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Abstract

Background: A proportion of small diameter primary sensory neurones innervating human skin are chemosensitive. They
respond in a receptor dependent manner to chemical mediators of inflammation as well as naturally occurring algogens,
thermogens and pruritogens. The neurotransmitter GABA is interesting in this respect because in animal models of
neuropathic pain GABA pre-synaptically regulates nociceptive input to the spinal cord. However, the effect of GABA on
human peripheral unmyelinated axons has not been established.

Methodology/Principal Findings: Electrical stimulation was used to assess the effect of GABA on the electrical excitability of
unmyelinated axons in isolated fascicles of human sural nerve. GABA (0.1–100 mM) increased electrical excitability in a
subset (ca. 40%) of C-fibres in human sural nerve fascicles suggesting that axonal GABA sensitivity is selectively restricted to
a sub-population of human unmyelinated axons. The effects of GABA were mediated by GABAA receptors, being mimicked
by bath application of the GABAA agonist muscimol (0.1–30 mM) while the GABAB agonist baclofen (10–30 mM) was without
effect. Increases in excitability produced by GABA (10–30 mM) were blocked by the GABAA antagonists gabazine (10–
20 mM), bicuculline (10–20 mM) and picrotoxin (10–20 mM).

Conclusions/Significance: Functional GABAA receptors are present on a subset of unmyelinated primary afferents in
humans and their activation depolarizes these axons, an effect likely due to an elevated intra-axonal chloride concentration.
GABAA receptor modulation may therefore regulate segmental and peripheral components of nociception.
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Introduction

Gamma-aminobutyric acid (GABA) is the predominant

inhibitory neurotransmitter in the mammalian central nervous

system. In addition to its role at synapses, GABA can also exert

effects extra-synaptically via GABAA receptors [1–3]. Adult

primary afferent sensory neurons provide an interesting

example in this respect. The cell bodies of dorsal root ganglion

(DRG) neurones, which are devoid of synaptic contact, express

functional GABAA receptors (human: [4,5], rat: [6,7], cat: [8],

rabbit: [9], chick: [10]). Functional GABAA receptor mediated

responses in the somata of DRG neurones is also evident in

their unmyelinated axons (rat: [11]) where application of

GABA results in depolarization (for review see [12,13]). The

GABAA mediated depolarization is attributed to an elevated

intracellular concentration of chloride in dorsal root ganglion

neurones [14], a condition established by the predominance of

NKCC1-mediated chloride uptake [15] over KCC2-mediated

extrusion [16].

For neurones in the central nervous system, extra-synaptic

axonal GABAA receptors are often composed of sub-units with a

high sensitivity to GABA allowing ambient concentrations of

GABA to modulate neuronal excitability [2]. Similarly, in

peripheral nerve, extra-synaptic axonal GABAA receptors can

modulate excitability and may be involved in GABAergic

signalling between axons and neighbouring cells such as dermal

fibroblasts [17] and subtypes of peripheral glia [18,19]. Peripheral

glia can take up GABA [20] and reversal of the GABA transporter

[21] may result in release of the amino acid.

The effect of GABA on peripheral axons is dependent upon

the intracellular chloride concentration which is reported to

change following peripheral nerve injury in dorsal spinal horn

neurones [22] as well as DRG neurones [23]. Changes in

intercellular chloride concentration will inevitably alter the

effects of GABA on primary sensory afferents both within the

spinal cord as well as in the periphery and such changes may

contribute to symptoms of neuropathic pain [24]. The presence

of GABAA receptors on the unmyelinated axons of primary

sensory neurones is central to this concept. However it has not

been established whether the axons of human primary sensory

neurones express functional GABAA receptors. The chemosen-

sitivity of unmyelinated axons can be examined by tracking the

electrical threshold of the compound C-fibre action potential

generated in short isolated segments of isolated sural nerve [25]

and in the present study this method has been used to

characterize the effect of GABA on unmyelinated axons from

humans.
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Results

Experiments were carried out on 53 isolated nerve fascicles from

16 human sural nerve segments.

