios cal- s N§3‘3;
culated for the four peptide sets are shown in Fig. 4A. The CV 150 1
of the protein ratios in the peptide set N(0, 1) U N(1, 0) is 3.4%, ‘g’
which is comparable to 2.6% in N(3, 3). In addition, as shown  § 100

in Fig. 4B, the protein ratio distributions in log, scale of the
four peptide sets are all close to 0 (i.e. close to 1 in non-log
scale) with standard deviations of 7-11%. The narrow log,
ratio distributions of the four sets of data revealed that the
improved quantitation coverage did not reduce the quantita-
tion accuracy.

Large Scale Manual Validation Demonstrates Highly Reliable
Quantitation Performance of IDEAL-Q—We also manually vali-
dated all the quantitation results to evaluate the overall perform-
ance of IDEAL-Q. The quantitation result of a manually validated
peptide ion is considered correct if the following three condi-
tions are satisfied. 1) The detected peptide peak cluster has the
correct m/z as the assigned peptide, i.e. correct peptide align-
ment. 2) The peptide peak cluster does not contain noise or
co-eluting peptides and can be quantified, i.e. correct SCI val-
idation. 3) The ratios determined by IDEAL-Q and manual in-
spection are consistent, i.e. correct ratio determination.

Of 11,940 peptide ions detected by IDEAL-Q in all six
LC-MS/MS runs from the two biological replicates, 8,806
peptide ions (1,990 peptides) were identified by the Mascot
search. For those peptide ions, we only needed to check

T T

-0.2 0.0 0.2 0.4
Protein ratio (log,)

-0.4

Fic. 4. Comparison of results derived by conventional ID-based
strategy and IDEAL-Q in THP-1 cell line biological replicate exper-
iment. A, the number of quantifiable peptides, the CVs of peptide
sample abundance, and the CVs of the protein ratios on the four peptide
sets, two of which correspond to the ID-based strategy and two of
which correspond to IDEAL-Q quantitation strategy. B, the peptide ratio
distributions on the four peptide sets. Compared with the identity-based
quantitation strategy, IDEAL-Q achieves high quantitation accuracy and
increases the number of quantifiable peptides substantially.

condition (2) for manual validation, and as high as 95% of
them were correctly quantified by IDEAL-Q, as shown in Fig.
5B. Of the remaining 3,134 unidentified peptide ions, which
were assigned by IDEAL-Q, 90% were properly aligned and
correctly quantified, 2% were misaligned, and 8% were cor-
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FiG. 5. Manually validated results of THP-1 cell line biological
replicate experiment. A total of 11,940 peptide ion quantitations
were manually validated. The results demonstrate the high accuracy
rates achieved by SCI validation and peptide alignment. A, 11,940
peptide ions detected by IDEAL-Q in all six LC-MS/MS runs from the
two biological replicates. 8,806 peptide ions (1,990 peptides) were
identified by the Mascot search, and there were 3,134 unidentified
peptide ions. B, Of 8,806 identified peptide ions, SCI correctly vali-
dated 8,339 peptide ions and failed on 467 identified peptide ions. C,
Of all unidentified peptide ions, 69 were misaligned, 2,808 were
correctly validated by SCI, and SCI failed on 257 unidentified peptide
ions.

rectly aligned, but SCI validated them incorrectly, as shown in
Fig. 5B. After manual validation, the overall accuracy for all the
peptide ions was 93.3%, demonstrating the effectiveness of
the data processing capability of IDEAL-Q. In addition, the
large scale manual validation results revealed that 1,240 pep-
tide ions had poor spectral quality, which was mainly because
of peptide co-elution. However, SCI validation successfully
detected and filtered out 1,114 (89.8%) of them. The results
demonstrate that the high accuracy achieved by IDEAL-Q can
be attributed to correct peptide alignment and the SCI vali-
dation process used to filter out noisy unquantifiable data.
Thus, fully automated quantitation can be performed without
time-consuming manual inspection.

