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Abstract

The role of facial vibrissae (whiskers) in the behavior of terrestrial mammals is principally as a supplement or substitute for
short-distance vision. Each whisker in the array functions as a mechanical transducer, conveying forces applied along the
shaft to mechanoreceptors in the follicle at the whisker base. Subsequent processing of mechanoreceptor output in the
trigeminal nucleus and somatosensory cortex allows high accuracy discriminations of object distance, direction, and surface
texture. The whiskers of terrestrial mammals are tapered and approximately circular in cross section. We characterize the
taper of whiskers in nine mammal species, measure the mechanical deflection of isolated felid whiskers, and discuss the
mechanics of a single whisker under static and oscillatory deflections. We argue that a tapered whisker provides some
advantages for tactile perception (as compared to a hypothetical untapered whisker), and that this may explain why the
taper has been preserved during the evolution of terrestrial mammals.
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Introduction

Mammalian vibrissae (whiskers) are sophisticated sense organs,

used as a supplement for short-range vision, and in some cases to

detect vibrations in air or water [1,2,3]. Vibrissae are easily

distinguished from other kinds of body hair by their large basal

diameter and by the presence of a heavily innervated and

vascularized follicle (called the follicle-sinus complex, or FSC).

Contact between the whisker and an object produces activity in

hundreds of mechanoreceptors in the FSC. The angle at which

each whisker projects from the face is under voluntary control in

many species, due to the attachment of striated muscle to the FSC.

Rats, in particular, probe their environment with a stereotypical

‘‘whisking’’ movement – sweeping the whiskers forward and back

with a period ,0.1 s [4,5]. However, most species simply protract

or retract the whiskers as needed (e.g. seals, cats), and some species

have whiskers that are immobile (e.g., horses, cows) [3,6].

In recent years, the large facial vibrissae of the rat have become

a model system in sensory neuroscience. Experiments have shown

that rats can perform remarkable feats of tactile discrimination in

comparison tasks involving small differences in object distance,

direction, or surface texture. Using just their vibrissae, rats can

distinguish between aperture openings of 62 and 65 mm diameter

[7], between the placement of vertical posts that differ by as little

as ,1u in direction to the snout [8], between a smooth surface and

one with grooves just 30 mm deep [9], and between sandpapers of

different coarseness [10]. Discriminations with high accuracy

typically require the integration of information from multiple

whiskers, and performance decreases if some whiskers are cut

[4,7].

In parallel with behavioral research, the neural correlates of

various whisker stimuli have been observed. The mechanorecep-

tors of the FSC send signals to the primary somatosensory cortex

(S1), via the trigeminal ganglion (Vg) and the thalamus. In the S1,

each whisker is represented by a distinct column of neurons called

a ‘‘barrel’’. Measurements of neuron spike patterns in the Vg and

in S1 barrels have revealed populations of cells that encode the

kinematic state of the whisker (protraction or retraction, etc)

[11,12], contact between the whisker and an object [12], the

direction of whisker deflection during contact [13], the distance of

an object from the face during contact [14], vibrations of the

whisker in certain frequency ranges [15,16], stick-slip frictional

contact [17], and surface roughness [18,19]. Thus, the wide range

of discrimination tasks performed by rats is reflected by an equally

wide diversity of neural population and spike encoding schemes.

The whisker functions as a mechanical transducer, converting

forces applied along the shaft to tissue forces in the FSC, where the

mechanoreceptors are located [20]. The specific mechanics of the

whisker as a transducer are still unclear, but there are several

published models. First and most simply, the whisker may function

as an approximately rigid beam. Contact in this case would be

read as an ‘‘all-or-nothing’’ signal, and the direction of whisker

emergence from the FSC would indicate the direction of the object

(possibly after a correction for whisker curvature) [12,21]. Brecht

et al. [21] published an early model for how this might work in

practice. If a whisker of length L1 is in contact with an object and a

shorter adjacent whisker of length L2 is not, then the object is

presumably at a distance between L1 and L2. Subsequent work has

revealed this to be a simplification, but the basic view of the

whisker array as a sensor for object distance and direction remains

sound [7,8].