GABA increases C-fibre axonal excitability via GABAA

receptors
In 21 of the 53 (ca. 40%) fascicles examined, bath application of

GABA (0.1–100 mM) increased the electrical excitability of C-

fibres. An increase in excitability indicates that less current is

required to evoke a compound C-fibre response of 40% maximum

amplitude. Relative changes in the calculated excitability index

(see Methods) reflect changes in membrane potential [26] with an

increase in excitability index representing axonal depolariza-

tion. GABA (0.1–30 mM) evoked increases in C-fibre electrical

excitability are illustrated by example in Figure 1B. GABA

produces a concentration dependent increase in the excitability

index (Figure 1B & C, upper panel). This increase in excitability

index is consistent with GABA depolarizing some of the

unmyelinated axons within the fascicle.

The increase in C-fibre excitability index in response to GABA

had a rapid-onset, was transient and increased in magnitude

in a concentration dependent manner (Figure 1B and C). The

EC50 of GABA’s effect on excitability index was estimated as

6.8860.01 mM from a sigmoid fit of normalised GABA responses

on concentration (Figure 1C). For this analysis, responses to

GABA were normalised to the change in excitability index

produced by 30 mM GABA. Increases in the excitability index to

repeat applications of GABA (10–30 mM for 90 s) at 15 minutes

intervals were found to be reproducible and consistent across time.

The effect of GABA on peak amplitude and the latency of the

compound C-fibre response to supra-maximal electrical stimula-

tion varied. The unmyelinated axons in some fascicles showed no

appreciable change in either parameter (0.1–100 mM; Figures 1B,

2B–C & 5B) while in others (see Figures 2A & 3A) the peak

amplitude typically increased while the latency decreased.

C-fibre responses to bath applied GABA (10 mM) were

mediated by GABAA receptors, being mimicked by muscimol

(10 mM, n = 5, data not shown) and substantially reduced by prior

application of the GABAA antagonists bicuculline (10–20 mM,

reduced to 30.767.92%, n = 6, p,0.05 Student’s paired t-test),

gabazine (10–20 mM, reduced to 29.2617.14%, n = 7, p,0.01

Student’s paired t-test) and picrotoxin (10–30 mM, reduced to

29.56618.13%, n = 3, Figure 2C). In contrast, 90 s bath

application of the GABAB agonist baclofen (100 mM, n = 5, data

not shown) was without effect on any of the parameters used to

assess the electrical excitability of human C-fibres.

Relationship between activity-induced and
GABA-induced changes in C-fibre excitability

The magnitude of GABA evoked increases in C-fibre

excitability index varied within individual fascicles according to

the prevailing value of excitability index (see Figure 3). At low rates

of stimulation (#0.33 Hz), absolute values of C-fibre excitability

index varied between fascicles (Figure 3B), i.e. C-fibre responses in

some fascicles were sub-excitable (index positive) while in others

they were super-excitable (index negative). In most fascicles

however a decrease in the excitability index of Cfibres can be

induced by increasing stimulus rate (Figure 3B, 4 & 5). This in turn

increases the magnitude of the change in excitability index

produced by bath application of GABA (30 mM, Figure 3A & C).

Figure 1. GABA activation of human C-fibres is concentration dependent. The excitability index was determined for C-fibres in human sural
nerve fascicles during bath application of GABA (0.1–100 mM). A time window restricted the domain over which the amplitude of the electrically-
evoked compound C-fibre action potential was determined (A, grey bars). Excitability index was calculated from the ratio of the current required to
evoke an unconditioned C-fibre response of 40% maximum amplitude to that required to evoke a conditioned 40% response, i.e. 30 ms after a supra-
maximal conditioning stimulus (40% cond., grey). Negative values of excitability index indicate that more current is required to evoke an
unconditioned 40% C-fibre response. Following the addition of GABA (0.1–30 mM, 90 s application) to the bathing solution the excitability index
increases, i.e. becomes more positive (B), and the magnitude of this change increases as the concentration of GABA in the perfusing solution
increases (B & C). The EC50 determined from a sigmoid fit to normalised excitability index on GABA concentration was 6.8860.01 mM.
doi:10.1371/journal.pone.0008780.g001

Human C-Fibre GABAA Responses
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As shown by example in Figure 3A this effect can be considerable.

