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Abstract
The pathogenesis of sickle cell disease (HbSS), which has numerous complications including stroke,
involves inflammation resulting in alteration of plasma inflammatory protein concentration. We
investigated HbSS children with abnormal cerebral blood flow detected by trans-cranial Doppler
ultrasound (TCD) who participated in multi-center stroke prevention (STOP) study, to determine if
plasma inflammatory protein concentration is associated with the outcome of stroke in the STOP
study. Thirty-nine plasma samples from HbSS participants with elevated TCD who had no stroke,
HbSS-NS (n=13) or had stroke, HbSS-S (n=13), HbSS steady-state controls (n=7) and controls with
normal hemoglobin, HbAA (n=6), were analyzed simultaneously for 27 circulating inflammatory
proteins. Logistic regression and receiver operating characteristics curve analysis of stroke on plasma
inflammatory mediator concentration, adjusted for age and gender, demonstrated that
interleukin-1β (IL-1β) was protective against stroke development (HbSS-NS = 19, 17–23, HbSS-S
= 17, 16 – 19 pg/mL, median and 25th–75th percentile; Odds ratio = 0.59, C.I. = 0.36 – 0.96) and
was a good predictor of stroke (area under curve = 0.852). This result demonstrates a strong
association of systemic inflammation with stroke development in HbSS via moderately increased
plasma IL-1β concentration, which is furthermore associated with a decreased likelihood of stroke
in HbSS.
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1. Introduction
Inflammation has a central role in the pathogenesis of sickle cell disease (HbSS)[1] which has
numerous complications including cerebro-vascular disease [2] that may culminate in stroke
[3]. The risk of development and severity of stroke and other neurodegenerative diseases have
been associated with altered plasma concentration of specific inflammatory mediators [4]. The
clinical course of HbSS varies widely amongst affected individuals in spite of the shared
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mutation in the β globin chains of the hemoglobin (Hb) molecule, which accounts for the basic
pathology and this has prompted the evaluation of other biochemical pathways besides
hemoglobin for answers to the clinical variability. In this study we investigated the association
of inflammation with the risk of developing stroke in HbSS children with abnormal cerebral
blood flow, by assaying steady state plasma levels for specific inflammatory mediators. The
role of plasma inflammatory mediators in sickle cell disease stroke has not been examined as
fully as for stroke in the general population and in experimental stroke in animal models. The
role of circulating C-reactive protein (CRP) and interleukin (IL)-6 in severity of HbSS was
recently demonstrated in sickle mice [5] and children [6], although their predictive value for
stroke risk was not ascertained.

Researchers have demonstrated that following brain insult cytokine levels are elevated as a
result of increased production from inflammatory cells, glia and neurons [7,8] with IL-1, IL-6,
IL-10, tumor necrosis factor-alpha (TNF-α) and transforming growth factor-beta (TGF-β)
being the most studied for stroke [9]. IL-1β and TNF-α have been associated with exacerbation
of injury in stroke while IL-6, IL-10 and TGF-β have been found to be neuroprotective [10].
Table 1 summarizes some reported roles of specific cytokine/chemokines in cerebral ischemia
and stroke in the general population as well as animal models.

The goal of this study was to identify plasma inflammatory proteins that are associated with
and could predict development of stroke in children with HbSS and abnormal TCD. The
hypothesis is that alterations in plasma inflammatory protein concentrations in HbSS
individuals with abnormal TCD can predict the likelihood stroke occurrence. We selected
cytokines, chemokines and growth factors known to mediate neuro-inflammation and others
that have not yet been investigated for this reason.