A revised view of whisker mechanics, in its role as a transducer,

was provided by Kaneko [22], who noted that a flexible whisker

has advantages over a rigid whisker for distance discrimination

tasks. Namely, the whisker can remain in contact with an object

while the base of the whisker is protracted through a range of

angles by the muscles of the follicle. For a given net protraction

angle, objects closer to the whisker base will generate larger
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mechanical stresses in the tissues of the FSC. The ratio of the stress

to the amount of protraction – called variously the ‘‘rotational

stiffness’’ or ‘‘rotational compliance’’ – can be directly related to

the distance of object contact. In this way, Kaneko [22] and

subsequently Solomon et al. [23] suggested that a single flexible

whisker can be used to extract information about contact distance.

Thus, an array of flexible whiskers can in principle perform better

than an equivalent array of rigid whiskers. This proposal remains

speculative, due to a lack of detailed data on stresses in the FSC.

However, the rotational stiffness hypothesis would seem to be the

most direct explanation for the observation of Szwed et al. [14],

who found that some Vg neurons encode the contact distance

along isolated whiskers.

The role of the whisker as a mechanical oscillator is also

relevant for tactile perception [16,24,25,26]. Both Hartmann et al.

[24] and Neimark et al. [25] measured the response of isolated

whiskers to mechanical vibrations. Both found that whiskers

exhibit resonant phenomena, which is to say that the whisker itself

vibrated most strongly in response to a narrow range of driving

frequencies. Neimark et al. [25], then proposed that this resonance

is a likely mechanism for texture discrimination. Namely, a

whisker tip dragged over a rough surface will only vibrate

detectably if the rate at which surface features deflect the tip

matches a resonant frequency of the whisker. An array of whiskers

with a range of resonant frequencies, whisked over an object,

might convert texture information into components with different

frequencies, analogous to the way the ear analyzes sound. In

agreement with the hypothesized role of the whisker as a

resonator, Andermann et al. [15] identified populations of neurons

in the Vg and S1 that respond to whisker vibrations only within a

narrow band of frequencies (+/240 Hz) centered at resonance.

In this paper we are interested in the possible importance of

whisker taper for its role as a transducer. There are widespread

reports of whisker taper in the literature, but few quantitative

studies. Ahl [27] made a microscopic survey of vibrissae in 46

species of Sciuridae (squirrels) and reported that ‘‘the tip tapers to

a fine diameter in intact vibrissae’’, but no diameter values are

reported. Yanli et al. [28] survey vibrissa shape in more than 20

mammalian species. They state that vibrissae are ‘‘conical’’ in all

species examined, and for 23 species quote estimates for the basal

diameter. They do not, however, provide a value for the tip

diameter. To our knowledge, quantitative measurements are only

available for rats and mice, where the ratio of vibrissae base to tip

diameter is ,15 [24,29].

Measurements of whisker taper are complicated by the fact that

whisker tips frequently erode, bend, fray, or break off during

normal use. Published evidence on this is scarce, but there are

several relevant papers. First, Ibrahim & Wright [29] measured

weekly whisker growth in mice and rats and observed several

breaks, though breakage rates were not quantified. Second,

Sokolov & Kulikov [2] made a microscopic examination of the

whiskers of nine rodent species and noted that the tips of ‘‘nearly

all’’ vibrissae showed signs of wear. Third, Greaves et al. [30]

studied the growth of whiskers in captive gray seals (Halichoerus

grypus) by measuring the length of whiskers on a biweekly basis.

Over the six month study period, about 35% of all whisker

measurements gave a value lower than the value recorded two

weeks previous, observations the authors interpreted as whisker

breaks. Fourth, Neimark et al. [25] measured the dimensions of 18

mystacial (upper lip) vibrissae from the left side of a rat. Their

whiskers (see their Table 1) can be placed into two classes: those

with a tip diameter of 6 mm or less (10 out of 18, 56%) and those

with a tip diameter of 12 mm or more (8 out of 18, 44%).

Considering that other groups report a tip diameter of ,5 mm for

rat whiskers [24,29], we suggest that whisker tips in the larger class

represent breaks (the tapered shape means that a broken tip will be

wider). The main consequence for the discussion here is that the

normal use of whiskers involves breaks and erosion that may

dramatically increase the tip diameter.

The fact that whisker breaks are common raises an interesting

question about the possible selective advantage of tapered

whiskers. Breaks occur near the tip, where the whisker is relatively

narrow. A whisker of uniform diameter having the same mass

would be much thicker at the tip, and would presumably break less

often. One might therefore ask whether whisker taper provides

some compensatory selective advantage that has led to its

preservation during mammalian evolution. We will consider this

possibility in the Discussion section.

