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Abstract
Protein structures have proven to be a crucial piece of information for biomedical research. Of the
millions of currently sequenced proteins only a small fraction is experimentally solved for structure
and the only feasible way to bridge the gap between sequence and structure data is computational
modeling. Half a century has passed since it was shown that the amino acid sequence of a protein
determines its shape, but a method to translate the sequence code reliably into the 3D structure still
remains to be developed. This review summarizes modern protein structure prediction techniques
with the emphasis on comparative modeling, and describes the recent advances in methods for
theoretical model quality assessment.
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In the late 1950s Anfinsen and co-workers suggested that an amino acid sequence carries all
the information needed to guide protein folding into a specific spatial shape of a protein [1].
In turn, protein structure can provide important insights into understanding the biological role
of protein molecules in cellular processes. Thus, in principle it should be possible to form a
hypothesis concerning the function of a protein just from its amino acid sequence, using the
structure of a protein as a stepping stone towards reaching this goal.

Modern experimental methods for determining protein structure through X-ray crystallography
or NMR spectroscopy can solve only a small fraction of proteins sequenced by the large-scale
genome sequencing projects, because of technology limitations and time constraints. Currently,
there are more than 6,800,000 protein sequences accumulated in the non-redundant protein
sequence database (NR; accessible through the National Center for Biotechnology
Information: ftp://ftp.ncbi.nlm.nih.gov/blast/db/) and fewer than 50,000 protein structures in
the Protein Data Bank (PDB; http://www.rcsb.org/pdb/). With these numbers at hand, it seems
that the only way to bridge the ever growing gap between protein sequence and structure is
computational structure modeling.

Computational protein structure prediction is a dynamic research field steadily increasing its
outreach to biotechnology communities. Several reviews have been published recently on
various aspects of structure modeling [2-14]. With the improvement of prediction techniques,
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protein models are becoming genuinely useful in biology and medicine, including drug design.
There are numerous examples where in silico models were used to infer protein function, hint
at protein interaction partners and binding site locations, design or improve novel enzymes or
antibodies, create mutants to alter specific phenotypes, or explain phenotypes of existing
mutations. What are the basic differences between the underlying methods, how can they be
properly used, and which models can be trusted? The aim of this review is to address these
issues from the standpoint of CASP (critical assessment of techniques for protein structure
prediction) [15] with the focus placed on two practical issues – template-based modeling and
assessment of model quality.

Protein structure modeling and CASP
Every other year since 1994, protein structure modelers from around the world dedicate their
late spring and summer to testing their methods in the worldwide modeling experiment called
CASP [15]. Predictors with expertise in applied mathematics, computer science, biology,
physics and chemistry in well over one hundred scientific centers around the world work for
approximately three months to generate structure models for the set of several tens of protein
sequences selected by the experiment organizers. The proteins suggested for prediction (in the
CASP jargon – “targets”) are either structures soon-to-be solved or structures already solved
and deposited at the PDB but kept inaccessible to the general public until the end of the CASP
prediction season. As soon as the predictions on a target are collected and the target structure
itself is available, the Prediction Center at the University of California Davis performs an
evaluation of the submitted models comparing them to the “gold standard” – the experimental
structures. The results of evaluations [16] are made available to the independent assessors –
experts in the field – who analyze the predictions first without knowing the identity of
prediction groups, and present their analysis to the community at the predictors' meeting usually
held in December of a CASP year. At that time, results of the evaluations are made publicly
available through the Prediction Center website (http://predictioncenter.org) allowing
predictors to compare their own models with those submitted by other groups. The papers by
the assessors and by the most successful prediction groups are published in special issues of
the journal Proteins: Structure, Function and Bioinformatics. There are now seven such issues
available, one for each of the seven CASP experiments held so far. The details of the latest
completed CASP, held in 2006, are described in the most recent CASP issue [15] and will be
briefly discussed here. CASP8 is currently under way. In August 2008 the Prediction Center
finished collecting structure predictions from 165 participating structure modeling groups,
from 25 countries. More than 55,000 structure predictions were submitted for assessment. The
CASP8 assessors are currently working on the analysis of the submitted predictions. The
meeting to discuss the results takes place in Sardinia, Italy, in December 2008.

