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Abstract
Background—No medications have been proven to be effective for cocaine and
methamphetamine addiction. Attenuation of drug reward has been the main strategy for
medications development, but this approach has not led to effective treatments. Thus, there is a
need to identify novel treatment targets in addition to the brain reward system.

Aim—To propose a novel treatment strategy for stimulant addiction that will focus on
medications enhancing cognitive function and attenuating drug reward.

Methods—Preclinical and clinical literature on potential use of cognitive enhancers for stimulant
addiction pharmacotherapy was reviewed.

Results and conclusions—Cocaine and methamphetamine users show significant cognitive
impairments, especially in attention, working memory and response inhibition functions. The
cognitive impairments seem to be predictive of poor treatment retention and outcome. Medications
targeting acetylcholine (Ach) and norepinephrine (NE) are particularly well-suited for enhancing
cognitive function in stimulant users. Many cholinergic and noradrenergic medications are on the
market, have a good safety profile, and low abuse potential. These include galantamine, donepezil,
and rivastigmine (cholinesterase inhibitors), varenicline (partial nicotine agonist), guanfacine
(alpha2-adrenergic agonist), and atomoxetine (norepinephrine transporter inhibitor). Future
clinical studies optimally designed to measure cognitive function as well as drug use behavior
would be needed to test the efficacy of these cognitive enhancers for stimulant addiction.
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INTRODUCTION
Stimulant addiction, most notably cocaine and methamphetamine, continues to be an
important public health problem, with an estimated 36 million current users worldwide (1).
Unfortunately, no medications have been proven to be effective for cocaine and
methamphetamine addiction in spite of the large number of compounds screened in
randomized clinical trials (2–5). For stimulant addiction, the traditional medications
development strategy has been to identify medications that attenuate drug reward (5), which
is mediated by the dopaminergic pathway from the ventral tegmental area (VTA) to the
nucleus accumbens (subcortical structures in the brain). This strategy, however, has not
resulted in effective medication development. Thus, there is a clear need to critically
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examine our medication development strategies and identify new treatment targets for
stimulant addiction.

A new strategy proposed in this review is to develop new science-based treatment targets
that will broaden our screening methods for potential medications for addictions.
Converging evidence, especially from human neuroimaging and cognitive neuroscience
studies, indicates that cognitive functions, particularly inhibitory cognitive control, are
closely linked to addictive behaviors (6–9). These cognitive functions, which are attributed
to the prefrontal cortex (PFC), can also be improved by selective medications known as
cognitive enhancers. In this review, I will first overview cognitive function in stimulant
addiction and follow with examples of cognitive enhancers that may be used for the
treatment of stimulant addicted individuals. An ideal cognitive enhancer for addiction
pharmacotherapy should enhance cognitive function and attenuate drug reward. Although
such medications remain to be identified, promising candidates for addiction
pharmacotherapy will be reviewed and future research directions will be discussed. This will
be a selective review of potential use of cognitive enhancers for stimulant addiction with a
focus on medications development. Systematic reviews of medications under investigation
for stimulant addiction can be found elsewhere (2-5). For a broader perspective of cognitive
remediation in stimulant addiction, the reader is referred to an excellent review by Vocci (9).

COGNITIVE FUNCTION AND ADDICTION
Many studies have demonstrated that chronic use of cocaine and methamphetamine is
associated with deficits in cognitive functioning, including decision-making, response
inhibition, planning, working memory, and attention (10–15). In a recent meta-analysis (12),
cocaine users (n=481) showed greater impairment in attention, visual memory, design
reproduction, and working memory compared to healthy controls (n=586). These deficits
seem to be correlated with the severity of cocaine use, suggesting a dose-related effect of
drug use (13). Similarly, methamphetamine dependent individuals showed deficits in
memory, attention, set shifting, response inhibition, and decision-making abilities (14,16–
20). The severity of impairments in verbal memory and psychomotor function for
methamphetamine users were correlated with loss of dopamine transporters in the striatum
and nucleus accumbens (21,22). The neural substrates of these deficits have been examined
in functional imaging studies. A recent PET study demonstrated low glucose metabolism in
the anterior cingulate and high glucose metabolism in the lateral orbitofrontal area, middle
and posterior cingulate, amygdala, ventral striatum, and cerebellum of recently abstinent
methamphetamine abusers (23). These and many other studies point to a dysfunction in the
prefrontal cortex (PFC) in stimulant users (24). The PFC serves many functions that are
highly relevant for addiction, including attention, working memory, response inhibition, and
decision-making (8,25).