In this example, GABA (10 mM) has no appreciable effect on

excitability index at a stimulus rate of 0.33 Hz. However, an

increase in the stimulus rate to 0.5 Hz reduced the prevailing

excitability index and resulted in a corresponding increase in the

magnitude of excitability index change observed in response to

GABA (10 mM). Increasing the stimulus rate to 1 Hz, further

reduces the prevailing excitability index and thereby increases the

magnitude of change in excitability index evoked by GABA

(10 mM). In general, the magnitude of the excitability index

change produced by GABA (30 mM) or muscimol (30 mM)

increases with increasing basal stimulus rate, i.e. as the prevailing

excitability index decreases (Figure 3C & 5D).

GABA increases axonal excitability in a subset of human
unmyelinated axons

Unmyelinated axons in twenty-one of the 53 nerve fascicles

exhibited a change in electrical excitability index in the presence of

GABA (10–30 mM). This restriction of GABA sensitivity to a

subset of fascicles may reflect a selective expression of GABAA

receptors in a sub-population of human unmyelinated axons. To

examine this premise an attempt was made to determine whether

a particular axonal sub-type was sensitive to GABA. The global

behaviour of C-fibres within individual nerve fascicles was

therefore determined according to their excitability index at

0.33 Hz and the profile of change in excitability index and

response latency exhibited during stimulation at 2 Hz (see

Figure 4).

Seventeen fascicles from five nerves (each taken at biopsy) were

subject to the electrical stimulus protocol and two general response

patterns were observed. We have designated the two response

profiles Type A and Type B and the incidence of response profile

subtype in fascicles arising from individual nerves is summarized in

Table 1. Nine of the 17 fascicles contained Cfibres with a global

Type B profile. During stimulation at 2 Hz this profile comprised

an initial increase in the latency to half-maximum of the

compound C-fibre response that subsequently reversed, i.e. the

velocity of conduction in C-fibres initially decreased before

increasing slightly and approaching steady-state (Figure 4B &

5B). At low stimulus rates (,0.33 Hz) the Type B response profile

was super-excitable (negative excitability index, Figure 5C) and

during stimulation at 2 Hz became more super-excitable

(Figure 4B & 5B). Only one of the nine Type B fascicles showed

an appreciable increase in C-fibre excitability index in response to

bath application of GABA (30 mM, Figure 5D). C-fibre responses

in eight fascicles had a Type A profile indicating that during

stimulation at 2 Hz a monotonic slowing of latency and a parallel

decrease in excitability index were observed (Figure 4A & 5A). C-

Figure 2. GABAA receptors mediate responses to GABA in human C-fibres. Increases in the electrical excitability index of unmyelinated
axons in human sural nerve fascicles following bath application of GABA (10–30 mM) are blocked by prior application of the GABAA receptor
antagonists bicuculline (20 mM, grey bar A), picrotoxin (10 mM, grey bar B) and gabazine (10 mM, grey bar C). In contrast to both bicuculline and
gabazine, the blocking effect of picrotoxin is not reversed upon wash-out (B). The pooled effect of each compound on the change in excitability
index following bath application of GABA (10 mM) is shown in panel D. A significant reduction in the response to GABA (10 mM) was observed in the
presence of gabazine (p,0.05, Student’s paired t-test) and bicuculline (p,0.05, Student’s paired t-test). Owing to the limited availability of human
nerve fascicles a statistical comparison was not made for three fascicles exposed to picrotoxin.
doi:10.1371/journal.pone.0008780.g002

Human C-Fibre GABAA Responses
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fibre responses in seven of the eight Type A fascicles were sub-

excitable (positive excitability index, Figure 5C) at low stimulus

frequencies but became super-excitable at higher stimulus rates

(Figure 4A & 5A). The excitability index of C-fibres in all eight

Type A fascicles increased following bath application of GABA

(30 mM, Figure 5A, B & D). For individual nerve fascicles the

excitability index of C-fibres determined at 0.33 Hz ranged from

227.9% to 40.7% and was predictive for the absolute magnitude

of the excitability index change upon increasing the rate of

electrical stimulation from 0.33 Hz to 1 Hz (Figure 5C) as well as

for the magnitude of the change in excitability index observed in

response to bath application of GABA (30 mM, Figure 5D).

