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Abstract
Two recent, large GWAS in European populations have associated a ∼47 Kb region that contains
part of the FTO gene with high BMI. The functions of FTO and adjacent FTM in human biology are
not clear. We examined expression of these genes in organs of mice segregating for monogenic
obesity mutations, exposed to under/over feeding, and to 4 °C. Fto/Ftm expression was reduced in
mesenteric adipose tissue of mice segregating for the Ay, Lepob, Leprdb, Cpefat or tub mutations and
there was a similar trend in other tissues. These effects were not due to adiposity per se. Hypothalamic
Fto and Ftm expression were decreased by fasting in lean and obese animals and by cold exposure
in lean mice. The fact that responses of Fto and Ftm expression to these manipulations were almost
indistinguishable suggested that the genes might be co-regulated. The putative overlapping
regulatory region contains at least 2 canonical CUTL1 binding sites. One of these nominal CUTL1
sites includes rs8050136, a SNP associated with high body mass. The A allele of rs8050136 –
associated with lower body mass than the C allele – preferentially bound CUTL1 in human fibroblast
DNA. 70% knockdown of CUTL1 expression in human fibroblasts decreased FTO and FTM
expression by 90 and 65 %, respectively. Animals and humans with various genetic interruptions of
FTO or FTM have phenotypes reminiscent of aspects of the Bardet-Biedl obesity syndrome, a
confirmed “ciliopathy”. FTM has recently been shown to be a ciliary basal body protein.
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Introduction
Heritability of adiposity –which reflects genetic contribution to the phenotype within a specific
environment– is high, and variously estimated at 40-60% (28,49). The search for the underlying
genes for obesity –using conventional linkage, association and candidate gene approaches–
has generated a large number of positive findings, many of which have not been replicated
(e.g. 19,25,32,37,55,67). Among the reasons for lack of consistent replication may be the
relatively small population sizes, few markers genotyped, and blunt phenotypes. The recent
generation of high density single nucleotide polymorphism (SNP) and haplotype maps
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(International HapMap project; http://www.hapmap.org/) has revolutionized the field of
human quantitative genetics. Applied to large, suitably phenotyped groups of subjects, whole-
genome association studies (GWAS) are implicating novel genes not previously considered
based on extant understanding of the molecular physiology of specific phenotypes. The
discovery of the “Fat Mass and Obesity Associated gene” (FTO) as a potentially important
contributor to human adiposity is such an example.

In two GWAS involving a total of ∼42,000 obese and non-obese subjects, dose-dependent
highly significant effects of specific SNPs on Chr. 16 have been associated with increased body
mass index (BMI) (14,52). In agreement with these results, Dina et al (8) identified an
association between rs1121980 and morbid obesity (BMI≥40 Kg/m2) in 8,000 individuals of
European ancestry, and replicated their finding in another cohort of 4,864 obese and non-obese
subjects. Follow-up studies of relatively smaller cohorts confirmed association of the same
region with obesity in German and Belgian children and adults (21,46). However, no significant
association was detected in Chinese and Oceanic populations (27,44). The interval containing
the associated SNPs spans ∼30 Kb and extends by linkage disequilibrium (LD) to a ∼47 Kb
region containing parts of introns 1 and 2 and exon 2 of FTO (Fig. 1). The molecular function
(s) of FTO, and the mechanism(s) by which these allelic variations convey effects on adiposity
are not clear.

The transcriptional start of RPGRIP1L (human ortholog of mouse Ftm in the human; here
referred to as FTM) is ∼3.4 kb upstream of FTO in humans. (Fig 1). By virtue of their close
proximity to SNPs strongly associated with adiposity (e.g. rs9939609; 13), FTO or FTM, or
both, may account for the association of this genetic interval with differences of adiposity in
humans.

Fto was originally cloned in the mouse (48) and is part of a contiguous gene deletion in murine
Fused toes (64) which has a 1.6 Mb deletion of Chr. 8 also containing Ftm, Ft1 and the Iroquois
B cluster consisting of Irx3,5 and 6 (47) (Fig. 1). Homozygous mutants are embryonic lethal
and display neural tube defects, left-right asymmetry (16,20) and polydactyly (17). Embryos
homozygous for the Fused toes deletion also have defects in both anteroposterior and
dorsoventral patterning of the brain, including a reduction in the size of the hypothalamus that
could be due to effects on Sonic Hedgehog (SHH)-related pathways (2). Heterozygous mice
are not obese but have fused digits as well as hyperplasia of the thymus, possibly due to apparent
impairment of programmed cell death (64). In humans, a de novo duplication of the region on
chromosome 16q12.2 that includes FTO, FTM, FT1, RBL2 (retinoblastoma-like2) and NET1
[Solute carrier family 6 (neurotransmitter transporter, noradrenalin), member 2] is associated
with anisomastia, somatic dysmorphisms, mental retardation and obesity (56).

Left-right asymmetry, neural tube patterning, and floor plate defects in the Fused toes mutant
may be caused by the absence of Ftm, a regulator of SHH signaling expressed at the basal body
of cilia (65). Adult mice lacking cilia throughout the central nervous system and, more
specifically, pro-opiomelanocortin (POMC) neurons display increased food intake that leads
to obesity (11). Ftm is homologous to RPGRIP1 (RPGR-interacting protein 1). Mutations of
RPGRIP1 result in retinitis pigmentosa in humans (36) due to degeneration of photoreceptor
cells possibly resulting from dysfunction of retinal cilia. (22,45). In Bardet-Biedl syndrome, a
syndromic form of human obesity associated with polydactyly, retinal degeneration and renal
malformations, derangements of ciliary function have been implicated (39).