Among PFC functions, disruptions in inhibitory control of the PFC have been the
centerpiece in many theories of addiction (6–8). The inhibitory function of the PFC is
especially important when the individual needs to override a reflexive prepotent response,
such as drug-taking behavior in response to drug cues. In fact, compulsive drug use, the
hallmark of drug addiction; is characterized by behavioral inflexibility and more specifically
a decreased ability to inhibit responses to drug related cues, also commonly called
impulsivity (26).

From a treatment perspective, the inhibitory control function of the PFC has two unique
features. First, inhibitory control and other cognitive functions of the PFC are greatly
influenced by the neurochemical environment of the PFC to a greater degree than other
brain regions (27). This quality makes PFC functions very susceptible to genetic and
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environmental influences including stress. However, this sensitivity also makes PFC
cognitive functions amenable to treatment with selective cognitive enhancers. Second,
inhibitory control is not a circumscribed function of the PFC. Rather, many PFC areas
contribute to inhibitory function including the orbitofrontal cortex, anterior cingulate cortex,
dorsolateral PFC, dorsomedial PFC, and inferior frontal gyrus (28,29). Moreover, inhibitory
control is closely linked to other PFC functions, most notably to attention and working
memory. For example, lapses in attention during early abstinence have been linked to
relapse, possibly by reducing behavioral inhibition (30). Similarly, working memory
function is essential for optimum inhibitory control. Under high working demand, cocaine
users have reduced inhibitory control measured by impaired suppression of prepotent
responses compared to healthy controls (31). As these examples suggest, optimum inhibitory
control function depends on other PFC functions including attention and working memory.
One possible, yet untested, treatment implication of these findings is that in stimulant users,
medications improving attention and working memory may lead to better inhibitory control.

COGNITIVE DEFICITS AND TREATMENT OUTCOME
Despite evidence supporting the presence of cognitive deficits in drug users including
decision-making, response inhibition, planning, working memory, and attention, the clinical
implications of these findings have received limited attention, perhaps due to the subtle
nature of these deficits and observations that at least some may be reversible following
cessation of drug use. However, former amphetamine users have shown cognitive
impairments similar to current users, suggesting that these cognitive impairments were not
reversible after short-term abstinence (32). Similarly in a longitudinal study of
methamphetamine-dependent individuals participating in an outpatient treatment program
(33), the group continuing to use methamphetamine performed best in cognitive tests,
followed by the recent relapse group, and the abstinent group (6 months) performed the
poorest overall. In addition, recent cocaine use seems to mask underlying cognitive deficits
in cocaine users (34), further indicating a possible decrease in cognitive functioning during
early abstinence from stimulant use.

Several lines of evidence link cognitive function to treatment outcome in stimulant users. In
a series of studies, Aharonovich and colleagues have demonstrated that cognitive
impairment renders cocaine users less able to benefit from behavioral treatment (35,36).
That is, cocaine users who dropped out of treatment had significantly lower performance on
attention, memory, spatial ability, speed, accuracy, global functioning, and cognitive
proficiency tests. Similarly, in a study with treatment-seeking cocaine users, performance in
the Stroop color-word interference task, a reliable measure of inhibitory control function, at
treatment entry was predictive of treatment retention (37). Further, impulsivity or poor
response inhibition as a personality trait, measured with the Barratt Impulsiveness Scale
(BIS-11), was a predictor of poor treatment retention in cocaine users (38,39). In previous
studies with users of other substances, deficits in cognitive functioning and inhibitory
control also predicted higher drop-out rates and poor treatment response (40–42). These
findings emphasize the importance of addressing cognitive functioning in drug users early in
treatment to alleviate cognitive deficits that may impact treatment adherence and outcome.