In subsequent sections, we analyze the mechanics of isolated

whiskers, and suggest that the taper may indeed provide some

advantages for whiskers in their role as transducers. Throughout,

we will compare the mechanical behavior of a tapered whisker

model with an analogous untapered (cylindrical) whisker.

Results

Whisker Taper
To determine typical values for whisker taper, we measured

whiskers attached to preserved pelts in the mammal collection at

the University of Massachusetts, Amherst. Results are shown in

Table 1. It is clear that whiskers are tapered across diverse genera,

with a base to tip diameter ratio of ,10. The occasional values

well below 10 probably indicate whiskers with broken tips,

although in the case of preserved pelts we cannot determine

whether the breaks occurred post mortem.

We also wanted to characterize the linearity of the taper. Fig. 1

replots data reported by Ibrahim and Wright [29] for the first

whisker row of a Wistar rat. The length and diameter have been

scaled to provide a ‘‘typical’’ whisker profile. We see that the

whisker profile is approximately linear, excepting some swelling

close to the follicle. This is in agreement with [24] and [31], who

approximate a rat whisker as a truncated cone (that is, a cone with

the tip cut off). In this model, whisker profile is characterized by

three numbers: length, base diameter, and tip diameter. The main

variable of interest here is the degree of taper, which we define as

the ratio of base to tip diameters.

Table 1. Whisker taper.

Species Common name Taper (RB/RT)

Felis catus domestic cat 7,10,13

Halichoerus grypus gray seal 12,12,14

Martes pennanti fisher 10,11,14

Mus musculus, var C3H mouse 14,16,20,22,24

Panthera tigris tiger 4,10,20

Procyon lotor racoon 6,7,9

Puma concolor cougar 4,8,11

Rattus norvegicus, var Wistar rat 10,14,15,21,22

Taxidea taxus badger 4,7,7

Ursus americanus black bear 7,7,8

Vulpes vulpes red fox 14,22,30

Measured taper (base radius/tip radius) for cheek vibrissae on preserved pelts.
Typically, three of the longest vibrissae were selected. Data for rat and mouse
are estimated from Ref. [29].
doi:10.1371/journal.pone.0008806.t001

Advantages of Tapered Whiskers
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Maximum Deflection and Protraction
As we noted in the introduction, many mammal species use

their whiskers to actively palpate an object, while in other species

the whisker has a fixed direction and functions as a passive sensor.

We will consider both situations, but begin with the passive case.

Consider an isolated, straight, passive whisker as a probe for the

direction of an object. Because the whisker is flexible, there will

typically be a deflection angle h between the basal direction of the

whisker and the direction of the object in contact (Fig. 2). As

described in the Methods section, we measure the maximal range

of deflection angles that a whisker can sustain. Figure 2 shows

typical results for the mystacial whiskers of rats and domestic cats,

and for untapered model whiskers cut from steel wire or plastic

fishing line. We find that, for a given object distance, the

maximum deflection angle of a tapered whisker is smaller by about

50% as compared with an untapered whisker.

The theory of elastic beams predicts that a plot of maximal

deflection angle, scaled as shown in Fig. 2, should be independent

of the whisker length, diameter, and Young’s modulus, and

depend only on the whisker taper and the amount of friction at the

contact point (see File S1). Our experiments are in approximate

agreement with this independence. First, maximal deflections for

the tapered whiskers of cat and rat differ from each other by less

than ,10u, and are clearly distinguished from the untapered

model whiskers. Second, the maximal deflections of wire and

fishing line compare well with each other and with the theoretical

curve for a frictionless, cylindrical beam (the experimental values

are somewhat larger than the theoretical curve, presumably due to

friction between the pin and the whisker).

The small deflection angles observed for tapered whiskers might

seem counterintuitive. Because the bending stiffness of a

cylindrical beam increases with the fourth power of the diameter,

tapered beams will be more flexible close to the tip, and thus more

easily deflected. However, this does not result in a greater overall

deflection. Instead, it tends to concentrate the curvature of the

whisker into a zone near the tip, so that the whisker ‘‘flicks’’ past

an obstacle without requiring globally high curvature.