To further evaluate whether FTO or FTM might be responsible for the strong association of
this genetic region with human adiposity, and to assess the molecular physiology of an
implicated SNP (rs8050136) found within a putative transcription factor binding site (Fig. 1),
we analyzed the expression of Fto and Ftm in several mouse models of obesity, and evaluated
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a possible functional role for this SNP as part of a putative Cutl-like 1 (CUTL1; transcription
factor) binding site regulating FTO/FTM expression. Our intention was to identify differences
of FTO/FTM expression in individual organs and specific fat depots upon environmental
manipulations and in response to genetic disturbances of specific pathways (29) related to
energy homeostasis.

Experimental Procedures
Mouse strains

Lepob (B6.V-Lepob/J), Leprdb (B6.Cg-m +/+ Leprdb/J), Cpefat [B6.HRS(BKS)-Cpefat/J], tub
(B6(Cg)-Tubtub/J), Ay (B6.Cg-Ay/J), and control +/+ (C57BL/6J) male mice were obtained from
The Jackson Laboratory (Maine, USA) at 4 weeks of age and sacrificed within 1 day of their
arrival. At the Jackson Laboratory, and our laboratory, mice were fed regular chow (6% Kcal
from fat: “NIH 31 6%”; Purina Mills, USA). C57BL/6J male diet-induced obese (DIO) mice
were raised at the Jackson Laboratory. At 4 weeks of age, DIO mice were fed chow containing
10% Kcal from fat (Cat No. D12450B1; Open Source Diets™, USA) for 2 weeks, and then
switched to high-fat chow (60% Kcal from fat; Cat No. D12492; Open Source Diets™, USA)
for an additional 12 weeks. DIO control mice were fed chow containing 10% Kcal from fat
(Cat No. D12450B1; Open Source Diets™, USA) at 4 weeks of age for a period of 14 weeks
at the Jackson Laboratory. DIO and DIO control mice were sacrificed at 18 weeks of age, upon
arrival. All mutant mice were sacrificed at 4 weeks of age in order to minimize possible
secondary effects of obesity on Fto/Ftm expression.

Fasted mice were not fed for 40 hours. For the thermal challenge experiments, mice were placed
singly in a 4 °C cold room for 30 min with ad libitum access to food and water.

Room temperature was constant at 21°C (unless otherwise stated) on a 12 h light/12 h dark
cycle (lights were turned off at 7 pm). Mice had ad libitum access to food and water. All
protocols were approved by the Columbia University Institutional Animal Care and Use
Committee.

Body mass and composition measurements
To examine possible secondary effects of body composition on Fto/Ftm gene expression, body
composition of the mice used in these studies was determined by TD-NMR using a Minispec
Analyst AD lean fat analyzer (Bruker Optics, Silberstreifen Germany; the TD-NMR was
calibrated according to the manufacturer's directions. The phenotypes were comparable to
those reported in the literature (Table 1). In mice fasted for 40h, there were anticipated
differences in responses of body weight and composition. Wild type C57BL/6J mice lost
∼50% of their total fat mass (p<0.02). Fasted Lepob mice lost from 5-15% of their total fat
mass (p<0.05). Both Lepob and +/+ mice lost ∼20% of their total lean mass during the 40h
period of food restriction (p<0.01).

Isolation of total RNA and cDNA synthesis
All mice were sacrificed between 2-4 PM. All tissues were dissected and immediately flash
frozen in liquid N2. Each tissue was crushed into a fine powder in a 1.5ml eppendorf tube in
the presence of liquid N2 and subsequently lysed in 1ml of Qiazol (Qiagen, Valencia, CA).
Total RNA was extracted and DNase-treated using the RNeasy® Lipid Tissue Mini Kit and
RNase-free DNase (Qiagen, Valencia, CA) according to the manufacturer's instructions. cDNA
synthesis from 2.8 μg of total RNA was performed at 42°C for 55 min utilizing the
Sprint™PowerScript™ PrePrimed Single Shots kit (CLONTECH, USA) with Oligo (dT)18
primers. Subsequently, the reverse transcriptase was inactivated at 72°C for 10 min.

Stratigopoulos et al. Page 3

Am J Physiol Regul Integr Comp Physiol. Author manuscript; available in PMC 2010 January 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



qPCR
Transcript quantitation was performed in a Lightcycler 2.0 (ROCHE, USA) using the
LightCycler ® FastStart DNA Master SYBR Green I kit (ROCHE, USA) according to the
manufacturer's instructions. Samples were heated at 95°C for 10 min, followed by 40 cycles
of 95 °C for 15 sec, 60-65°C for 10 sec, and 72 °C for 12 sec. For the amplification of the
endogenous control genes Gapdh and Rps3, the annealing temperature was 60 °C and 58 °C,
respectively. The annealing temperature was 65 °C for the primer pairs specific to the remaining
genes. Each 20 μl reaction contained 2.5 μl of cDNA previously diluted to 1/11, 1.6 mM
MgCl2, 3 micromolar of each primer and the recommended amount of the SYBR Green I mix.
Primers for the endogenous control genes used were as follows:

Gapdh

5′-GCAGTGGCAAAGTGGAGATTGTTGC

5′-CCCGTTGATGACAAGCTTCCCATTC,

Actb

5′-TCTGGTGGTACCACCATGTACCCAG

5′-TGGAAGGTGGACAGTGAGGCCAG,

Rps3

5′-ATCAGAGAGTTGACCGCAGTTG

5′-AATGAACCGAAGCACACCATAG

Hprt

5′- CGCAGTCCCAGCGTCGTGATTTAGC

5′- CCCATCTCCTTCATGACATCTCGAGC

The Fto primers amplified part of exons 2 (5′-CACTTGGCTTCCTTACCTGACCCCC)
and 3 (5′-GGTATGCTGCCGGCCTCTCGG).

The Ftm primers amplified part of exons 4 (5′-
CCAAACAGCAGCTCCAAGTCCAGGG) and exon 5 (5′-
GAGCGTGGGTTGTACAGTTTCTGCTTC).

Transcript quantitation was performed using the automated absolute quantification mode of
the LightCycler® Software. Standard curves were calculated for each set of primers using
hypothalamic cDNA from +/+ controls. Both Fto and Ftm-specific primer sets had
amplification efficiencies of 1.8. The crossing point was defined as the first maximum of the
second derivative of the fluorescence curve.

Expression levels of Gapdh, Actb, Hprt and Rps3 were measured in subcutaneous, mesenteric,
perirenal, epididymal fat, brown adipose tissue, pancreas, liver and hypothalamus of all mice
used in these studies. Although expression levels of the same gene varied across tissues,
transcript levels of Gapdh. Actb and Hprt showed only modest variation (1-5%) within the
same tissue among DIO mice, or those segregating for the various mutations. In contrast,
Rps3 expression was ∼70% lower (p<0.001) in mesenteric fat of Lepob fasted mice. We used
Gapdh as a loading control for the expression analysis.

Alternative transcript analysis
Fto contains 9 exons (all coding). To enable analysis of organ-specific expression rates, we
identified exons present in all or most mRNA isoforms. Total RNA from the hypothalamus
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and mesenteric fat of +/+ mice was extracted as described above. cDNA was synthesized using
the Superscript™ III First-Strand Synthesis System for RT-PCR with oligo(dT)20 (Invitrogen,
Carlsbad, California, USA). Forward and reverse primers were as follows:

Fto

exon1 forward (5′-GGCGAAGGCGGCTTTAGTAGCAG),

exon2 forward (5′-CACTTGGCTTCCTTACCTGACCCC),

exon 2 reverse (5′-GGGGTCAGGTAAGGAAGCCAAGTG),

exon 3 forward (5′- GCCACTGTGCATGGCAGAGTTCCCC),

exon 3 reverse (5′- GGGGAACTCTGCCATGCACAGTGGC),

exon 4 forward (5′- CAGGATTAACAATCCCTCTTCACCAGGG),

exon 4 reverse (5′-CCCTGGTGAAGAGGGATTGTTAATCCTG),

exon 5 forward (5′-CGGTTTAGTTCCACTCACCGTGTGG),

exon 5 reverse (5′ CCACACGGTGAGTGGAACTAAACCG),

exon 6 forward (5′- CTCAGACGATGGCGACGTCTCGTTG),

exon 6 reverse (5′- CAACGAGACGTCGCCATCGTCTGAG),

exon 7 forward (5′- TGGTGTGAGCCCATGACTCACCTGG),

exon 7 reverse (5′- CCAGGTGAGTCATGGGCTCACACCA),

exon 8 forward (5′-ACCGTGCGCCAGAACCTGAGGAAGG),

exon 8 reverse (5′- ACCGTGCGCCAGAACCTGAGGAAGG),

exon 9 reverse (5′- GGGCAGAGGCATGGAAGGGTCATCC).

Amplification of hypothalamic and mesenteric cDNA using all possible primer combinations
was achieved by varying extension time from 30 sec to 10 min and annealing temperature
between 65-68 °C. The resulting PCR products were sequenced bidirectionally by GENEWIZ
(San Diego, California). We did not identify alternatively spliced species in hypothalamus or
mesenteric fat. We also examined Fto cDNA entries in NCBI. Most Fto cDNA clones from
mouse included exons 2 and 3 (GenBank accession numbers: AK049502, AJ237917,
AK088881, AK040866, AK045465, BC057008, AK022222, AK161060, AK036677). Fto
cDNA sequence entries that did not include exons 2 and 3 were cloned from human testis
(Accession number AK016860) or human melanoma and melanocyte cells (Accession
numbers AK210708, AK194211, AK184948). qPCR using the primers listed above showed
no differences in transcript abundance for mRNA species listed in GenBank (data not shown).
Primers that amplified the junction between exons 2 and 3 were used for the quantitative
expression analyses reported here.