Discussion

The application of conventional intracellular electrophysiolog-

ical recording techniques to unmyelinated axons in peripheral

nerves is precluded by their small size. Accordingly the effects of

GABA on C-fibres in single fascicles of human sural nerve can

only be examined indirectly. We have used electrical threshold

tracking [27] to determine an excitability index that serves as an

indirect means of assessing relative changes in membrane potential

[26]. Exposure of human sural nerve segments to GABA (1–

100 mM) increased the excitability index of a largely nociceptive

(see below) population of unmyelinated axons via GABAA receptor

activation. The increase in electrical excitability of human

unmyelinated axons in response to GABA is consistent with

axonal depolarization and suggests that human unmyelinated

axons have an elevated intracellular chloride concentration. The

findings indicate further that unmyelinated axons in peripheral

human nerve exhibit a selective chemosensitivity. The demon-

stration of functional GABAA responses in human unmyelinated

axons supplements the body of work showing that GABAA

receptors are functionally expressed in axons in the mammalian

peripheral and central nervous system [1,13,28] and may have

implications for the pathogenesis of some forms of neuropathy.

The increase in human C-fibre electrical excitability seen in

response to GABA was mediated by GABAA receptors. The effect

of GABA was blocked by bicuculline, picrotoxin, and gabazine

(Figure 2). While this profile is consistent with that observed for

GABAA mediated currents in isolated human embryonic DRG

neurones [5], it contrasts with GABA responses evoked in cultured

human adult DRG neurones which are insensitive to both

bicuculline and picrotoxin [29]. The basis of this apparent

Figure 3. Higher rates of electrical stimulation render human C-fibres less excitable but enhance responses to GABA. The magnitude
of the excitability index increase in response to GABA increases with the rate of electrical stimulation. An increase in the rate of electrical stimulation
reduces the excitability index of C-fibres (A & B). The absolute magnitude of stimulus rate-induced decreases in excitability index varies (B). The
reduction in excitability index produced by increased electrical stimulation rate always increases the magnitude of the change in excitability index
observed in response to bath application of GABA or muscimol (10–30 mM, A & C).
doi:10.1371/journal.pone.0008780.g003

Human C-Fibre GABAA Responses
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discrepancy is not clear. It may reflect differences in GABA

receptor subunit composition or may be due to differences in

sampling between unmyelinated axons and a heterogeneous

population of DRG somata with potentially either myelinated or

unmyelinated axons. To what extent, if any, an underlying

neuropathology may contribute to this discrepancy between

samples of human sural nerve taken at biopsy and isolated human

DRG-somata is also not known. Baclofen did not affect the

excitability of peripheral human axons which is consistent with

reports from isolated human DRG neurones [4]. However both

GABAA and GABAB receptors have been immunohistochemically

identified in cultured Schwann cells from rat [30] and segments of

rat sciatic nerve [31] and their activation by GABA agonists has

been suggested to influence the expression of myelin proteins P0

and PMP22 [30].

Changes in the electrical threshold of human C-fibres in

response to GABA are thought to reflect axonal depolarization.