As defined by the current CASP classification, protein structure prediction methods can be
divided into two broad categories: template-based modeling (TBM) and free modeling (FM).
Each of these categories can be further split into two subcategories: TBM – into comparative
modeling and fold recognition; and FM – into knowledge-based de novo modeling and ab
initio modeling from first principles.

Template-based modeling in light of CASP
The template-based methods currently offer the most reliable prediction results but their
applicability is limited to cases where it is possible to identify a structurally similar protein
that can be used as a template for building the model.

Chothia and Lesk [17] have shown that protein structure is much more evolutionarily conserved
than sequence and therefore similar sequences normally yield similar 3D structures. Based on
this notion it is logical to check the target protein for sequence similarity to proteins of known
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structure and then to proceed with modeling starting from the structure of its homologue. The
analysis of new, previously unknown or barely studied genomes indicates that new families
are being discovered at a rate that is linear or almost linear with the addition of new sequences
[18]. And, if at least a single structure within a family is determined experimentally, then
homology modeling can be used to model the structures of all members of that family. Unless
experimental methods undergo a major advance in the near future a major advancement
allowing for a considerably faster and cheaper structure determination, homology modeling
will remain a major player in many structure biology projects.

Even if a template for a modeled protein cannot be identified using sequence similarity, suitable
templates may still exist among the already known structures, as Nature tolerates only a limited
number of folds. The methods that check compatibility of a protein with existing folds using
more sophisticated analysis (profile–profile sequence comparison, secondary structure
comparison, knowledge-based potentials, etc.) may stand the chance of identifying the correct
fold [2,19]. Using these methods it is, in many cases, possible to “thread” the sequence of the
protein of unknown structure through the structure of an analogous protein, thereby using it as
a template for modeling.

Historically, separate sets of modeling techniques were used in these two modeling difficulty
cases. Owing to the recent rather impressive progress in the development of fold recognition
methods [20,21], especially in their ability to detect remote homologues and produce better
template-target alignments [2], the line separating the results obtained with the two classes of
methods has blurred. Starting in CASP7 (2006), comparative modeling and fold recognition
methods are assessed together in one template-based difficulty category.

Assessment of the template-based predictions in the latest completed CASP [22] identified the
top two teams achieving particularly promising results: groups of Yang Zhang (University of
Kansas) and David Baker (University of Washington). Both groups used highly automated
computational approaches and, while Baker's group utilized hundreds of thousands of CPUs
distributed worldwide to build the optimal model (http://boinc.bakerlab.org/rosetta/), Zhang's
methodology necessitated considerably less CPU time. Zhang's approach is based on the
improved I-TASSER methodology [23] that threads targets through the PDB library structures,
uses continuous fragments in the alignments to assemble the global structure, fills in the
unaligned regions by means of ab initio simulations and finally refines the assembly by an
iterative lowest energy conformational search. Baker's template-based modeling uses three
different strategies depending on the target length and target-template sequence similarity
[24], and in general relies on computationally demanding sampling of conformational space
coupled with an iterative all-atom refinement. The predictions from both groups improved over
the best existing templates for the majority of template-based targets. Also, servers (fully
automated predictors) from both of these groups performed well in CASP7, with Zhang-server
having an edge over the Robetta server (from Baker's group) and placing third overall behind
only the two already mentioned human-expert groups. The other top performing servers in
CASP7 were those of Soeding et al. (HHpred2; BayesHH; HHpred3), Elofsson and co-workers
(Pmodeller6), and Skolnick and co-workers (MetaTASSER) [25]. Analyzing progress of server
performance in successive CASPs, it is evident that the gap between the best servers and the
best human-expert groups is narrowing over time [21]. Especially in the case of easy template-
based modeling, the progress of automated servers is impressive, with the fraction of targets
where at least one server model is among the best six submitted models – increasing from 35%
in CASP5 to 65% in CASP6, and to over 90% in CASP7. This also confirms the notion that
the impact of human expertise on modeling of easy comparative targets is now marginal. In
general, in CASP7 servers were at least on a par with humans (three or more models in the best
six) for about 20% of targets; and significantly worse than the best human model for only very
few targets. In CASP7 special attention was dedicated to the assessment of model details in
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high accuracy template-based modeling. The assessment showed that the group of Jooyoung
Lee (Korea Institute for Advanced Study) generated models superior to those of other groups
when compared, based on the overall structure quality, side-chain rotamer quality and
suitability for crystallographic molecular replacement [26]. The approach of the Lee group is
based on conventional backbone and side-chain modeling/refinement, multiple conformational
space annealing and a score function consistency analysis. For most high accuracy template-
based targets their models were closer to the native structure than any of the available template
structures.