Ftm contains 26 exons (25 coding). Inspection of mouse and human entries in NCBI was used
to identify isoforms present in the majority of transcripts. Two transcripts included exons 4
and 5 [GenBank accession numbers AK029911 (mouse testis) and AJ344253 (11-day old
embryo)]. Shorter transcripts cloned from human testis, bone and 15-day mouse embryos
lacked exons 4 –5, but did not contain exons in common among them (AK00675, AK053090,
AK036554). qPCR showed no difference in Ftm transcript abundance in all mouse tissues
tested (same as tested for Fto) among all mRNA species recorded in NCBI (data not shown).
The primers used were as follows:

exon 4 forward 5′-CCAAACAGCAGCTCCAAGTCCAGGG,
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exon 5 reverse 5′-GAGCGTGGGTTGTACAGTTTCTGCTTC,

exon 6 forward 5′-CTTCTTCAGCTTCGAGAACAGCAGGC,

exon 7 reverse 5′-GACTGAAAGAGCATTGCTTTTCTCC,

exon 10 reverse 5′-GAATTAATGATTTAGAAAAGGAGCGGGAAC.

We chose to amplify the junction between exons 4 and 5 in quantitative assessments of Ftm
expression.

In situ hybridization
4-week old C57BL/6J or Lepob male mice were perfused with 4% paraformaldehyde, and 13.5
dpc old +/+ or Lepob embryos were fixed overnight in 4% paraformaldehyde. Tissues were
excised, dehydrated in 30% sucrose, frozen, and placed on slides as 10 micron medial coronal
hypothalamic, sagittal pancreatic or medial sagittal embryonic sections.

Probes for in situ hybridization of embryonic and adult tissue were made by amplifying a 792
bp fragment from hypothalamic cDNA of C57BL/6J mice spanning Fto exons 2-4:

5′-CACTTGGCTTCCTTACCTGACCCC,

5′- CCCTGGTGAAGAGGGATTGTTAATCCTG

and a 736 bp fragment spanning Ftm exons 2-6:

5′-GAGACCTGCCGGTGAAAGATACAGG,

5′- GCCTGCTGTTCTCGAAGCTGAAGAAG.

Each DNA fragment was cloned in the Dual Promoter pCR® II-TOPO® Vector provided with
the TOPO TA Cloning® Kit (Invitrogen, Carlsbad, California, USA) according to the
manufacturer's specifications. Sense and antisense riboprobes labeled with Digoxigenin (DIG;
Roche, USA) were prepared by in vitro transcription using T7 or Sp6 RNA polymerase
(Promega, USA) at 42°C for 180 min. In situ hybridization was performed as previously
described (7).

Chromatin immunoprecipitation assay
Primary fibroblast cells (∼4×106) from human skin heterozygous for rs8050136 (A/C), and
rs17817449 (T/G) (Fig. 1) were fixed with formaldehyde, lysed and sonicated using the
Chromatin Immunoprecipitation (ChIP) Assay Kit (Millipore, USA) according to the
manufacturer's specifications. Halt™ Protease and Phosphatase Inhibitor cocktails (PIERCE,
USA) were used according to the manufacturer's specifications. Protein-DNA complexes were
incubated with mouse CUTL1 (ABR, USA), mouse HES1 (Santa Cruz Biotechnology, Santa
Cruz) or mouse IgG (ABR, USA) antibodies at a 1:400 dilution, and incubated with Protein A
agarose beads in the presence of salmon sperm DNA. CUTL1, HES1, or IgG-DNA complexes
were reverse cross-linked, and the unbound protein was digested following the protocol
provided with the Chromatin Immunoprecipitation (ChIP) Assay Kit (Millipore, USA). The
DNA fragments were purified using the QIAquick PCR purification kit (Qiagen, Valencia,
CA). Transcript detection was performed by qPCR in Lightcycler 2.0 (ROCHE, USA) using
the LightCycler ® FastStart DNA Master SYBR Green I kit (ROCHE, USA) according to the
manufacturer's instructions. Samples were heated at 95°C for 10 min, followed by 35 cycles
of 95 °C for 15 sec, 55°C for 10 sec, 72 °C for 12 sec. Each 20 μl reaction contained 1 μl of
ChIP DNA fragments, 1.6 mM MgCl2, 3 micromolar of each primer and the recommended
amount of the SYBR Green I mix. The following primers were used:

rs8050136:
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5′-CGGTATTTGATTTCCTTTTCCCTGGG,

5′-biotin-GCATTCCATGAGTCCATCTCTACAG,

rs17817449:

5′-GTAACTGAGTCTCCCCTAACTGG,

5′-biotin-GGGAGTGCACCAAATTCAAACC.

The Institutional Review Board at Columbia University Medical Center (USA) approved the
study and the participant gave written informed consent.

Pyrosequencing
Pyrosequencing was performed as previously described (35). In place of magnetic streptavidin
beads, streptavidin SepharoseTM High Performance (Amersham Biosciences AB, USA) beads
were used to capture biotin-labeled DNA fragments. The following sequencing primers were
used:

rs17817449: 5′-TCAGCTTGGCACACAGAAAC,

rs8050136: 5′-CCAGTTGCCCACTGTGGCA.