Now we consider active palpation of an object (Fig. 3). In this

case the whisker comes into contact with a stationary object, and

the whisker base is protracted by the muscles of the follicle, causing

the whisker to bend. In Fig. 3, we re-plot the data gathered in the

deflection experiment to show the maximum angle of protraction

achieved before the whisker tip flicks past the object in contact. We

see a large difference between the tapered whiskers and untapered

model whiskers. Consider the example of a whisker that

encounters an object at a normalized distance of 0.8. A tapered

whisker would flick past the object with a protraction angle of

,20u, while an untapered whisker would require a protraction

angle larger than 60u.

Rotational Stiffness
As we describe in the introduction, Szwed et al. [14] apply a

contact to whiskers at 30%, 60%, or 90% of the distance from the

whisker base, and observe two kinds of neuron encoding. As the

contact is moved closer to the face, some cells increase their spike

rate, and a higher proportion of touch-activated cells become

Figure 1. Whisker taper. Profiles of five whiskers from a Wistar rat
(data from [29]), with x and y scaled by total whisker length and basal
diameter respectively. Labels A1 through A4 and b indicate whisker
locations on the mystacial pad. Line is the best fit to all points with
scaled length less than 0.8, fit equation, y = 0.036+0.825 x.
doi:10.1371/journal.pone.0008806.g001

Figure 2. Maximal whisker deflection. Top: sketch of a passive
whisker (blue) deflected by contact with an object (green). The
deflection angle h is the angle between the direction of the whisker
base and the direction of the object. Bottom: maximum deflection
angle as a function of normalized object distance x/L for two cat
whiskers, two rat whiskers, and two artificial whiskers cut from steel
wire or plastic fishing line. Solid line is the prediction of elastic beam
theory for an untapered whisker under large deflections [47], assuming
a frictionless contact between whisker and object. Error bars show
standard errors (n = 4), and in some cases are smaller than the symbols.
doi:10.1371/journal.pone.0008806.g002

Advantages of Tapered Whiskers
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active. Although the means by which distance discrimination is

accomplished is not clear, the best available theory is based on the

rotational stiffness. This quantifies the magnitude of the force

generated by the FSC to protract the whisker base through, say,

one additional degree of angle, after the whisker has made contact

with an object. Closer contacts impose a higher rotational stiffness.

The rotational stiffness is defined as the derivative with respect

to angle of the bending moment at the follicle, K = dM/dh. For

simplicity, Kaneko [22] and Solomon et al. [23] work with

expressions valid for small protraction angles (h,,14u), an

approximation that appears to be valid for rat whisking behavior

[4,31]. Solomon et al. [23] note that animal nervous systems are

better at detecting rates of change rather than absolute values, and

so suggest that the relevant biological variables for distance

determination are the rate of change of the moment and the rate

of change of the protraction angle (see their online Supplemental

file). However, they show that the rotational stiffness K

characterizes the relationship between these two rates.

The rotational stiffness of a truncated conical whisker in contact

with an object at distance x from the whisker base is

K xð Þ~C 1=x{ RB{RTð Þ= LRBð Þ½ �, where L is the whisker

length, RT and RB are the radii at the whisker tip and base

respectively, and the constant C~ 3=4ð ÞpE RBð Þ4, where E is the

Young’s modulus [23]. For an untapered beam, the equivalent

expression is K xð Þ~C=x [22]. Closer objects produce larger and

more rapid changes in the moment, so K increases with decreasing

x. Figure 4 shows the rotational stiffness calculated for tapered and

untapered whiskers. Between the whisker midpoint and the tip, the

rotational stiffness of an untapered whisker varies by only a factor

of 2, but for tapered whiskers the ratio is much larger: 6 and 21 for

base to tip ratios of 5 and 20 respectively.

Robustness of the Resonant Frequency
As discussed in the introduction, the whisker shaft functions as a

mechanical oscillator during texture discriminations, with a

resonant frequency that may be understood using the classical

theory of elastic beams [24,25]. Andermann et al. [15] identified

neurons in the Vg and S1 that respond to vibrations within

,40 HZ of the resonant frequency, and that show no response

(above background) outside this range. They concluded that this

frequency tuning was achieved via whisker resonance. The

amplitude and velocity of whisker vibration is enhanced near the

resonant frequency, and the mechanoreceptors of the follicle

respond to this increased amplitude and/or velocity. This suggests

that, if physical damage to the whisker tip leads to a change in

resonant frequency, the neural circuits of Vg and S1 will respond

to the wrong frequency components in whisker stimuli.