So, what are the main challenges still remaining in template-based modeling? Conceptually,
the template-based modeling procedure starts from identifying and selecting the appropriate
templates and follows with the target-template sequence alignment. And, after years of
development, the level of target-template structural conservation and the accuracy of the
alignment still remain the two issues having the major impact on the quality of resulting models.
Figure 1 shows the alignment accuracy for all CASPs, as a percentage of the maximum
template-target alignability. If the target-template sequence identity falls below the 20% level,
as many as half of the residues in the model may be misaligned. There are several such examples
even in the most recent CASP. At the same time, the best models for the majority of targets
with greater than 30% sequence identity to a template have practically all residues correctly
aligned. Closer inspection shows that in the latest two CASPs there were 14 targets at low
sequence identity that have a higher fraction of the residues aligned than it is possible to achieve
from a single template. This is encouraging, as these analyses show that modeling adds value
over simply copying from best template structures [21,22,26]. Figure 2 shows that the
percentage of targets where the best submitted models are better than a naïve single template
model is steadily growing for the latest three CASPs. In CASP7, almost 80% of the best models
in this category have registered added value over the naïve model. Model features not present
in the best template may be added by refining aligned regions away from the template structure
towards the experimental one, by using template free modeling methods and by adding features
that are present in the other available templates [23,24,27-31].

Summarizing, currently available template-based methods can reliably generate accurate high-
resolution models, comparable in quality to the structures solved by low resolution X-ray
crystallography, when sequence similarity of a homologue to an already solved structure is
high (50% or greater) [3,21,32]. As alignment problems are rare in these cases, the main focus
shifts to accurate modeling of structurally variable regions (insertions and deletions relative to
known homologues) and side chains, as well as to structure refinement. The high-quality
comparative models often present a level of detail that is sufficient for drug design, detecting
sites of protein–protein interactions, understanding enzyme reaction mechanisms,
interpretation of disease-causing mutations and molecular replacement in solving crystal
structures [7,11,32-34]. Even though there is a strong correlation between the target-template
sequence similarity and the quality of the resulting model, the sequence similarity is not the
only parameter determining the outcome of a modeling exercise, and in many cases high-
resolution models can be built when sequence similarity is lower (30–50%). Typically, in this
range medium resolution models are obtained, showing about 2–3 Ångstrom root mean square
deviation (RMSD) from the native structure [3,32]. Even though less accurate, these models
can also be used in many biological applications [11,32].

Modeling proteins of unknown fold
As the sequence similarity between the target and the available templates falls into the so-called
twilight zone (sequence identity <25%), the resulting models become less accurate. In the most
challenging cases, where neither significant sequence similarity nor structural similarity can
be detected, the so-called free modeling methods are called upon [5,8,9]. CASP experiments
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demonstrate that the quality of free modeling predictions remains in general poor compared
with predictions that are based on templates [20,21,35] and insufficient for many biomedical
applications. At the same time these methods do occasionally produce quite accurate models
for a few of the smaller targets. For example, one of the best groups in the free modeling
category in recent CASPs, the Baker group (University of Washington) has their average CA-
atom RMSD on free modeling targets around 12 Ångstroms (in CASP6 and 7). At the same
time, in CASP6 this group obtained a close to high-resolution accuracy (<2 Ångstroms) in
modeling of a 70-residue hypothetical protein from thermos thermophilus (T0281, PDB code
- 1whz) by using structure assembly from fragments followed by extensive model refinement.
In the next CASP, another impressive model was generated for a 97-residue protein (T0283,
PDB code – 2hh6), where the model was again within 2 Ångstroms of the native structure over
most of the chain. Recently, several notable cases of high-resolution structure prediction in the
absence of a suitable structural template were reported in the literature [36-38]. The atomic
accuracy of these predictions was then confirmed by X-ray crystallography. The above
examples give hope for more practical applications of these techniques in the near future.