2. Subjects and Methods
2.1 Subjects

Approximately 11% of HbSS individuals develop overt stroke by age 20 years, the majority
of which are ischemic strokes with a few being hemorrhagic [11–13]. Between 1995 and 1997
the Stroke Prevention (STOP) trial in sickle cell anemia was conducted using TCD to detect
abnormal cerebral blood flow. One thousand nine hundred and thirty four children 2 to 16 years
of age with homozygous HbSS genotype SS or Sβ0-thalassemia and no history of a previous
stroke were screened at 14 STOP trial centers via TCD blood flow velocity measurement in
the distal internal carotid artery or the proximal middle cerebral artery. Mean velocity
measurements below 170 cm/sec were considered normal and those above 200 cm/sec on at
least 2 separate occasions were considered abnormal. Two hundred and six individuals
qualified for the study, 130 (60 male and 70 female) gave informed consent and were randomly
assigned to either standard care (SC), n=67 or the transfusion (TX) arm, n=63, of the study.
Annual TCDs were performed during the follow up period with stroke as the primary endpoint,
determined by a blinded panel of neurologists who reviewed the clinical and imaging data. The
SC arm demonstrated a significantly higher rate of stroke compared with the TX arm during
the second interim analysis leading to a premature closure of the study [11,14]. This present
study was ancillary to the STOP study, enabling measurement of the stored anonymized plasma
samples that were collected from the study participants for baseline biochemical analysis, upon
recruitment into the study. Institutional review boards of Morehouse School of medicine,
Medical College of Georgia and the New England Research Institutes, approved this ancillary
study.

The stroke group constitutes individuals in the STOP study who developed stroke (HbSS-S)
irrespective of the arm of the study to which they belonged (n=13). The no stroke group is
composed of participants in the STOP study who did not develop stroke (HbSS-NS) during
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the follow up period (n=13). HbAA controls are healthy individuals with normal Hb (n=6),
and age and race matched for comparison with the HbSS-NS and HbSS-S groups. Steady-State
HbSS controls are individuals with no history of stroke or signs indicative of stroke at physical
examination and did not have infection or sickle cell crisis at the time of sample collection
(n=7). These controls were also age and race matched.

2.2 Samples
The test plasma samples for the STOP study were collected upon recruitment, before any
intervention was made, and were stored at −80 degrees Celsius. Plasma samples from HbAA
and HbSS individuals in steady state with no history or physical evidence of cerebro-vascular
complications provided additional controls.

2.3 Multiplex Microsphere Immunoassay
Duplicate measurements from 50 µl plasma samples (n = 39) were made simultaneously to
determine circulating levels of 27 inflammatory proteins [IL-1β, IL-1RA, IL-2, IL-4, IL-5,
IL-6, IL-7, IL-8, IL-9, IL-10, IL-12, IL-13, IL-15, IL-17, eotaxin, fibrocyte growth factor (FGF)
basic protein, granulocyte-colony stimulating factor (G-CSF), granulocyte monocyte-colony
stimulating factor (GM-CSF), interferon-gamma (IFN-γ), 10 kDa interferon-gamma-induced
protein (IP-10), MCP-1, MIP-1α, macrophage inflammatory protein-1beta (MIP-1β), platelet
derived growth factor −bb (PDGF-bb), regulated upon activation, normal T-cell expressed and
secreted (RANTES), TNF-α and vascular endothelial growth factor (VEGF)], using a
commercially available multiplex calorimetric bead-based protein array system, the Bio-Rad
Bioplex Beadlyte system (Bio-Rad, Hercules, CA) powered by Luminex and using human-
specific bead sets. Assays were conducted as instructed by the manufacturer. The results were
interpolated from 5-parameter-fit curves generated using the relevant recombinant human
protein standards. The samples were tested at a 1:4 dilution.

Intra-assay variability of the duplicate determinations was calculated and expressed as
percentage coefficient of variation (CV %) and presented as mean CV±SD% as follows:
IL-1β = 8.3 ± 7.8%, IL-1RA = 9.2 ± 6.9%, IL-4 = 9.5 ± 7.1%, IL-5 = 8.7 ± 6.7%, IL-6 = 8.7
± 11.9%, IL-7 = 8.0 ± 4.9%, IL-8 = 7.7 ± 6.3%, IL-10 = 7.8 ± 4.7%, IL-12 = 7.7 ± 5.0%, IL-13
= 7.8 ± 6.9%, IL-17 = 9.2 ± 10.4%, Eotaxin = 8.9 ± 8.3%, G-CSF = 8.9 ± 7.9%, GM-CSF =
9.9 ± 7.0%, IFN-γ = 7.7 ± 4.5%, IP-10 = 9.6 ± 6.3%, MCP-1 = 9.3 ± 7.0%, MIP-1α = 8.8 ±
6.9%, MIP-1β = 9.0 ± 8.1%, PDGF-bb = 5.3 ± 4.1%, TNF-α = 9.0 ± 6.1%, VEGF = 5.9 ± 4.7%.