MEDICATIONS TARGETING COGNITIVE FUNCTION AND ADDICTION
Cognitive functioning in the PFC is modulated by many neurotransmitters, including
glutamate, GABA, serotonin, acetylcholine (ACh), dopamine (DA), and norepinephrine
(NE) (43). Medications enhancing dopaminergic transmission, including methylphenidate
and amphetamine derivatives, are most commonly used, especially for the treatment of
attention deficit hyperactivity disorder (ADHD). These dopaminergic enhancers have also
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shown promise in short-term clinical trials for the treatment of cocaine and amphetamine
addiction (44–46). However, these medications have significant abuse potential, and the
safety and feasibility of their long-term use in addicted populations remains to be
determined (47). Another cognitive enhancer is modafinil, which has mixed
neurotransmitter actions, including GABA, glutamate, and dopaminergic transmitters.
Modafinil has been evaluated for cocaine and methamphetamine addiction with some
promising findings (48). However, modafinil may also have abuse potential, which may
limit its utility in stimulant addicted individuals (49).

As will be summarized below, based on our recent review of the literature (50,51),
medications targeting ACh and NE share several features that make them potential
treatments to improve inhibitory control function in stimulant addicted individuals. First,
both ACh and NE have well established effects on PFC cognitive functions that are impaired
in drug users, including response inhibition, attention, and working memory. Second, both
ACh and NE are emerging treatment targets for addiction pharmacotherapies. Third, several
cholinergic and noradrenergic medications are on the market, have a good safety profile, and
have low abuse potential.

Cholinergic System
Acetylcholine participates in many CNS functions, including sensory and motor processing,
sleep, nociception, mood, stress response, attention, arousal, memory, motivation, and
reward (52–54). These diverse functions are mediated by nicotinic and muscarinic
cholinergic receptors. Cholinergic neurons are either projection neurons, terminating
diffusely in the brain (including in the PFC), or interneurons, which are located mainly in
the striatum and nucleus accumbens (55). While cholinergic projection neurons are critical
in cognitive function, cholinergic interneurons integrate cortical and subcortical information
related to reward (56,57).

Cognition—ACh plays an important role in mediating PFC cognitive functions, including
attention and declarative and working memory, which are possibly mediated through
nicotinic cholinergic receptors (54,58). Recent studies also suggest that reduction in ACh
release in the PFC may be critical in mediating attentional deficits associated with chronic
amphetamine exposure in rats (26,59,60). The reduction in ACh release in response to
cognitive tasks (called ACh “freezing”) may be alleviated by medications increasing ACh
release like cholinesterase inhibitors.

Reward—ACh also interacts with the dopaminergic reward system, especially in the
nucleus accumbens. Lesioning of these neurons by a cholinergic immune toxin results in
greater sensitivity and preference to cocaine in mice (61). In contrast, enhancement of
cholinergic transmission by treatment with the cholinesterase inhibitor physostigmine
decreased cocaine self-administration in monkeys (62). Similarly, donepezil reduced
locomotor sensitivity and preference to cocaine in mice (63).

Cholinergic Medications
Two classes of medications targeting the cholinergic system may potentially be useful for
stimulant addiction: cholinesterase inhibitors and partial nicotine agonists.

Cholinesterase inhibitors—Cholinesterase inhibitors increase the synaptic
concentrations of ACh, which results in increased stimulation of both nicotinic and
muscarinic ACh receptors. A number of cholinesterase inhibitors, including tacrine,
rivastigmine, donepezil, and galantamine are available for clinical use for the treatment of
dementia (64–66). Cholinesterase inhibitors have also been evaluated for other disorders
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characterized by cognitive impairment, including Parkinson’s disease, traumatic brain
injury, and schizophrenia (67–69). The pharmacological and side effect profiles of
cholinesterase inhibitors differ. Tacrine has limited use due to hepatotoxicity and short half-
life (67–69). Galantamine also binds to nicotinic receptors, especially α7 and α4β2 subtypes,
and enhances responses to acetylcholine (70). Donepezil and rivastigmine are more potent
cholinesterase inhibitors compared to galantamine (71).