The nucleotide dispensing order for sequences [T/G]GTTTTAATT (rs17817449) and AT[C/
A]AATAT (rs8050136) were C-T-G-C-T-A-T and C-A-T-C-A-G-T-A-T, respectively.

siRNA for CUTL1
Lipofectamine™ 2000 (Invitrogen, Carlsbad, California, USA) was used according to the
manufacturer's specifications to transfect siRNA into primary fibroblasts (at ∼50% confluency)
from human skin heterozygous for rs8050136 and rs17817449. For CUTL1, the siRNA target
sequence and scrambled control were:

5′-GGCUGACUAUGAAGAGGUGAAGAAA and

5′-GGCUCUAUGAAGAGGGAGUAAGAAA,

respectively (Invitrogen, Carlsbad, California). Cells were harvested 48 hours later and total
RNA isolated as previously described. The same qPCR protocols for Fto and Ftm were used
to amplify comparable regions of the human orthologs:

FTO exons 2-3

5′-CACTTGGCTCCCTTATCTGACCCCC,

5′-GATACACTGCTGGCTTCTCGG

FTM exons 4-5

5′-CCAAACAGCAACTTCAAACCCAGGG,

5′-GTAAACATGGGATGTGGAGTTTCTGCTAC.

The same protocol was followed for the assessment of CUTL1 expression. The following
CUTL1-specific primers were used to amplify part of exon 18 and 20 and the whole of exon
19:

5′- CTACATGTACCAGGAGGTGGACACCATCG,

5′- CTGCTGCAGCGGGTCCTGGAGCGAT.
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Statistical analysis
Group data are expressed as means +/- standard deviation. Statistical analyses were performed
using ANOVA, ANCOVA (StatView 5.0, SAS Institute Inc. or STATISTICA v. 6; StatSoft®
Tulsa, Oklahoma). Data were corrected for repeated measures using repeated measures
ANOVA (STATISTICA v. 6; StatSoft® Tulsa, Oklahoma). Levels of statistical significance
were set at 2-tailed palpha<0.05. In all figures, error bars are SD.

Results
Comparison of Fto and Ftm expression in various tissues of C57BL/6J (+/+) mice

Fto transcript levels were higher than Ftm in all tissues tested (Fig 2). Fto expression was ∼6-
fold higher than Ftm in the hypothalamus (p<0.001). Expression of Fto in the hypothalamus
was ∼2-fold (p<0.001) and ∼25-fold higher (p<0.001) than mesenteric fat and brown adipose
tissue, respectively. Expression levels of Ftm in the hypothalamus and mesenteric fat were at
least ∼2-fold higher (p<0.01) than all other fat depots and the liver. Fto expression in the
pancreas was ∼2-fold higher (p<0.02) than Ftm expression. By in situ hybridization, Fto was
highly expressed throughout the hypothalamus, but relatively higher in the arcuate nucleus
(Fig. 3A) while Ftm expression was restricted to the arcuate nucleus. These findings are
consistent with comparable data available in the Allen Brain Atlas
(http://www.allenbrainatlas.com). In the pancreas, by in situ hybridization, both Fto and Ftm
expression was restricted to the islets (Fig 3B).

Effects of Lepob, Leprdb and Ay mutations on Fto and Ftm expression
Fto and Ftm expression were decreased by ∼2 to 3-fold (p<0.01) in the mesenteric fat and liver
of 4-week old Ay and Lepob mice compared to the +/+ controls (Fig 4A, 4B). In subcutaneous,
epididymal, renal and brown fat tissues, Fto and Ftm expression followed a similar trend. In
pancreas, Fto and Ftm expression did not differ between lean and obese mice (Fig 4). By in
situ hybridization, Fto and Ftm expression in sections of Lepob pancreata was comparable to
that of +/+ mice (data not shown), and also limited to the islets. As anticipated, expression
levels in Leprdb mice were comparable to those in Lepob (Fig. 5B)

Effects of Cpefat and tub mutations, and DIO on Fto and Ftm expression
Fto and Ftm expression was assessed in mesenteric fat, liver subcutaneous fat, and
hypothalamus of 4-week old Cpefat, tub and DIO mice. Expression of Fto and Ftm was reduced
∼2-fold in the mesenteric fat of Cpefat and tub mice. There was no statistically significant
difference in the expression of either gene in any organ from DIO mice (Fig 5A). Fto expression
was also reduced by 30% (p<0.03) in the liver of tub mice, and Ftm expression followed the
same trend (Fig. 5C). There was no significant difference in Fto or Ftm expression in
subcutaneous fat or liver of Cpefat, tub and DIO compared to lean mice.

Fto and Ftm expression in hypothalami and mesenteric fat of fed, fasted and 4°C ambient
animals

In hypothalamus, Fto and Ftm expression did not differ among ad libitum fed Ay, Lepob,
Leprdb, Cpefat, tub or DIO compared to fed control mice (Fig 5D, 6A). By in situ hybridization,
Fto and Ftm expression in hypothalamic sections of Lepob mice was identical to that of +/+
mice (data not shown). To assess other possible regulatory functions of Fto /Ftm, their
expression was measured in fasted animals and mice exposed to 4 °C for 30 minutes. Fto and
Ftm expression levels was decreased in hypothalami of fasted Lepob mice compared to fed
Lepob (Fto -20%, p<0.03; Ftm -40%, p<0.001) and fed +/+ mice (Fto -20%, p<0.04; Ftm -45%,
p<0.01). Fasting had no effect on Fto or Ftm expression in mesenteric fat of Lepob mice (Fig
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6B). Fasting was associated with a 2-fold (p<0.01) decrease in Fto expression in mesenteric
fat of +/+ mice, but had no effect on Ftm.