2.4 Statistical Analysis
The data were depicted graphically using box plots showing the median, 25th and 75th
percentiles, bars for 10th and 90th percentiles and values outside 10th and 90th percentiles
were plotted as points. Analysis by logistic regression of stroke on plasma cytokine
concentrations adjusted for age and gender was followed by Receiver Operating Characteristics
(ROC) curve analyses to determine good predictors of stroke based on Area Under Curve
(AUC). The level of statistical significance was set at P<0.05 without correction for multiple
testing. This approach was used because all the cytokines/chemokines measured represent the
single assessment of the level of systemic inflammation in relation to stroke. Hence, the null
hypotheses are interrelated to address a single outcome [15]. These data were analyzed using
SigmaPlot 2006 (version 10.0) with SigmaStat (version 3.5) integration (Chicago, IL) for
windows and STATA (version 10.0, College Station, TX, USA) software.

3. Results
Table 2 shows some demographic characteristics of the STOP study participants. Mean age
was similar for the study participants who did not get stroke (HbSS-NS) compared with those
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who developed stroke (HbSS-S), but the gender distribution differed, with the HbSS-NS group
having a majority of males (62%), whereas the HbSS-S group had a majority of females (62%).

The median concentrations for 22 of the 27 inflammatory proteins measured are shown in Table
3. The concentrations for 5 of the analytes could not be determined at 1 in 4 dilution of samples;
IL-2, IL-9, IL-15 and FGF basic protein fell below the minimum concentration detectable by
the assay (10 pg/ml) while RANTES was above the maximum concentration detectable (24,512
pg/ml). Of those that were measured, IL-4, IL-5, IL-6, IL-7, IL-10, IL-12, IL-13, IL-17, IFN-
γ and G-CSF showed a trend in which the median concentration was highest in the steady-state
HbSS group compared with the other test groups. The HbSS-NS group had the highest median
compared with the other groups for circulating IL-1RA, VEGF and PDGF-bb levels. The
steady-state HbSS and HbSS-NS groups had elevated median concentrations of IL-1β (Figure
1) and MIP-1β (Table 3) compared with the other groups. The median levels of MIP-1α, MCP-1
and IP-10 in the 2 test groups (HbSS-NS and HbSS-S) were similar. The highest median of
eotaxin was observed in the HbSS-S group followed by the HbSS-NS, with HbAA control and
steady-state HbSS being comparable.

Analysis of the effects of plasma inflammatory protein concentration on the likelihood of a
completed stroke revealed that IL-1β and VEGF impacted the outcome of stroke (P<0.05), but
the odds ratio (OR) of VEGF (OR, 0.99) indicated that it had little or no effect on the likelihood
of developing stroke. These results therefore revealed IL-1β (OR 0.59) as the only
inflammatory protein, among those measured, which could protect against stroke development
(Table 4). The data also indicate that IL-1β is a good biomarker for predicting the likelihood
of completed stroke in HbSS individuals with abnormal cerebral blood flow, as demonstrated
by the significant area under the ROC curve (AUC = 0.85), which is just short of 1.00, the
maximum attainable area for an ideal biomarker (Figure 2).

4. Discussion
HbSS cerebro-vascular complications involve narrowing of the cerebral blood vessels due to
changes in the intima and media of these vessels, induced by inflammatory mediators. This
leads to compensatory increase in the velocity of blood flow in narrowed portions of the vessels,
based on a derivation of Bernoulli’s principle of fluid dynamics [16]. The detection of an
abnormal TCD therefore implies some level of stenosis of cerebral vessels causing increased
blood flow velocity in the cerebral vasculature [16,17]. Effects of the stenosis include cerebral
hypoxia and turbulent blood flow, associated with increased inflammation via activation of the
vascular endothelium. Animal models of cerebral ischemia disclose a key role for the IL-1
family in regulating blood flow in the presence of cerebral ischemia as well as activating
cerebral vascular endothelial cells to produce adhesion molecules and chemokines that increase
recruitment of inflammatory cells. Cerebral hypoxia stimulates the production of IL-1β from
microglia, astrocytes, neurons and endothelial cells, with some contribution from peripheral
immune cells. The IL-1β secretion prompts cerebral vessel endothelial production of
chemokine (C-C motif) ligand 2 (CCL2) chemokines as well as increased expression of
intercellular adhesion molecule-1 (ICAM-1), E-selectin and P-selectin, in effect promoting
acute inflammation [18,19].