There have been few human studies examining cholinesterase inhibitors as potential
treatments for amphetamine addiction. Janowsky et al.(72) reported that physostigmine
cholinesterase inhibitors attenuate the subjective effects of methylphenidate, a stimulant
medication, in bipolar and schizophrenic patients. Recently, De La Garza et al. examined the
effects of a cholinesterase inhibitor, rivastigmine (1.5 or 3 mg/day), on intravenous
methamphetamine responses (30 mg/day) in 23 methamphetamine-dependent humans (73).
In that study, 3 mg rivastigmine attenuated some of methamphetamine’s subjective effects,
including “desire” and “anxiety.” These findings are promising and warrant further studies
evaluating cholinesterase inhibitors as potential treatments for stimulant addiction.

In a clinical trial, 10 mg/day donepezil, a cholinesterase inhibitor, was well tolerated but did
not reduce cocaine use behavior (74). The sample size of the study was small (only 17
subjects assigned to donepezil), providing inadequate statistical power to test the study
hypothesis. Further, only one dose of donepezil was evaluated. In spite of these limitations,
those treated with donepezil did show significant reductions in craving and other indexes of
addiction severity to cocaine and other drugs.

In a recent study (75), our group examined the cognitive effect of galantamine treatment in
28 abstinent cocaine users. Preliminary analysis indicates that galantamine administered at 8
mg/day for 10 days improved sustained attention better than placebo, measured the Rapid
Visual Information Processing (RVIP) subtest of the CANTAB. Most notably, galantamine
treatment, compared to placebo, was associated with shorter mean latency score for the
RVIP task. These results indicate the feasibility, safety, and promise of galantamine as a
cognitive enhancer among cocaine users.

Partial nicotine agonists—Varenicline, a partial agonist of α4β2 nicotinic receptors, has
recently been marketed for smoking cessation. Several other partial nicotinic agonists,
including dianicline and ispronicline, are undergoing human studies for smoking cessation
and treatment of dementia (76). In preclinical studies, varenicline has been shown to
alleviate learning deficits in mice induced by alcohol administration (77) or nicotine
withdrawal (78). In a recent study of cigarette smokers, 10 days of varenicline treatment
improved working memory and attention deficits induced by nicotine withdrawal (79).
Another similarly acting partial nicotine agonist, AZD3480, enhanced attention and episodic
memory functions in healthy volunteers (76).

Partial nicotinic agonists may also have value for stimulant addiction pharmacotherapy,
given the role of nicotinic receptors in stimulant effects. For example, nicotine treatment
reduced methamphetamine-seeking behavior in rodents (80). In humans, nicotine may
change typical subjective and physiological responses to stimulants. In one study, a 14 mg
nicotine patch attenuated cocaine-induced “high” and “stimulation” and increased the
latency of detection of cocaine effects compared to placebo, without affecting physiological
responses or the pharmacokinetics of cocaine (81). Rapid desensitization to nicotine’s
effects has limited the use of nicotinic agonists. Varenicline and other partial nicotine
agonists do not seem to cause rapid desensitization in nicotinic receptors (82) and may be
useful to examine the contribution of nicotinic receptors in stimulant responses. Varenicline
and other partial nicotinic agonists remain to be evaluated for stimulant addiction.
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Noradrenergic System
The noradrenergic system uses norepinephrine (NE) as its main chemical messenger and
serves multiple brain functions, including arousal, attention, mood, learning, memory, and
stress response (83,84). Noradrenergic neurons are localized in brainstem nuclei such as the
locus ceruleus, and noradrenergic axons project diffusely to almost every part of the brain
(85). NE’s effects are mediated by three families of adrenergic receptors: α1, α2, and β (86).