This view is supported by previous evidence from rat axons [11] as

Figure 4. Two types of C-fibre response profile for individual human sural nerve fascicles. Individual fascicles were designated as either
Type A (panel A) or Type B (panel B) on the basis of changes in electrical excitability and the latency to half-maximum of the compound C-fibre action
potential observed during stimulation at 2 Hz (grey shading). Three features can be used to differentiate the two C-fibre response profiles. Firstly, at
low frequencies of stimulation (0.33 Hz), the compound C-fibre response in Type A fascicles is typically sub-excitable (positive excitability index)
whereas Type B fascicles are super-excitable (negative excitability index). Secondly, during stimulation at higher frequencies (2 Hz), the compound C-
fibre response in Type A fascicles exhibits a monotonic decrease in excitability index and a slowing of conduction latency. For Type B responses,
repetitive stimulation initially reduces the excitability index and slows conduction before these changes partially reverse and conduction latency and
excitability index both approach a plateau. Finally, during stimulation at 2 Hz, Type A C-fibre responses typically show a reversal from sub- to super-
excitability whereas the super-excitability characteristic of Type B responses simply increases in magnitude.
doi:10.1371/journal.pone.0008780.g004

Human C-Fibre GABAA Responses
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well as the observation that rat sympathetic [32] and frog DRG

[14] neurones have an elevated intracellular chloride activity, a

feature likely to extend to primary sensory neurones in mammals.

Consistent with this idea is the observation that GABA evokes an

inward depolarizing current in isolated human DRG neurones [5].

GABA also increases the excitability index determined in

unmyelinated axons traversing human nerve fascicles (Figure 5)

and a similar increase in the excitability index of C-fibres can be

induced with depolarizing current applied extracellularly to

human nerve fascicles [33]. Further support for the notion that

GABA depolarises unmyelinated axons is the observation that C-

fibre responses to GABA increase with stimulus rate (Figure 3).

Peripheral [34] as well as central [35] unmyelinated axons

hyperpolarize upon repetitive activation, an effect attributed to

an increase in Na-K-ATPase activity [36]. Activity-induced

hyperpolarization in unmyelinated axons would be expected to

increase the difference between membrane potential and the

reversal potential of the GABAA receptor, itself dominated by ECl,

and thereby enhance the magnitude of GABA-mediated depolar-

ization of peripheral unmyelinated axons.

C-fibre responses to GABA were restricted to a subset of human

nerve fascicles which is consistent with the notion that only a

subpopulation of human unmyelinated axons expresses functional

GABAA receptors. Indeed, immunohistochemical labelling of cat

skin indicates that b2/b3 and a1 GABAA receptor subunits are

restricted to approximately 12% of unmyelinated axons [37].

Following initial observations in single axons in rat [38], it has also

been possible to correlate the receptive class of individual

Figure 5. Only a sub-population of human C-fibres respond to GABA. The magnitude of GABA (10–30 mM) evoked increases in excitability
index correlate with parameters of electrical excitability. The compound C-fibre response in Type A fascicles (A) is typically sub-excitable (i.e. positive
excitability index) at low rates of stimulation and shows a pronounced change in excitability index upon increasing the frequency of repetitive
stimulation (open circles, C). In addition, C-fibre responses in Type A fascicles exhibit a large change in excitability index during bath application of
GABA (30 mM, open circles, D). In contrast, C-fibre responses electrophysiologically classified as Type B (B) are typically super-excitable at low stimulus
frequencies, show a modest change in excitability upon repetitive stimulation at 2 Hz (encircled crosses, C) and typically respond poorly or not at all
to GABA (30 mM, encircled crosses, D). The filled markers in panels C and D represent fascicles for which a classification based upon the C-fibre
response profile to repetitive electrical stimulation at 2 Hz was not determined.
doi:10.1371/journal.pone.0008780.g005

Table 1. Incidence of C-fibre responses by sub-type in human
sural nerve.

Nerve ID Total fascicles Type A Type B

AR 180 3 2 (2) 1 (1)

KF 182 5 1 (1) 4 (0)

WF 183 2 0 2 (0)

IW 184 4 4 (4) 0

MH 185 3 1 (1) 2 (0)

The collective population of unmyelinated axons within individual nerve
fascicles was characterized by a period of electrical stimulation at 2 Hz (see
Figure 4). C-fibre responses were classified as either Type A or B (see Results).
The incidence of each type of response is shown as a function of the nerve of
origin (Nerve ID). The values in parentheses indicate the incidence of C-fibre
responses to GABA (30 mM).
doi:10.1371/journal.pone.0008780.t001

Human C-Fibre GABAA Responses
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unmyelinated axons in humans on the basis of the change in

axonal conduction velocity they exhibit during a period of

stimulation at 2 Hz [39]. In particular, when normalised for

differences in their basal conduction velocity, axons from

nociceptors exhibit a more pronounced slowing of axonal

conduction velocity than do non-nociceptive sensory afferents

[39,40] and sympathetic efferents [41] during repetitive activation.