Interestingly, IL-1β has been implicated in both deleterious and beneficial roles in cerebral
ischemia. For example, experimental transient global cerebral ischemia in rats leads to
increased IL-1β mRNA and protein [16,20,21] and increased brain damage occurs when
IL-1β is administered to rats prior to inducing cerebral ischemia [20,22]. Inhibiting IL-1β by
its naturally occurring competitive inhibitor, interleukin-1 receptor antagonist (IL-1RA),
further elucidates its role. Reduced infarct size is associated with the administration of
recombinant IL-1RA or over expression of IL-1RA prior to cerebral ischemia in affected mice
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compared with controls [23], whereas increased damage is found in IL-1RA deficient IL-1RA
knockout mice [24]. Inactivation or knockout of interleukin-1 receptor 1(IL-1R1) also reduced
cerebral ischemic damage [25]. Conversely, increased IL-1β following cerebral insult is
associated with more mRNA expression of ceruloplasmin in astrocytes. Ceruloplasmin has
potent antioxidant properties and catalyzes the dismutation of free radicals, thus affording
protection to the brain [26]. Cytokine activated astrocytes produce trophic factors for the
maintenance of the cerebro-vascular endothelium, restoration of the blood brain barrier (BBB)
and promotion of angiogenesis demonstrated in experiments with IL-1β null mice, where
animals lacking IL-1β showed less astrocyte reactivity 2 to 3 days following cortical lesion
and increased permeability of the BBB at 7 days post lesion compared with wild-type controls
[27]. These results link the early activation of astrocytes and their subsequent role in cerebro-
vascular repair to the production of IL-1β.

The results of this study confirm a significant role for IL-1 in HbSS stroke by demonstrating
that plasma IL-1β is a good predictor for an outcome of stroke and is associated with protection
against stroke development in HbSS children with abnormal TCD. This observation is
consistent with available evidence concerning association of systemic inflammation with
development of cerebro-vascular disease. It indicates that modestly increased levels of IL-1β
may be beneficial in protecting the brain from ischemia. Mild hypoxic insult has been shown
to precondition the brain and decrease the extent of damage caused by subsequent severe events
[28]. Levels of glycogen in astrocytes are increased when they are activated in the process of
ischemic preconditioning under the influence of insulin-like growth factor 1 (IGF-1)[29] which
is downstream from IL-1β signaling [28]. Together, these observations support the notion that
cytokine activated astrocytes are central to the reported benefits of preconditioning insults
[30].

IL-1β and TNF-α can activate astrocytes by crossing the blood brain barrier or when produced
by microglia. Cytokines such as IL-1β and ciliary neurotropic factor (CNTF) have been shown
to induce astrocyte nuclear hypertrophy which is a sign of activation [31,32]. Activated
astrocytes are considered to be the main source of antioxidant defense in the brain following
ischemic reperfusion and are less vulnerable to injury from reactive oxygen species than
neurons [31,33,34]. The levels of cytosolic proteins with antioxidant properties are increased
in activated astrocytes. For example, the multifunctional protein ceruloplasmin in astrocytes
is increased after injury due to IL-1β stimulation [26,31,33,35]. An alternate explanation of
our data may be that moderate elevation of plasma IL-1β correlates with stroke risk and the
lower levels of IL-1β observed in the HbSS-S group who developed stroke in the STOP study,
may be a reflection of physiological compensation for processes that ultimately lead to stroke.
We intend to explore this question in subsequent studies.

Possible applications for the findings of this study include determining the protective
concentration range for the plasma IL-1β and combining this assessment with TCD studies in
order to improve evaluation of stroke risk in HbSS and hence, management of the
cerebrovascular events. Furthermore, these data stimulate the notion that cytokine activation
of astrocytes protects HbSS children with abnormal TCD from developing stroke. This idea is
worthy of empirical testing. In addition, there are polymorphisms in the genes regulating the
production of IL-1β and other members of the IL-1 family (both ligands and receptors) that
may be worth investigating by a genomic study of individuals with impaired TCD, to determine
if specific polymorphisms are associated with likelihood of progression to stroke.