Cognition—Increasing evidence from preclinical and clinical studies indicate that NE is
critical in many PFC cognitive functions, including sustained attention, working memory,
and response inhibition (87,88). The beneficial effect of NE on PFC cognitive functioning is
thought to be mediated by the stimulation of postsynaptic alpha2-adrenergic receptors in the
PFC (89). Alpha2-adrenergic receptors are targeted by several medications, including
alpha2-adrenergic agonists (clonidine, lofexidine, and guanfacine) and norepinephrine
transporter inhibitors (reboxetine and atomoxetine).

Reward—NE is also closely connected to the dopaminergic reward system. For example,
lesioning of noradrenergic neurons in the locus ceruleus decreases DA release in the nucleus
accumbens (90), and conversely, activation of locus ceruleus noradrenergic neurons
increases the activity of dopaminergic neurons in the VTA (91). This regulation is mediated
by the α1-adrenergic receptor subtype (92).

Noradrenergic Medications
Two classes of medications targeting NE may potentially be useful for stimulant addiction:
norepinephrine transporter inhibitors and alpha2-adrenergic agonists.

Norepinephrine Transporter Inhibitor—Recently, two highly selective norepinephrine
transporter (NET) inhibitors were developed for clinical use: reboxetine and atomoxetine.
Some tricyclic antidepressants, including desipramine, also have NET inhibitor effects.
However, these medications also interact with adrenergic and non-adrenergic receptors,
making the precise role of NET inhibition difficult to elucidate (93). Reboxetine, an
antidepressant medication, was evaluated in a 12-week open label study in 26 cocaine users.
In that study, reboxetine was well-tolerated and reduced cocaine use suggesting its potential
efficacy (94). However, reboxetine was not approved by the Food and Drug Administration
FDA) for marketing in the US.

Atomoxetine, a medication used for the treatment of ADHD, is a selective norepinephrine
transporter (NET) inhibitor that increases synaptic NE levels in the PFC (95,96) and may
increase cognitive functioning by stimulating postsynaptic alpha2-adrenergic receptors.
Atomoxetine also increases dopamine levels in the PFC, but not in the striatum nor in the
nucleus accumbens (95,96). This discrepancy was attributed to sparse distribution of
dopamine transporters in prefrontal cortex, indicating that NET significantly contributes to
clearing of extracellular dopamine in this region (97). In contrast, amphetamines increase
both DA and NE levels in the nucleus accumbens and in the PFC (98). These differential
neurochemical effects likely contribute to the high and low abuse liability of amphetamines
and atomoxetine, respectively (99,100).

In preclinical studies, atomoxetine improved performance in various forms of impulsivity
(101) and attention in rats (102) as well as reversal learning in rats and monkeys (103).
Atomoxetine also improved attentional set-shifting deficits associated with prefrontal cortex
(PFC) deafferentation in rats (104). In humans, atomoxetine improved response inhibition,
measured with the Stop Signal test in healthy controls and patients with attention deficit
hyperactivity disorder (105). In ADHD patients, atomoxetine also improved Stroop
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performance (106). As both methamphetamine and cocaine users have been reported to have
slower Stop Signal Reaction times than controls (107,108), it would be of interest to
examine atomoxetine’s ability to improve performance on this task in stimulant users.

Recently, atomoxetine’s effects on the acute physiological and subjective responses to
dextroamphetamine were examined in healthy volunteers (109). Four days of atomoxetine
(40 mg/day, orally) treatment attenuated some of the subjective effects of
dextroamphetamine, including ratings of “stimulated,” “high,” and “good drug effects.”
Since the rating of “good drug effects” and “high” are predictive of reinforcing effects from
amphetamines (110), their attenuation by atomoxetine supports its potential use as a
treatment for stimulant addiction. Atomoxetine remains to be evaluated in clinical trials for
stimulant addiction.

Alpha2-adrenergic Agonists—Guanfacine is an alpha2-adrenergic agonist similar to
clonidine and lofexidine. Guanfacine is used for the treatment of hypertension, attention
deficit hyperactivity disorder (ADHD), and opioid withdrawal. Guanfacine decreases
noradrenergic activity by stimulating presynaptic alpha2-adrenergic receptors. Compared to
clonidine, guanfacine is less sedating and has more selectivity for the alpha2 adrenergic
receptors found in the prefrontal cortex, alpha2A subtype (111–113). The alpha2A-adrenergic
receptors may mediate the beneficial effects of guanfacine on cognitive function (89).
Guanfacine has been used to improve cognitive functioning in many disorders, including
schizophrenia, epilepsy, and attention deficit hyperactivity disorder (ADHD) (114–118).