We show here that compound C-fibre action potential responses in

isolated human nerve fascicles fall broadly into two populations on

the basis of the changes in conduction latency and excitability they

exhibit during stimulation at 2 Hz (Figure 4). This result was

somewhat surprising given that human microneurographic studies

suggest a somatotopic rather than a functional grouping of

unmyelinated axons [42] and that human sural nerve fascicles may

contain upward of one thousand unmyelinated axons [43] within

which even individual Remak bundles may contain heterogeneous

axonal sub-types [44]. Nevertheless, based on functional charac-

teristics, it appears that the characteristic compound electrical C-

fibre response profile of individual human nerve fascicles is largely

consistent with either nociceptive or non-nociceptive unmyelinat-

ed axons (Figure 4). For instance, fascicles classified as Type A

exhibited properties consistent with their containing predominant-

ly nociceptive unmyelinated axons, they were sub-excitable at low

stimulus rates and showed pronounced activity-dependent slowing.

Moreover, the C-fibre excitability index determined in all eight

Type A increased in response to GABA (Figure 5D). In contrast,

only one of the nine Type B fascicles deemed to be comprised

largely of non-nociceptive unmyelinated axons responded to

GABA (Figure 5D). In rat sciatic nerve, GABA responses in

myelinated nerve fibres are also restricted to sensory axons, motor

axons do not respond to GABA [13,45]. In this context, while

GABA has been shown to modify formalin-induced behavioural

responses in cats [37] it would be interesting to examine which

sensations, if any, GABA might evoke in human subjects.

Functionally, the activation of axonal GABAA receptors has

been associated with a reduction in the safety factor of action

potential initiation [19] and conduction [46] as well as the

regulation of neurotransmitter release [47]. Verdier et al. (2003)

propose that axo-axonic GABAergic synapses exert an inhibitory

effect on axonal discharge such that tonic activity is periodically

interrupted resulting in a bursting pattern. This is consistent with

the dependence of GABA’s efficacy upon preceding activity

observed here in human C-fibres (Figure 3) and suggests that

GABA may exert a more pronounced action on active C-fibres.

Another possible role of axonal GABAA receptors involves the

increase in the intracellular chloride concentration of DRG

neurones observed in response to both inflammatory mediators

[23] and following peripheral nerve injury [24]. Speculatively,

under such conditions, it is possible that GABAA receptor

activation produces exaggerated depolarizing responses that may

acutely initiate action potentials or open voltage-gated Ca2+

channels that are present in unmyelinated human axons [48].

The data establishes the functional expression of GABAA

receptors in the axonal membrane of a sub-population of

unmyelinated afferent human nerve fibres that most probably

comprises nociceptors. It has been postulated that a loss of

interneuron mediated GABAergic inhibition within the spinal

dorsal horn may contribute to the establishment and maintenance

of some neuropathic pain states (see [49,50]). Indeed current

therapeutic strategies currently being developed in mice are aimed

at reversing this GABAergic disinhibition through sub-type

selective activation of GABAA receptors expressed in the spinal

dorsal horn [50]. If the functional GABAA receptor expression in

peripheral human unmyelinated axons extends further to the

centrally projecting axons of sensory neurones, this observation

provides considerable impetus for the translation of GABAA

receptor targeted strategies to humans.

Materials and Methods

Ethics Statement
Approval for the experimental use of human tissue was granted

by the Ethics Committee of the Medical Faculty of the University

of Munich (Project Number 348/00). Patients were informed

about the biopsy procedure by an anaesthetist one day prior to

surgery at which time the patient’s written consent to the removal

of an additional portion of nerve for research purposes was

established.