There are some practical concerns limiting our ability to fully interpret these results. These
plasma measurements represent a single time-point in a cross sectional comparison of these
inflammatory markers in HbSS patients with abnormal TCD who did or did not develop
subsequent stroke. Although we are aware of temporal variation in concentration of plasma
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cytokines/chemokines, this was the most practical initial approach for establishing severity
related associations. The mean concentration from serial monthly steady-state samples might
reflect better the baseline concentrations of inflammatory mediators.

Although degradation of cytokines/chemokines in plasma stored at −70 degrees Celsius has
been found to be negligible [36], we based our conclusions on logistic regression analysis of
only the HbSS-NS and HbSS-S samples, which were collected over the same period and stored
together under the same conditions.

5. Conclusion
This study demonstrates a new important finding that modestly increased plasma IL-1β
concentration is associated with protection from stroke development in HbSS children with
abnormal TCD and furthermore, that plasma IL-1β is a good predictor of stroke in HbSS. Using
plasma IL-1β levels in combination with TCD measurements may improve evaluation of stroke
risk in HbSS patients, by early identification of those needing intensive prophylactic
interventions. This needs to be confirmed in a larger study and the mechanisms for the IL-1β
protection deserve further investigation.
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Figure 1.
Comparison of circulating IL-1β for HbAA controls, HbSS steady-state controls, HbSS-NS
STOP study subjects with no stroke and HbSS-S STOP study subjects who developed stroke.
Values are median plus 25th and 75th percentiles, bars represent 10th and 90th percentiles and
points represent values outside of the 10th and 90th percentiles. Using Dunn’s Method for pair-
wise comparison there was no statistically significant difference in the median concentration
of IL-1β between the groups.
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Figure 2.
Receiver operating characteristics curve of stroke on plasma IL-1β concentration, adjusted for
age and gender. This ROC curve shows that IL-1β is a good biomarker for predicting the
likelihood of stroke development in HbSS individuals with abnormal cerebral blood flow
determined by TCD. The area under the ROC curve of 0.85 is good, since 1.00 is the maximum
attainable by an ideal biomarker
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Table 1

Reported roles of some cytokines/chemokines in cerebral ischemia and stroke

Name Sources in
Neuroinflammation

Reported Role in Stroke Role in
Inflammation

Reference

IL-1β Microglia, astrocytes,
neurons, endothelial cell
and peripheral immune
cells.

1. Astrocyte activation
resulting in increased
antioxidant defense.
2. Administration results in
increased brain injury in
experimental stroke.
3. Reduction of cerebral
blood flow.
Endothelial cell activation.

Pro-
inflammatory

[11,20–22,26]

IL-1RA Microglia Administration rIL-1RA
associated with reduced
infarct size in experimental
stroke.

Anti-
inflammatory

[23,24]

TNF-α Neurons, microglia,
astrocytes and
peripheral immune cells

1. Functions are pleiotropic.
2. Inhibition decrease
brain injury.

Pro-
inflammatory

[7,37–45]

3. Administration of
recombinant increases
brain injury.

4. Involved in ischemic
tolerance which is
protective

IL-6 Neurons, atrocytes and
peripheral immune cells

1. Unclear.
2. Lower levels associated

Pro-
inflammatory

[46]

with better outcome in
ischemic stroke treated
with rIL-1RA.

IL-10 Microglia 1. Inhibits IL-1 and TNF-
alpha expression.
Suppresses cytokine
receptor expression.

Anti-
inflammatory

[47–52]

2. Increased levels appear
beneficial in cerebral
ischemia.

3. Low levels associated
with increased stroke risk.

TGF-β1 Astrocytes, microglia
and neurons

Increased expression
protective of ischemic
neuron damage.

Anti-
inflammatory

[53–56]

Fractalkine Viable neurons at
periphery of cerebral
infarct

Deficiency associated with
smaller infract size and
lower mortality following
transient cerebral
ischemia.