Fto and Ftm expression decreased by 30% (p<0.01) and 40% (p<0.04), respectively, in
hypothalami of +/+ mice exposed to 4°C for 30 minutes (Fig 6A). In the same mice, Fto
expression was reduced 2-fold in mesenteric fat (p<0.001); there was a similar trend in Ftm
expression (Fig 6A).

Comparison of Fto/Ftm expression in adipocytes and stromal vascular cells (SVC)
To determine whether Fto/Ftm are expressed in both adipocytes and SVC, cDNA specific to
each cell fraction obtained from epididymal fat of +/+ and Leprdb mice (68) was used as
template for qPRC analysis. Fto and Ftm were expressed in both adipocytes and SVC, though
both genes were expressed at ∼36% (p=0.005) and ∼26% (p=0.01) higher levels in SVC,
respectively (Fig. 7). The expression of both genes was decreased in both adipocytes (Fto,
∼60%, p=0.007; Ftm, ∼45%, p=0.01) and SVC (Fto, ∼67%, p<0.001; Ftm, ∼69%, p<0.001)
obtained from Leprdb compared to +/+ mice (Fig. 7).

Effects of adiposity per se on Fto/Ftm expression
To assess the respective contributions to Fto/Ftm expression of 1.) obesity mutation(s), per
se, and 2.) the degree of adiposity resulting from such mutations, we assessed body fat content
by TD-NMR in Lepob, Leprdb, Cpefat and tub animals at 4-weeks of age, and obtained body
composition data for 18-week old DIO and DIO control animals from The Jackson Laboratory
(Maine, USA). Data grouped by tissue or mutation/DIO showed statistical significance
(ANOVA; p<0.001). Significant tissue × mutation/DIO interactions were also present for both
Fto and Ftm (ANOVA; p<0.001). We used absolute and fractional fat content to adjust (by
ANCOVA) expression levels of Fto/Ftm in all tissues, by genotype. Levels of adiposity, per
se, had no significant effect on these expression differences. Hence, expression differences are
generally attributable to the respective obesity mutations or DIO.

Fto and Ftm expression in the mouse embryo
Fto and Ftm expression were also examined by in situ hybridization and qPCR in the mouse
embryo. At 13.5 dpc, Fto was expressed throughout the whole embryo, especially in the brain
and spinal cord (Fig 3C). In the midbrain, Fto expression was relatively high in the developing
arcuate nucleus and mamillary area. Ftm was expressed at lower levels in fewer tissues than
Fto. The Ftm expression pattern in the midbrain was comparable to that of Fto (Fig 3C). In
whole brain, Ftm expression levels were ∼2-fold less than Fto (p<0.02) (Fig 3D).

The role of leptin during embryonic development is not clear. Leptin receptor isoforms are
expressed in the mouse brain as early as 13.5 dpc and seem to induce differentiation of neuronal
lineage cells (62). Fto and Ftm expression were assessed in Lepob embryos. The Lepob mutation
was not associated with differences in Fto or Ftm expression in the whole brain of embryos at
13.5 dpc in comparison to +/+ controls (Fig 3D). Similarly, no differences in patterns of Fto
or Ftm expression were observed between Lepob and +/+ embryos at 13.5 dpc by in situ
hybridization (data not shown).

CUTL1 controls FTO and FTM expression
All FTO SNPs reported to be strongly associated with BMI (8,14,51,52), and all 46 SNPs in
linkage disequilibrium with those associated SNPs, were analyzed using MatInspector (matrix
CDPCR3.01. Genomatix GmbH, Germany; http://www.genomatix.de) to identify canonical
cis transcriptional regulatory elements containing these SNPs. rs17817449 (Matrix similarity
0.78) and rs8050136 (Matrix similarity 0.82) (Fig 1), were predicted to be located in CUTL1
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binding sites (Fig. 8A). In chromatin immunoprecipitation (ChIP) of DNA from human
fibroblasts using a CUTL1-specific antibody, a ∼90bp fragment that included rs8050136 was
precipitated (Fig. 8B). Since the fibroblasts were heterozygous for rs8050136(A/C), it was
possible to determine whether CUTL1 displayed a binding preference for either of these alleles.
Only 20% of the rs8050136 fragments isolated by ChIP with the CUTL1 antibody carried the
“C” allele (Fig 8C). When CUTL1 expression in the fibroblasts was reduced by 70% with
siRNA, FTO expression was decreased by 90% and FTM by 65% (p<0.001) (Fig. 8D).

Discussion
In all of the obesity mutations studied, Fto and Ftm expression was lower in the mesenteric fat
than any other fat depot. The reasons for preferential effects (versus other adipose tissue depots)
in the mesenteric adipose tissue, or for the higher levels of Fto and Ftm expression in SVC
than adipocytes are not clear. In a recent study of human adipose tissue, FTO expression was
reported to be about 2-fold higher in isolated adipocytes than whole subcutaneous adipose
tissue, implying that in humans expression in adipocytes is greater than SVC (66). In that study,
obesity increased expression in isolated adipocytes to a greater extent than in total adipose
tissue. Further studies will have to be done to determine whether relative rates of expression
in adipose tissue subfractions and effects of obesity on expression differ between mice and
humans.

Downregulation of Fto, but not Ftm, in the mesenteric fat of fasted +/+ animals is effectively
the only qualitative difference in expression pattern between the two genes. The decline in
Fto expression in this depot with fasting (a response not seen in other fat depots) suggests that
levels of FTO/FTM expression may be influenced by substrates coming at high concentrations
from the small bowel.