Experiments were carried out on isolated fascicles of human

sural nerve obtained from 16 patients (9 male, 7 female) previously

scheduled for either sural nerve biopsy or lower limb amputation.

Segments of sural nerve were obtained from patients ranging in

age from 20 to 89 years with a median age of 68 years. The

underlying diagnosis precipitating biopsy was either polyneurop-

athy of unknown aetiology or peripheral artery occlusive disease.

Neither the profiles of electrical excitability nor the pharmacolog-

ical responses of C-fibres within individual fascicles were

correlated with the prevailing pathological classification.

Segments of human sural nerve obtained at biopsy were

typically 15–25 mm long. Individual nerve fascicles were carefully

extracted from isolated segments of sural nerve by gently pulling

them free with jeweller’s forceps. Isolated fascicles were mounted

between suction electrodes in an organ bath. Each end of the

nerve fascicle was drawn into a glass suction electrode and

embedded in Vaseline to establish both a mechanical and a high

resistance electrical seal. The organ bath (volume ca. 1 ml) was

perfused continuously at a rate of 6–8 ml.min21 with physiological

solution of the following composition (in mM) NaCl 117, KCl 3.6,

CaCl2 2.5, MgCl2 1.2, D-glucose 11.0, NaHCO3 25, NaH2PO4

1.2, bubbled with 95% O2/5% CO2 to pH 7.4. The temperature

of the solution perfusing the bath was held constant at 34uC.

Axonal excitability was determined in C-fibres by stimulating

the nerve fascicle electrically with constant current pulses (A395,

WPI, Sarasota, USA). A silver wire inside the stimulating suction

electrode served as the anode and a second silver wire wound

around the suction pipette in the organ bath served as the cathode.

Extracellular signals were recorded over the sealing resistance of

the second suction electrode with a differential amplifier (NPI,

Tamm, Germany). The distance between stimulating and

recording electrodes was typically 4–8 mm. A window discrimi-

nator allowed the C-fibre response to be monitored in isolation.

An electrical stimulus protocol was used to examine the effect of

GABA on the excitability of C-fibres in sural nerve fascicles.

Constant current pulses of fixed duration (1 ms) and varying

amplitude were used to track changes in C-fibre excitability with

QTRAC software (� Institute of Neurology, London, UK). Three

interleaved stimulus parameters were monitored sequentially.

Firstly, a supra-maximal current intensity was established at

which the amplitude of the compound C-fibre response was

maximal and this was designated a 100% response (100%,

Figure 1A). Electrical threshold was the second stimulus parameter

monitored. This is defined as the current required to elicit a

compound C-fibre response with an amplitude 40% that of the

response to supra-maximal stimulation (40%, Figure 1A). The

stimulus current required to evoke a 40% amplitude C-fibre

compound action potential was continuously adjusted by the

QTRAC software. The third parameter was post-spike electrical

threshold and this is the stimulus current required to maintain a

Human C-Fibre GABAA Responses
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conditioned C-fibre compound action potential response of 40%

amplitude, that is 30 ms after a conditioning supra-maximal

electrical stimulus (40% cond., Figure 1A). The difference between

the conditioned and unconditioned current intensities normalised

to the stimulus intensity of the conditioned response is defined as

the ‘excitability index’ and is expressed as a percentage.

Gabazine (Biotrend, Cologne, Germany), baclofen, bicuculline,

gamma-aminobutyric acid, muscimol and picrotoxin (Sigma,

USA) were stored as stock solutions in distilled water. The desired

concentration of each substance was achieved by dilution from

stock into the solution perfusing the bath on the day of each

experiment.

Data are expressed as mean and standard deviation for

comparisons between groups while for population descriptors

mean and standard error of the mean are indicated. Student’s t-

test was used for statistical comparisons of paired datasets. Curve

fitting was performed in Igor Pro (Wavemetrics, Lake Oswego,

USA) which uses the Levenberg-Marquadt algorithm for least-

squares minimization.
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