Model quality assessment (MQA)
Unlike experimentally derived structures, where accuracy of the structure can be estimated
from experiment and typically falls within a narrow range, models are typically left un-
annotated with quality estimates and can span a broad range of the accuracy spectrum.

Over the past two decades, a number of approaches have been developed to analyze correctness
of protein structures and models. These methods use stereochemistry checks, molecular
mechanics energy-based functions, statistical potentials, and machine learning approaches to
tackle the problem. Typically, the features taken into account are the molecular environment,
hydrogen bonding, secondary structure, solvent exposure, pair-wise residue interactions and
molecular packing. Several detailed reviews of these techniques are available [39-41].
Recently, a rapid development of new methods in model quality assessment is taking place.
The necessity of an unbiased evaluation of these methods led to their inclusion as a separate
category in CASP, starting in 2006.

CASP7 assessment of MQA programs
More than 23,000 server-generated models of the 95 CASP7 targets were suggested for model
quality assessment. The predictors were asked to submit a single global quality score for the
entire model as well as assign error estimates on per-residue basis. At the end of the experiment,
the observed model quality was compared with values submitted by predictors. CASP7
evaluation [42] demonstrates that at the moment the most consistent are the methods that rely
on the availability of multiple models for the same protein (so-called consensus-based or
clustering methods).

Two research groups, Pcons (Sweden) and LEE (Korea), outperformed other CASP7
participants in a statistically significant manner based on the results of the paired t-test
assessment. Wallner and Elofsson's Pcons [43] is a consensus-based method capable of a quite
reliable ranking of model sets for both easy and hard targets. Pcons uses a meta-server approach
(i.e. combines results from several available well-established QA methods) to calculate a
quality score reflecting the average similarity of a model to the model ensemble, under the
assumption that recurring structural patterns are more likely to be correct than those observed
only rarely. The LEE group, by contrast, based their technique on a comparison of query models
with their own, and assigned rank in accordance with the distance between the models.
Although both methods could provide a ranking significantly correlated with the one derived
from CASP data, they were not able to select the best model consistently from the entire
collection of models, indicating that considerable additional effort is needed in this area.
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In addition to a good global quality performance, Pcons also showed promising results in
assessing accuracy of the specific regions in a model, at times reproducing almost the exact C-
alpha–C-alpha deviation along the sequence.

It should be underscored that, while the consensus-based methods are useful in model ranking,
they can be biased by the composition of the set and, in principle, are incapable of assessing
the quality of a single model.

Recent advances in MQA methods
In the two years following CASP7, a considerable increase in method development in the area
of model quality assessment can be observed. More than a dozen papers have been published
on the subject, and 45 quality assessment methods, almost double the CASP7 number, have
been submitted for evaluation to CASP8. One way to classify quality assessment methods is
to ask whether they provide a single “global” score for a structure model or give reliability
estimates for structural regions on a per-residue basis. Although improvement in the first
category is still very much needed, developments in prediction of local model quality are
especially encouraging, allowing for a much more detailed view of the model, including its
potential applications. Below, we focus on methods developed in the past two years.

Addressing local quality of models
Chen and Kihara examined the stability of the target-template alignments relative to the
corresponding sets of suboptimal alignments and developed a model quality estimator based
on these parameters, called SPAD [44]. The authors find excellent correlation to the resulting
global and local level alignment errors and structure quality measures. This is not entirely
surprising because alignment errors lie at the root level of any comparative modeling exercise.
An additional advantage of using a systematic alignment analysis is that errors can be estimated
at an early stage and therefore influence potential template and alignment choices. Another
method, recently developed by Gao et al. and called FragQA [45], addresses a very similar
problem by predicting a C-alpha RMSD between the aligned ungapped template fragments
and the corresponding fragments in the native structure. This is done using support vector
regression on features extracted from the alignment of the two sequences and those of the
template structure. As the dependence of model quality on the correctness of alignment has
been underscored by every CASP experiment held to date, these are certainly welcome
developments. One potential way to extend both of these approaches, is to take into
consideration alignments with all relevant templates at the same time, as information stemming
from multiple sequence alignments is well known to improve recognition of homology in
general. Some steps in this direction were made by the Fiser laboratory [31] as well as
Chodanowski et al. [46], both placing emphasis on the structural assessment of alternative
alignments. Finally, Fasnacht et al. [41], starting with an analysis of local structure similarity
measures, make a valuable contribution with their comparative study of several statistical
potentials and structural features with regard to their usefulness in local error prediction.