The resonant frequency of a tapered whisker is relatively robust

under tip breaks, compared to the resonant frequency of an

untapered model whisker. As discussed in the Methods section, the

theory of elastic beams can be used to express the fundamental

resonant frequency of a cylindrical or tapered beam in terms of its

density, Young’s modulus, base and tip radii, and length [24,32].

We use this expression to calculate the change in the resonant

frequency of a whisker if the tip breaks (Fig. 5). Consider, for

example, a typical whisker with a base to tip diameter ratio of 10.

If the distal 10% of the whisker breaks off, beam theory predicts an

increase in the resonant frequency of 8%. An untapered whisker

suffering the same break will increase in frequency by 23%.

Conversely, a whisker with a base to tip diameter ratio of 20 shows

Figure 3. Maximal whisker protraction. Top: sketch of an active
whisker (blue) undergoing protraction at its base during sustained
contact with a stationary object (green). The protraction angle h is
defined relative to the surface normal. Bottom: re-display of the data
shown in Fig. 1, to show the maximum protraction angle as a function
of normalized object distance r/L. Symbols as in Fig. 2.
doi:10.1371/journal.pone.0008806.g003

Figure 4. Rotational stiffness. Normalized rotational stiffness, K(x)/
K(L/2), calculated for various truncated conical elastic beams. Top to
bottom, the three curves correspond to tapers (RB/RT) of 1 (the
untapered case), 5, and 20. We only show the distal half of the whisker,
since whisker contacts are distal during natural behaviors [5].
doi:10.1371/journal.pone.0008806.g004

Advantages of Tapered Whiskers
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a smaller change, with a resonant frequency increase of just 5%. In

general, the resonant frequency of a tapered whisker is less

sensitive to breaks than an untapered whisker, and sharply tapered

whiskers are less sensitive than blunt tapered whiskers.

Discussion

Whiskers are absent in monotremes, so it is believed that

whiskers evolved in the therian mammals about 120 million years

ago [21]. We know of no fossilized whiskers, so it is unclear

whether the whiskers of early therians were tapered. However,

published data on extant mammals [1,28,29], and our own survey

(Table 1), suggests that the tapered profile is widespread. As far as

we know, the only exception to the typical ‘‘truncated cone’’ shape

occurs in the superfamily Pinnipedia (seals and walrus). These

have whiskers that are oval in cross section, as compared to the

circular cross section of terrestrial mammals [33]. More dramatic

is the shape of whiskers in phocid seals, a subgroup of the

pinnipeds. Their whiskers do taper from base to tip, but with

periodic oscillations in diameter that give the whisker a wavy or

‘‘beaded’’ profile [33,34]. It seems likely to us that differences in

the whisker shape of terrestrial mammals and pinnipeds reflect the

differences in terrestrial and marine environments. For example,

phocid seals can use their whiskers to detect small water currents

produced by prey animals [3]. No equivalent behavior has yet

been shown in a terrestrial mammal, possibly because the much

lower viscosity and density of air prevents this mode of whisker

use. In the discussion that follows, we focus on terrestrial

mammals.

Exceptions to the conical shape of a whisker are important for

another aspect of our discussion. Because we are arguing that

tapered whiskers may have some selective advantages, it is

important to emphasize that the taper does not reflect fundamen-

tal constraints on the development or physiology of the follicle. For

example, the oval cross section of pinnipeds and the beaded profile

of phocid seals demonstrate that evolution can select for different

whisker shapes. Looking beyond vibrissae, the surprising variety of

cross-sections in the non-vibrissal hair of mammals [6], the fact

that pelage (body) hair is untapered except near the tip [35], and

even the evolution of feathers [36], show that integumentary

appendages grown from follicles can exhibit a wide range of

morphologies. Thus, we suggest that the widespread occurrence of

tapered whiskers does not reflect a fundamental constraint on

follicle development or physiology.

In the paragraphs that follow, we review our analysis of whisker

mechanics and suggest ways that the taper may provide a selective

advantage. Before pursuing this, it is helpful to mention two

aspects of whisker mechanics and physiology that we will neglect

below. First, we neglect whisker curvature and consider only

straight whiskers. A discussion of whisker curvature may be found

in Birdwell et al. [31], who consider the effect of curvature on

whisker mechanics and argue that the effects are generally small.