In situ hybridization suggests that Ftm and Fto are co-expressed in a limited region of the
arcuate nucleus. In the Allen Brain Atlas (http://www.brainatlas.org/aba/), Cutl1 spatial
expression is comparable to that of Ftm in the arcuate nucleus of the adult mouse. In addition,
the expression pattern in fasted animals is consistent with downregulation of Fto and Ftm
expression observed in the hypothalamus of +/+ mice housed at 4°C in that cold exposure
increases food consumption in mice (9). These findings are consistent with centrally-mediated
effects on energy homeostasis. Such influence could be conveyed by developmental/structural
effects of FTO/FTM and/or participation -as suggested by responses to environmental
manipulation- in intercurrent metabolic/behavioral homeostasis. The salience of effects in the
genetic models with direct interruptions of the leptin axis (Lepob, Leprdb) are intriguing, and
could point to specific neurophysiological roles for Fto and Ftm in canonical neuroregulation
of energy metabolism. The site-related differences in adipose tissue expression, could reflect
cell-autonomous differences in Fto/Ftm expression and/or neurally-mediated effects on these
depots. The apparent role of FTO/FTM in cell cycle and developmental aspects of the
hypothalamus might suggest that they would be unlikely to respond to intercurrent metabolic
or environmental changes. However, there is ample precedent for just such a dual role (in brain
development and metabolic homeostasis) by hormone leptin (5).

Following completion of the present study, Gerken et al (15) reported that the FTO protein has
sequence similarity to Fe(II)- and 2-oxoglutarate –dependent oxygenases, localizes to the
nucleus, and demethylates single-stranded DNA in vitro in the presence of Fe(II) and ascorbate,
suggesting a possible role for FTO in regulation of gene transcription or DNA damage repair.
They reported a 60% decrease of Fto expression by qPCR in laser-dissected murine arcuate
nuclei of fasted animals, but no alteration in ventromedial or paraventricular nuclei of these
same mice. In our study, we also observed a trend towards reduced Fto expression levels in
whole hypothalami of fasted +/+ mice, and found a statistically significant decrease (∼20%)
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in fasted Lepob compared to fed Lepob mice (Fig. 6A). Our data are consistent with those of
Gerken et al (15), and suggest that leptin does not mediate these declines of Fto expression in
fasted animals.

Shh expression is reduced in the limb buds of Ftm-/- mouse embryos (65). In chick limb buds,
Shh overexpression causes ectopic expression of Cux2, a Cutl1 ortholog (58). Thus, a positive
feedback loop may exist between Cutl1, Ftm and SHH signaling. Misregulation of SHH
signaling and cilia dysfunction are implicated in obesity, retinal degeneration, right-left
asymmetry, renal dysplasia and polydactyly that characterize the Bardet-Biedl syndrome (10,
57,59). Ftm is a basal body protein of cilia that affects SHH signaling (65), suggesting that
Ftm may contribute to aspects of hypothalamic development. Reminiscent of aspects of the
Bardet-Biedl syndrome, humans with mutations in RPGRIP, the FTM homologue, develop
retinal dysplasia (43,57). Additionally, Cutl1-/- and Fused toes homozygous mutants display
left-right asymmetry.

There is striking similarity of gene structure and order of Fto, Ftm, Fts and the Irx genes
between human and mouse (Fig 1). Moreover, the large Fto intronic regions (up to ∼177.5 Kb)
show extended sequence conservation with their human counterparts (Genomic Sequence
Alignment function; Ensembl). SNP rs8050136, and the CUTL1 binding site in which it is
located, are part of a highly conserved 1.2 Kb intronic region (58% identity with the mouse).
CUTL1 belongs to the CDP/Cut family of homeoproteins (40). It consists of a Cut
homeodomain and 3 ‘Cut repeat’ DNA-binding domains (18). Members of the CDP/Cut family
have the capacity to bind to a wide range of DNA sequences (1,3,7,18,64). In the present study,
CUTL1 interacted only with the predicted binding sequence “aggctcagatatt(g/t)
ATTGc” (rs8050136) and not with the predicted binding sequence “cacacaGAAac(g/t)
gttttaa” (rs17817449) (Fig 8A). Moreover, CUTL1 preferentially bound to DNA fragments
carrying the ‘C’ allele of rs8050136. Using data from the Tubingen Family Study, Tschritter
et al (61) identified a dose-dependent increase of ∼5 Kg in body mass.

Cutl1 was originally cloned in Drosophila and shown to be a downstream effector of Notch
(24,34,38,42). Lack of functional Cutl1 is embryonic lethal, while flies with viable mutations
display developmental defects in various organs including limbs, Malpighian tubules and
external sensory organs (4,23,30). Cutl1 was originally identified in vertebrates for its CCAAT
displacement activity and was later linked by homology to its Drosophila paralog (41). In the
mouse, disruption of Cutl1 results in generalized somatic growth retardation (12,31,53), while
Cutl1 overexpression leads to multiorgan cellular hyperplasia and organomegaly (26). CUTL1
plays an apparent role in cell cycle progression, specifically as an accelerator of entry into S
phase (50).