Combining evaluators
A number of recently developed techniques aim at optimally combining several independent
model quality measures into one single score, reflecting the accuracy of the entire model or
acting as a selector of near-native structures in the decoy sets of models. Correctly weighing
the individual contributions included in the total score is a long-standing problem and now
machine learning techniques are extensively applied to address it. It should probably be noted
that all the approaches discussed in this section combine evaluators at the level of entire models.
Eramian et al. [47] used support vector regression merging assessment scores from physics-
based energy functions, statistical potentials (including the recently developed DOPE [48])
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and machine-learning-based scoring functions to select the most accurate models from among
a set of decoys (SVMod). They observe that the most significant contributions in the final score
come from statistical (knowledge based) potentials, including surface accessibility and contact
components. In other work from the same laboratory, Melo and Sali [39] use a genetic algorithm
combining statistical potentials, stereochemical parameters, sequence alignment scores,
geometrical descriptors and measures of protein packing to discriminate between models with
correct and incorrect fold (GA_341). They identify statistical potentials incorporating contact
and accessibility terms, as well as structure compactness, as features contributing the most to
the final score. Also Benkert et al. [49] (QMEAN, regression analysis) and Merghetti et al.
[50] (AIDE, neural networks) stress the importance of combining major geometrical aspects
of protein structure, with the first work identifying an addition of a new three-residue torsion
angle potential to the scoring function as particularly effective in differentiating between good
and bad models. The contributions from Qiu et al. [51] and Zhou and Skolnick [52,53] differ
by including the consensus-based features (i.e. incorporating in the analysis information from
multiple models on the same target). While Zhou and Skolnick use a consensus C-alpha contact
potential, Qiu et al. rely on support vector regression analysis to select the features most
relevant to the final score (SVR). They identify consensus analysis as particularly important,
with the corresponding weight almost ten times larger than the next one, corresponding to a
pairwise atomic potential. Finally, Sadowski and Jones [54] and McGuffin [55,56], while
placing emphasis on benchmarking individual methods, also offer neural network-based meta
techniques that combine them. The first builds upon previously developed MODCHECK
[57], while the second merges four original approaches in a program called ModFOLD.
Assessing the relative performance of all the techniques discussed in this section is not a trivial
matter, pointing perhaps to the significance of independent assessments such as CASP. Table
1 summarizes the parameters of the available model quality assessment methods. Ultimately,
we want to emphasize efforts incorporating model quality assessment scores directly into
modeling servers, including MODELLER [58] and HOMA [59] packages.

Concluding remarks
Protein structure prediction is now undergoing a qualitative transition from a primarily
academic pursuit to practical applications in medicine and biotechnology. Currently available
template-based methods can generate models with the level of detail that, in cases of high
homology, is sufficient for applications as demanding as drug design. In many cases high-
resolution models can be built even when sequence similarity is relatively low (30–50%). Free
modeling methods are not mature enough for routine biomedical applications, but the first
instances of high-resolution structure prediction in the absence of templates have now been
reported. Since models are not experimental structures determined with known accuracy but
predictions, it is vital to present the user with the corresponding estimates of model quality.
Much is being done in this area but further development of tools to assess model quality reliably
is needed. The latest advances in structure prediction and assessment of model quality are to
be evaluated by CASP8 in December 2008.
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FIGURE 1. Alignment accuracy for the best model of each target in all CASPs as percentage of
maximum alignability
Targets are ordered by sequence identity between the target and the closest template. Values
on the vertical axis represent the ratio between the number of residues correctly aligned to the
target structure in the best model and the maximum number of residues that can be aligned
between the best available template and the target structure. An alignment of 100% indicates
that all residues with an equivalent in the template were correctly aligned. A value greater than
100% indicates an improvement in model quality beyond that obtained by copying a template
structure. Values above 100% may be obtained by using additional templates, through
refinement or with template free methods. Trend lines show a steady though sometimes modest
improvement over successive CASPs.
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FIGURE 2. Fraction of targets for which the best submitted models in the template-based category
are superior to the models naively built on the best template in CASPs 5–7
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