Using IDEAL Elution Time Prediction and SCI Validation to
Rectify Chromatographic Shift—In addition to the demon-
strated quantitation coverage and accuracy, IDEAL-Q pro-
vides a unique fragmental elution time prediction method (see
“Experimental Procedures” for details) that enables robust
quantitation of data sets with inconsistent elution profiles. Thus,
we conducted a biological replicate experiment on the THP-1
cell line with triplicate LC-MS/MS analysis on two different LC
systems to derive huge chromatographic shifts. Fig. 6 com-
pares the elution time prediction results of IDEAL with those of
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Fic. 6. Correlation of peptide elution times in heterogeneous LC
system experiment. The commonly identified peptides are plotted as
gray circles based on the identified elution times of the first runs of the
two biological replicates obtained from two different LC systems. The
figure shows the prediction curves of three methods. The correlations
(R?) between the plotted points and the prediction curves show that
the IDEAL curve has the best data fit; therefore, it can predict the
most accurate peptide elution times.

two other prediction methods, namely, the ID-time method and
the linear regression method. Under the ID-time method, the
elution time of an unidentified peptide was determined by the
experimental elution time of the same peptide identified
in the other LC-MS/MS run. In the linear regression method, the
elution time was predicted by Equation 1.

We used 699 commonly identified peptides from the first
LC-MS/MS run of each LC system to compare the prediction
curves of IDEAL, linear regression (y = 0.76x — 16.7), and
ID-time (v = x). As shown in Fig. 6, the ID-time prediction
deviated significantly from the actual elution times of the
peptides. IDEAL achieved the highest R® score of 0.998 fol-
lowed by 0.982 for the linear regression method. The results
demonstrate that IDEAL-Q is capable of robust quantitation
compatible with huge chromatographic shifts, which are not
unusual in practice.

Next, we used the entire data sets of the two LC systems to
compare IDEAL with the other two methods on a large scale
by performing k-fold cross-validation (6), which is widely used
for performance evaluation in machine learning. We used a
data set consisting of all identified peptides in any two of six
LC-MS/MS runs to perform a k-fold cross-validation test and
repeated it 15 times (the number of combinations of choosing
two from six). On average, 693 peptides were identified in any
two of the six LC-MS/MS runs. In a k-fold cross-validation
test, the data set is randomly divided into k partitions of ap-
proximately equal size. One of the k partitions is used as the test
set, and the remaining k — 1 partitions are used as the training
data set, i.e. to produce corresponding IDEAL prediction mod-
els for predicting the elution time of peptides in the test set. In
each iteration, the average prediction error is used to evaluate
the performance as shown in Equation 4.
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TasLE Il
Performance of elution time prediction by IDEAL, tested by k-fold cross-validation

k-Fold ID-time Linear regression IDEAL
validation Average error S.D. Average error S.D. Average error S.D.
2 34.02 5.49 1.24 1.70 0.39 0.54
3 34.02 5.49 1.24 1.70 0.39 0.55
4 34.02 5.49 1.24 1.70 0.39 0.54
5 34.02 5.49 1.24 1.69 0.39 0.53
TasLE llI
The effect of SCI validation on quantitation
CS, charge state; IP, isotope pattern.
Prediction method and Protein quantitation Peptide quantitation Protein ratio Peptide ratio
validation strategy coverage coverage Mean S.D. Mean S.D.
% %
ID-time
No validation 87.3 90.8 14.59 60.75 17.84 137.08
S/N 74.2 741 4.77 21.11 7.25 36.98
S/N, CS 60.6 55.3 4.74 25.03 5.26 22.88
S/N, CS, IP 43.1 34.2 1.18 1.23 1.41 3.2
Linear regression
No validation 87.3 79.0 1.34 3.07 1.45 3.07
S/N 85.5 75.0 1.28 2.64 1.28 2.32
S/N, CS 74.5 61.9 1.31 2.79 1.23 2.3
S/N, CS, IP 61.5 46.7 1 0.64 0.98 0.55
IDEAL
No validation 95.2 99.7 1.18 1.16 1.28 1.64
S/N 95.2 99.6 1.18 1.16 1.29 1.64
S/N, CS 95.0 98.7 1.19 1.16 1.28 1.59
S/N, CS, IP 76.8 66.3 1.08 0.55 1.08 0.61
Prediction error = |Predicted time — actual time| (Eq. 4) fects the quantitation accuracy and quantitation coverage, as