Pro-
inflammatory

[57–59]

MCP-1 Microglia Inhibition/deficiency
associated with reduced
cerebral injury following
cerebral ischemia.

Pro-
inflammatory

[60,61]

MIP-1α Microglia Inhibition/deficiency
associated with reduced
cerebral injury following
cerebral ischemia.

Pro-
inflammatory

[60,61]
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Table 2

Demographics Characteristics of STOP study participants

Characteristics Hbss No Stroke Hbss Stroke

Number 13 13

Gender (male/female) 8/5 5/8

Mean age (years) 8.7 7.9
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Table 3

Median plasma cytokine concentration in pg/ml (25th, 75th %ile)

Cytokine HbAA Controls HbSS Controls HbSS No Stroke HbSS Stroke

L-1β 16 (15, 18) 19 (16, 22) 19 (17, 23) 17 (16, 18)

IL-1RA 98 (77, 217) 304 (243, 380) 941 (260, 1491) 287 (242, 477)

IL-4 3 (3, 4) 6 (3, 6) 3 (3, 4) 3 (3, 4)

IL-5 12 (10, 13) 22 (15, 22) 13 (11, 13) 13 (11, 14)

IL-6 9 (6, 10) 10 (7, 16) 11 (9, 13) 10 (8, 14)

IL-7 29 (17, 40) 44 (26, 56) 25 (21, 29) 22.50 (21, 27)

IL-8 9 (5, 14) 15 (7, 27) 12 (10, 29) 16 (9, 19)

IL-10 11 (10, 13) 16 (10, 19) 12 (10, 16) 11 (11, 13)

IL-12 14 (12, 18) 20 (11, 28) 14 (12, 19) 11 (10, 15)

IL-13 16 (15, 21) 20 (14, 25) 15 (12, 21) 10 (8, 17)

IL-17 40 (9, 65) 96 (58, 139) 6 (5, 19) 32 (26, 44)

Eotaxin 58 (49, 69) 58 (38, 147) 85 (64, 133) 109 (81, 151)

G-CSF 106 (78, 191) 252 (97, 369) 114 (95, 149) 89 (86, 107)

GM-CSF 43 (43, 43) 82 (53, 110) 173 (125, 221) 10 (7, 77)

IFN-γ 112 (99, 169) 277 (124, 320) 149 (115, 179) 114 (99, 155)

IP-10 1171 (973, 1292) 1279 (949, 2036) 1248 (801, 1724) 1166 (651, 1957)

MCP-1 26 (18, 42) 17 (11, 28) 33 (16, 116) 27 (13, 41)

MIP-1α 5 (4, 6) 26 (12, 329) 4 (4, 7) 5 (4, 21)

MIP-1β 96 (66, 150) 245 (73, 325) 254 (188, 393) 205 (152, 367)

PDGF-bb 4697 (2873, 71856) 3876 (2194, 7100) 8937 (6022, 13342) 7960 (5024, 11932)

TNF-α 57 (46, 70) 124 (62, 148) 57 (41, 65) 58 (48, 73)

VEGF 60 (19, 161) 73 (35, 350) 243 (78, 394) 108 (52, 177)

%ile, percentile
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Table 4

AuC post-correlation after logistic regression of stroken on test variable adjusted for age and gender

Test Variable Odds Ratio (95% CI) P-value AUC

L-1β 0.59 (0.36–0.96) 0.034 0.852

VEGF 0.99 (0.98–1.00) 0.048 0.799

IL-5 1.59 (0.96–2.63) 0.074 0.799

IL-1RA 1.00 (0.99–1.00) 0.161 0.755

PDGF-bb 1.00 (0.99–1.00) 0.171 0.769

G-CSF 0.99 (0.97–1.01) 0.252 0.757

IFN-γ 0.99 (0.98–1.01) 0.411 0.746

Values are odds ratios (95% confidence intervals, CI) and corresponding p-values. AUC, area under curve. Considering the odds ratio and AUC,
IL-1β emerges as the best cytokine, which is associated with a reduced risk and a good predictor of development of HbSS stroke in participants with
abnormal TCD. VEGF shows some statistical significance, however the odds ratio is approximately 1, indicating this growth factor is a poor predictor
of stroke risk in these HbSS patients.
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