In preclinical studies, guanfacine improved attention and working memory in rats (112,119)
and visuomotor (120) and working memory in monkeys (112,121). In humans, guanfacine
improved working memory performance in healthy volunteers (117,122) and sustained
attention in schizophrenics (114) and those with ADHD (123). In preclinical studies,
clonidine and lofexidine attenuated the stress-induced reinstatement of cocaine seeking in
rats (124,125), a preclinical model for relapse. Given the more beneficial effects of
guanfacine on cognitive functioning, it will be of interest to evaluate its effects for stimulant
addiction.

FUTURE DIRECTIONS
The main theme of this review is that medications enhancing inhibitory control and
attenuating drug reward may lead to development of effective treatments for stimulant
addiction. Table 1 summarizes the relevant studies with these medications. Many questions
remain to be addressed about this proposed strategy to use cognitive enhancers targeting
Ach and NE for stimulant addiction:

1. Does improving cognition with medications also improve treatment outcome? As
summarized above, cognitive deficits in stimulant users, including decision-
making, response inhibition, planning, working memory, and attention functions
have been well-documented. Studies also indicate that these deficits predict higher
drop-out rates and poor treatment response. The medications reviewed improve
cognitive function in substance abusers or in other clinical conditions. Nonetheless,
this promising chain of evidence fails to make the crucial next step of
demonstrating a clinically significant impact on treatment outcome.

2. What types of treatments will be optimized by use of cognitive enhancing
medications in stimulant users? It is possible that cognitive enhancers may be
effective for the pharmacotherapy of stimulant addiction in combination with
psychosocial treatment. Alternatively, cognitive enhancers could be used to
augment response to behavioral treatments for stimulant addiction such as
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cognitive behavioral therapy (CBT). Although proven to be efficacious, CBT helps
only a minority of patients with stimulant addiction (126,127). Adequate cognitive
function is most crucial for behavioral treatments, particularly those like CBT that
emphasize cognitive re-training and learning of new behavioral skills, as
demonstrated by Aharonovich (35,36). However, inhibitory function and the ability
to maintain awareness of long term goals are key elements of even the most
behavioral of treatments such as contingency management. There are examples of
augmentation of behavioral treatment with the cognitive enhancer cycloserine for
the treatment of phobias and other anxiety disorders (127–129) (130). Such
augmentation strategies remain to be evaluated for the treatment of stimulant
addiction.

Cognitive-enhancing medications may also optimize the efficacy of other types of
medications, especially early in treatment when cognitive function is likely to
decline with abstinence from stimulant use. For example, during early phases of
cocaine vaccine administration, a promising medication for cocaine addiction
(131), antibody titers are insufficient to block large doses of cocaine, and the ability
to maintain sobriety during this time may be crucial. Cognitive-enhancing agents
may improve outcomes through enhancing patients’ ability to comply with
medication regimens. These possibilities need to be evaluated in future controlled
studies.

3. What aspects of improved cognitive function are most strongly related to improved
treatment outcome? Although response inhibition is commonly associated with
addictive behavior, optimum inhibitory control function depends on other PFC
functions, including attention and working memory. The independent contribution
of these functions to treatment outcomes needs to be examined in future studies.
Further, for each cognitive function of interest, there are many tests to choose from.
For example, to evaluate response inhibition in drug users, researchers have used
the Stop Signal Test, the Go-No Go test, and the Stroop test (25,31,37,132,133).
This variation across studies makes cross-study comparisons difficult to conduct.
Selecting validated cognitive tests with good psychometric properties that are
sensitive to pharmacological interventions will be a crucial step. Future clinical
studies optimally designed to measure cognitive function as well as drug use
behavior are necessary to address these questions.
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