After performing k iterations by selecting each partition in turn
as the test set, the final result of a k-fold cross-validation test
is the average accuracy of the k iterations. The overall pre-
diction errors of all k-fold tests using the three methods are
shown in Table Il. Clearly, the overall accuracy of the IDEAL
algorithm across different k-fold tests was consistently bet-
ter than that of the linear regression and ID-time methods.
Notably, the prediction performance of IDEAL was good
even on 2-fold cross-validation, which has the smallest
training data set in all k-fold tests (i.e. the training data set
and test data set are equal in size). The results show that the
performance of IDEAL is very stable in large scale proteom-
ics experiments. Furthermore, its predictions were accurate
even on two different LC systems with chromatographic
shifts.

To further compare the quantitation accuracy achieved by
different elution time prediction methods, the data set was
quantified based on the elution time predicted by the ID-time,
linear regression, and IDEAL methods. Furthermore, SCI val-
idation criteria were applied incrementally to filter out noisy
data. The quantitation performance in terms of peptide/pro-
tein quantitation coverage and quantitation accuracy are re-
ported in Table Ill. The quantitation accuracy is measured by
the mean and S.D. of the peptide and protein ratios, respec-
tively. The accuracy of elution time prediction obviously af-

evidenced by the results in Table Ill. The worst performance
was the elution time predicted by the ID-time method, which
yielded the lowest quantitation accuracy as well as the lowest
quantitation coverage (after SCI validation). However, the
mean of the protein ratio based on the ID-time method im-
proved substantially from 14.59 (without SCI validation) to
1.18 (with SCI validation). A similar improvement was also
evident on the data based on the linear regression method. In
summary, the results show that SCI validation can effectively
filter out noisy data, especially in very noisy data sets, leading
to improved quantitation accuracy.

After SCI validation, the linear regression method and the
IDEAL method generated comparable results in terms of the
mean and S.D. of protein ratios. However, using the elution
time prediction of IDEAL achieved much better protein quan-
titation coverage than the linear regression method (76.8%
compared with 61.5%).

Demonstration of Quantitation Performance on Large
Scale Experiment with Fractionation

To evaluate the performance of IDEAL-Q on large scale
quantitation with a fractionation step, we performed quanti-
tation for the biologically duplicate THP-1 cell lysate with an
additional SDS-PAGE fractionation step. Each gel was cut
into five slices and subjected to trypsin digestion followed by
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LC-MS/MS analysis. Using the Mascot search engine (score,
>32; false discovery rate, 1.5% by decoy database search),
five fractions in the two SDS-PAGEs generated 1,438 proteins
with 7,247 peptides. Because of the low resolution of SDS-
PAGE separation, many proteins inevitably migrate to two or
more consecutive fractions. For example, as shown in Fig.
7, the identified peptide DDPSKPVHLTAFLGYK corre-
sponding to the 60 S ribosomal protein L3 was only identi-
fied in fraction 1 of both biological replicates. However,
IDEAL-Q identified the peptide in fraction 2 of both biolog-
ical replicates by peptide cross-assignment in addition to
that in fraction 1. The conventional strategy only quantifies
the peptide that is commonly identified in fraction 1 of the
two biological replicates, and the resulting peptide ratio
given by peptide abundance in SDS-PAGE A over that in
SDS-PAGE B is 0.65 = 338.1/519.2. In contrast, IDEAL-Q
detects and quantifies all peptides unidentified in other
fractions. By summing the peptide fraction abundances in
all fractions, IDEAL-Q calculated the corrected peptide ratio
as 1.006 = (338.1 + 593)/(519.2 + 406.2), which corrects
the biased ratio calculated by the conventional approach.
Among the 7,247 identified peptides corresponding to 1,438
proteins, 6,829 peptides corresponding to 1,391 proteins were
quantified (see supplemental data for further details). The mean

and S.D. of the protein ratios (SDS-PAGE A/SDS-PAGE B) is
1.04 = 0.39, showing the quantitation compatibility of IDEAL-Q
on a label-free approach with a fractionation step.