Second, we neglect the possibly important role of follicle

compliance. The deflection and vibration properties of the whisker

depend on, and may be modulated by, the mechanical properties

of the FSC [24,25].

Now we consider each subsection of the Results in turn. The

following discussion is necessarily speculative, since we are trying

to apply observations on isolated and model whiskers to a

consideration of animal behavior and evolutionary advantage. We

will distinguish between passive vibrissae, whose angle of

emergence from the skin is fixed, and active vibrissae, whose

angle is under voluntary control. Most published work on vibrissae

has focused on the active mystacial vibrissae of rats, but it should

be noted that passive whiskers are common in herbivores, and that

species with active whiskers typically have additional, passive

whiskers at locations other than the mystacial pad [2,6,37].

Whisker Taper
We suggest that one of the main advantages of whisker taper, at

least for active whiskers, is to provide a small diameter at the

whisker tip, to allow for a finer probe of small surface features.

Recent studies of texture discrimination in rats highlight the

importance of stick-slip events: as the whisker is swept over a

surface, the tip of the whisker is briefly in static contact with the

surface, and subsequently slips before a new static contact is

established [17,18,19,26]. Static contacts are due to a combination

of mechanical pinning and static friction, and a smaller whisker tip

diameter will presumably allow the whisker to make static contacts

with smaller surface features.

A comparison of whisker tip diameter with measurements of

whisker tactile acuity is consistent with this view. Carvell et al. [9]

found that rats could reliably distinguish a smooth surface from

one with 30-mm deep grooves. Arabzadeh et al. [18] measured

whisker vibration and neuron firing patterns during surface

sweeps, and found distinct responses for sandpapers with a mean

grain size of 15 and 35 mm (Jadhav et al. [17] subsequently

returned to this protocol and identified stick-slip events as key

stimuli). Thus, surface features in the range of 15 to 30 mm can

influence rat whisker kinetics and performance on sensory tasks.

This is to be compared with a typical unbroken tip diameter of

,5 mm [24,29] and an observed range of broken tip diameters 12

to 35 mm [25]. Whisker tip diameters are thus somewhat smaller

or comparable to the known limits of surface feature discrimina-

tion in rats.

If the smallness of the tip diameter is important for proper

whisker function, this may help explain why whiskers are routinely

shed and replaced. The growth and replacement cycle lasts about

Figure 5. Resonant frequency robustness. Graph showing the
percentage increase in the resonant frequency of a model whisker after
a break that decreases the length by 5, 10, or 15%. Values are calculated
using Eqns. (1) and (2), for an untapered elastic beam (RB/RT = 1) or a
tapered elastic beam (RB/RT = 10 and 20).
doi:10.1371/journal.pone.0008806.g005

Advantages of Tapered Whiskers
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5 weeks in mice, and 8 weeks in rats [29] (the whiskers are not shed

synchronously with each other or with a molt of pelage hair).

Sokolov & Kulikov [2] previously suggested that the whisker

replacement cycle was an adaptation to limit the deleterious effects

of wear at the tip, although they did not speculate about how wear

might limit whisker performance. We suggest that whisker tip

erosion or breaks may decrease the effectiveness of whiskers during

fine texture discriminations by gradually increasing the tip

diameter.

Of course, taper is a statement about the relative diameter of

whisker tip and base. The preceding argument may help explain

why whisker tips are narrow, but not why the whisker base should

be relatively broad. Recall that the bending modulus of an elastic

beam increases with the fourth power of diameter. It is thus

possible that the larger basal diameter is necessary to maintain the

overall rigidity of the whisker, so that the muscles of the follicle can

accurately control the location of the tip.

Maximum Deflection and Protraction
In the case of passive whiskers, we consider the case of an object

moving relative to the whisker, and measure the maximum

deflection angle between the direction of the whisker base and the

direction of the object in contact (Fig. 2). The maximum deflection

angle for a tapered whisker is substantially smaller than that for an

untapered model whisker. As a result, the volume of space

accessible to a passive tapered whisker is only about 1/4th that of

an untapered whisker. In this sense, tapered whiskers have a

higher spatial acuity.

The role of passive whiskers in behavior, and their neural

correlates, have not been studied as thoroughly as active whiskers.