Robust Functionality of IDEAL-Q

Label-free quantitation analysis inevitably involves process-
ing a large number of input files; thus, efficient data analysis is
challenging. The most computation-intensive part is the peak
alignment procedure. In contrast to pattern-matching align-
ment algorithms, our fragmental regression algorithm, IDEAL,
uses the experimentally identified elution time to predict the
elution time of unidentified peptides for peptide cross-assign-
ment. It rectifies the chromatographic shift successfully and
also reduces the computation time substantially. In the above
four experiments, the input mzXML files were 5, 10.9, 12.8,
and 76.5 GB, respectively. IDEAL-Q took 5, 49, 71, and 1,440
min, respectively, to quantify the data sets on a Microsoft
Windows Server 2003 R2 (x64 edition service pack 2 with a
64-bit AMD Opteron Processor 2210 CPU 1.8-GHz proces-
sors, SATA hard disk (7200 rpm, 500 GB), and 8 GB RAM). It
is noteworthy that IDEAL-Q can be executed on a personal
computer with the Windows platform. Depending on the us-
er’'s experiment design, IDEAL-Q provides flexible quantita-
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Fic. 8. User interfaces of IDEAL-Q. A, the protein table, peptide table, and corresponding quantitation results. B, the visualization interface
used to inspect data. C, the annotated MS/MS spectra show the status of peptide identification. D, the interface that displays statistical plots.

E, comprehensive output results in different formats.

tion mechanisms, including support for various normalization
schemes and fractionation strategies. Specifically, IDEAL-Q
supports central tendency normalization, linear regression
normalization, and quantile normalization (34).

IDEAL-Q also provides a handy user interface for output
visualization, validation, and quantitation results, as shown by
the screen shot in Fig. 8. This output interface displays protein
and peptide lists with the calculated ratios and all identifica-
tion information, annotated MS/MS spectra, visualization of
quantified peptide peaks, and other statistical charts. It also
facilitates fast requantitation after the selection or removal of
user-selected peptide ions. To enable users to prepare sup-
plemental data from their quantitation results, several output
formats, including pdf, csv, and html formats, are supported
by IDEAL-Q.

Conclusion

In this study, we present a robust, generic data analysis
platform, called IDEAL-Q, for XIC-based label-free quanti-
tative proteomics. It is compatible with different database
search engines and mass spectrometers. To avoid the time-

consuming computation required to align shifted peptide
peaks, we use the fragmental regression method to predict
the potential chromatographic shift and use signal process-
ing techniques to detect unidentified peptides in all LC-
MS/MS runs for peptide cross-assignment. Because of ac-
curate elution time prediction, peptide/protein quantitation
coverage is increased substantially over that achieved by
the conventional identity-based approach. Furthermore, ap-
plying rigorous SCI validation on detected peptide peak
clusters can filter out overlapping peaks or noisy data to
ensure high quantitation accuracy. We demonstrated the
quantitation performance of IDEAL-Q on a standard protein
mixture and a proteome scale by a replicate experiment on
the THP-1 cell line and manually validated results to further
verify the performance of IDEAL-Q.

The results of triplicate LC-MS/MS analysis of the THP-1 cells
on two different instruments show that IDEAL can accurately
predict the elution time even when chromatographic shifts oc-
cur, and SCI validation can effectively differentiate between
good and poor spectral data quality. Because IDEAL-Q is ca-
pable of rectifying huge chromatographic shifts and reducing
systematic errors via normalization techniques, it could be ap-
plied to label-free comparative proteomics across instruments
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or even laboratories. It would boost the applicability of label-free
proteomics significantly and reduce the cost of repetitive data
analysis on different instruments. In addition, the robust align-
ment approach significantly increases the quantitation cover-
age. In summary, IDEAL-Q is an efficient and robust tool for
accurate label-free quantitation of protein expression and
compatible for label-free experiments with fractionation
steps. It is executable on the Windows platform and available
for download.
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