However, likely roles for passive whiskers are (1) to help the animal

locate objects near the body and orient in response, and (2) to

function as ‘‘guard’’ vibrissae in various avoidance responses, to

protect the face and body against abrasion or attack [1,2]. In both

cases, we suggest that the higher spatial acuity of tapered whiskers

may provide a selective advantage. In particular, the speed and

accuracy of avoidance behaviors triggered by guard vibrissae may

benefit from this acuity. More research on passive whiskers will be

required before firmer conclusions can be drawn.

For the case of active sensing (Fig. 3), we find that tapered

whiskers can sustain object contact over a much narrower range of

protraction angles than untapered model whiskers. This initially

suggested to us that tapered whiskers would provide an improved

spatial acuity during palpations. However, the maximal protrac-

tion angle before flick past may not be a relevant criterion for this

task. Whisker protraction during object palpation appears to be

limited to angles less than ,5u, smaller than our measured flick

past threshold in rats except very near the tip [4,7]. On the other

hand, stick-slip events observed during texture discriminations

may provide a better application of the flick past geometry

considered here [17,18,19,26] (see especially the whisker tracking

images of Ritt et al. [26]). By limiting the size of whisker

deflections during a stick event, taper may help the follicle control

the movement of the whisker tip across a surface.

Rotational Stiffness
As described above, several groups [22,23,31] have suggested

that rotational stiffness K is a plausible proxy for the distance d

between the whisker base and the point of object contact. We

noted that an untapered whisker has a relatively weak dependence

of K on d, varying by a factor of 2 between the whisker midpoint

and the tip, as compared with tapered whiskers, which vary by

much larger amounts (Fig. 4). In an analysis of robotic whiskers,

Kaneko [22] noted that the interpretation of rotational stiffness in

real-world settings would be complicated by object compliance

(softness), friction, and curvature. For example, a low value for K
could reflect contact with a nearby, compliant object, or a more

distant, harder object. To resolve this difficulty, Kaneko (who

considers only untapered model whiskers) proposed a revised

distance proxy that requires more than one contact event with the

object. While rat whisking behavior does provide stereotyped and

repeated contact with an object, this is not the case with non-

whisking mammals. In addition, the observation of neuron

populations in rats that respond to object distance during a single,

sustained contact [14] suggest that repeated contacts are not

required. We suggest instead that the steeper dependence of K on

d for tapered whiskers might be a simple way to minimize the

ambiguity introduced by object compliance, curvature, and

friction.

One caveat to this proposal is the possible importance of a

detection threshold for mechanoreceptors in the follicle. Because

of the steepness of the K -d curve for tapered whiskers (Fig. 4),

tissue stresses in the follicle due to object contact near the whisker

tip will be relatively small. Sub-threshold stresses would limit the

advantage to be gained from a tapered whisker. Further progress

will require a quantitative analysis of the tissue stresses, perhaps

using a finite element model similar to Ref. [38] for fingertips.

Robustness of the Resonant Frequency
In the section on whisker resonant frequencies, we noted that

the principle resonant frequency of a tapered whisker is relatively

robust under whisker breaks. That is, the resonant frequency

changes by a small percentage as compared with similar breaks in

an untapered whisker (Fig. 5). At first, this might appear to provide

a substantial advantage during texture discrimination tasks. As

described by Neimark et al. [25], a whisker array swept across an

object may provide texture information as a Fourier transform,

with different whiskers oscillating at different frequencies. Thus,

the robustness of each whisker under tip breaks would be a way to

preserve the sensory encoding scheme of the array. However, an

untapered whisker with the same mass will be thicker at the tip,

and so presumably less likely to break at all. In the absence of

additional information, we can only suggest that whisker taper is

selectively neutral as regards resonant mechanical oscillations

during texture sensing.

The idea that integumentary appendages adjacent to mecha-

noreceptors have been shaped by evolution to improve their tactile

sensitivity or performance is not new. For example, it has been

independently proposed twice that the epidermal ridges of human

fingertips, and the underlying arrangement of papilla, serve to

focus tissue stresses at the sites of mechanoreceptors [38,39]. The

tapered shape of the lobster antenna was recently analyzed from

this perspective as well [40] (note that the lobster antenna is

innervated, and so not an analog for the whiskers considered here).

In this paper we have analyzed the mechanical properties of

isolated whiskers and discussed these properties as they might

relate to various proposals for whisker sensing in vivo. By

contrasting the properties of a tapered with an untapered model

whisker, we have argued that the taper itself may be functionally

important. In the absence of additional experiments on live

animals, these proposals remain speculative. However, we suggest

that the widespread and possibly universal occurrence of whisker

taper in terrestrial mammals reflects the preservation of whisker

taper during therian evolution, due to the selective advantages of

the tapered profile. It may also explain the parallel evolution of

tapered touch-sensitive bristles and hairs in arthropods (e.g., the

macrochaetes and microchaetes of Drosophila) [41,42,43]. Lastly,

these results suggests that robotic whisker systems designed to
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operate under diverse environmental conditions would benefit

from the incorporation of tapered whiskers [22,23,44,45].

Methods

Whisker Taper
Whiskers in Table 1 were measured on preserved pelts from the

mammal collection at the University of Massachusetts, Amherst.

Using digital calipers we measured several dimensions of whiskers

while still attached to the pelts. Three of the longest attached

whiskers were measured for each pelt. Dimensions included length

(without correction for curvature), basal diameter (as near to the

skin as possible), and tip diameter. Since the calipers had a

resolution of 10 mm, and since the whisker was tapered, we regard

tip diameter values only as plausible upper bounds on the true

value.

Whisker Deflection Theory
The theoretical maximum deflection angle for a frictionless,

untapered beam was found using a shooting method algorithm

[46] to solve the equations of an elastic beam under large

deflections [31,47,48]. Further details of this calculation may be

found in File S1.

Whisker Deflection Experiment
Rat whiskers were provided by B. Quist and M. Hartmann.

Following the procedure of [31], whiskers were plucked from a

female Sprague-Dawley rat, mass 274 g, under full anesthesia for

an unrelated experiment. Cat whiskers were not plucked. Instead,

shed whiskers were collected and donated by the owners of several

domestic cats. The labels cat 1 and cat 2 (used in Figs. 2 and 3)

refer respectively to whiskers from a 4 y.o. male and a 13 y.o.

female, both 7 kg. Cat whiskers were only used if they were long

and straight enough for us to conclude that they were mystacial

(upper lip) whiskers. Model untapered whiskers were cut from

lengths of steel wire and plastic fishing line.

The maximum deflections of whiskers were measured via the

following method. The whisker is clamped at its base and a metal

pin is moved perpendicular to the whisker at a fixed horizontal

distance x from the clamp (Fig. 2). As the vertical distance y

increases, the whisker or wire eventually slips past the pin and

returns to its equilibrium shape. The maximum deflection angle is

hmax~atan ymax=xð Þ. Whiskers with detectable curvature were

clamped so that the curvature was perpendicular to the x-y plane.

We confirmed that this produced symmetric plots of hmax. To re-

express the data as a protraction angle (Fig. 3), we plotted hmax

versus the object distance, r~ x2zy2
� �1=2

.

Resonant Frequency
The resonant frequencies of a cylindrical beam and a truncated

cone are classic problems in elasticity theory [32]. The exact

numerical result depends on the boundary conditions, but

following previous reports we focus on the case of a beam

clamped at the wide end and free to vibrate at the tapered end

[24,25]. Other boundary conditions, or a consideration of higher

order resonances, will change the numbers somewhat but will not

change the qualitative conclusions in the Discussion section. The

fundamental resonant frequency f of a cylindrical or tapered beam

of length L, base radius RB, uniform density r, and Young’s

modulus E is

f ~
p a RB

L2

ffiffiffiffi
E

r

s
ð1Þ

where a is a dimensionless number that depends on the ratio of the

tip and base diameters, RT and RB [24,32]. For a cylindrical beam,

a = 3.516 and for a conical beam with no truncation, a = 8.718.

Intermediate cases fall between these values. Following Conway et

al. [32], we used Maple (v.10, Waterloo Maple, Canada) to solve

for the value of a at a range of taper values, and then used

Kaleidagraph (v.3.6.4, Synergy Software) to fit a polynomial for

large taper. The expression

a~8:718{17:646 (RT=RB)z25:317 (RT=RB)2 ð2Þ

is accurate to 1% for RT/RB,0.25.

Supporting Information

File S1 Detailed calculation of the deflection of an elastic beam.

Found at: doi:10.1371/journal.pone.0008806.s001 (0.26 MB

PDF)
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