CUTL1 acts as a transcriptional repressor by displacing activators (54) and/or by recruitment
of histone deacetylase 1 (33), and has been proposed to inhibit gene expression in terminally
differentiated cells (13). However, CUTL1 has also been implicated as a transcriptional
activator. This activity depends upon proteolytic cleavage, resulting in a truncated isoform,
p110 (including the C-terminal ”Cut repeats“ 2,3 and the homeodomain), that upregulates DNA
pol a (60). p110 and the DNA pol a promoter interact during the G1/S phase transition (50,
60). In the present study, the ChIP assay was performed using an antibody that recognizes both
CUTL1 and p110 (60). The siRNA knock-down experiment indicates that CUTL1 (or p110)
is needed for FTO and FTM transcriptional activation. The finding that FTO and FTM are co-
regulated by CUTL1 is consistent with the expression data in mouse organs. The discovery of
the genetic interaction between CUTL1 and FTO/FTM at rs8050136 does not exclude the
possibility that regulation by CUTL1 may involve other CUTL1 binding sites. In the implicated
(by LD) ∼47Kb region, MatInspector (Genomatix; http://www.genomatix.de) identified 12
CUTL1 binding sites (matrix CLOX/CDPCR3.01; Matrix similarity >0.8) all present in the
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first intron of FTO. Except rs8050136, only SNP rs7202296 (∼6 Kb downstream of rs8050136)
is located in a putative CUTL1 binding site.

Perspectives and Significance
The recent availability of very high density molecular maps of intrinsic single nucleotide pair
variation within the human genome has enabled a new means of looking for genes that account
for quantitative (adiposity) or qualitative (diabetes) human phenotypic variation. In such
genome-wide scans (GWAS), no prior information regarding the type of gene or its physical
location is required. Statistical signals correlating phenotype with SNPs are used to implicate
genetic regions and constituent genes. These approaches, while inherently more sensitive than
older parametric linkage techniques, can (and do) generate large numbers of authentic
“candidates” whose functional relevance with regard to the dependent phenotype is largely or
entirely unknown. FTO (FTM) are good examples. One or both of these genes are clearly
implicated (statistically) in control of human adiposity (BMI), but the molecular physiology
of such effects is unknown. FTO is apparently an Fe(II)- and 2-oxoglutarate –dependent
oxygenase, and FTM a ciliary basal body component. The former might operate as a DNA
demethylase, the latter in what is now appreciated - by virtue of the obesity phenotype in the
Bardet-Biedl and Alstrom syndromes - as an important pathway in human energy homeostasis.
To get an idea of how these newly implicated genes might operate in energy homeostasis, we
examined their organ distributions (ubiquitous); their changes in expression in the context of
classical monogenic and dietary obesities (reduced), and in response to food restriction and
cold exposure (decreased); and the distribution of their transcripts within the arcuate of the
hypothalamus. While these findings are consistent with a role for these genes in canonical
molecular pathways related to energy homeostatsis, the specific mechanisms/pathways by
which one or both genes influence adiposity are not revealed by our experiments. The study
of mice with conditional, organ-specific knockouts/overexpression of these genes (alone and
together) will be needed. As will studies of the expression of FTO/FTM in relevant tissues
obtained from humans with 0,1, or 2 of the risk alleles for rs8050136. More interesting at this
point is the possibility that both genes are being regulated by a single transcription factor
(CUTL1) via a single regulatory site in the first intron of FTO. While our paper provides
circumstantial evidence in this regard, more definitive analysis will require the study of mice
with under-/over-active alleles of Cutl, and, hopefully, the identification of humans with
aberrant alleles of CUTL1. Whereas the mouse has been heavily relied upon to identify
candidate genes for phenotypes such as obesity and diabetes, in the era of the GWAS, their
role will now be expanded to the vetting of mechanisms for genes discovered in high resolution
“sweeps” of the human genome.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Organization of the Fto/Ftm gene cluster
Positions of Fto and Ftm in mouse and human genomes. SNPs associated with BMI are
indicated.
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Figure 2. Comparison of Fto and Ftm expression in various tissue types
Fto and Ftm expression quantified by qPCR in the hypothalamus, mesenteric fat, pancreas,
liver, subcutaneous fat, epididymal fat, perirenal fat and brown adipose tissue from 4-week +/
+ C57BL/6J mice (N=5). Transcript levels were normalized to Gapdh.
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Figure 3. Localization of Fto and Ftm transcripts in adult hypothalamus, pancreas and 13.5 dpc
embryo
Fto and Ftm expression by in situ hybridization in (A) medial coronal hypothalamic and (B)
sagittal pancreatic sections from 4-week old C57BL/6J males. Positive alkaline phosphatase
staining of Fto and Ftm transcript is seen as a dark perinuclear ring. Fto is expressed in the
arcuate nucleus (ARC), the dorsal medial hypothalamus (DMH), and the ventral medial
hypothalamus (VMH). Ftm expression is restricted to the ARC in the hypothalamus and is
expressed at a lower level than Fto. (C) Fto and Ftm in situ hybridization in medial sagittal
sections of 13.5 dpc wild type embryos. Positive alkaline phosphatase staining of Fto and
Ftm is seen as a dark perinuclear ring. Fto expression is present in the whole embryo,
particularly in the brain and spinal cord. In the brain, Fto expression is enriched in the arcuate
nucleus (ARC) and mamillary area. Ftm is expressed mainly in the brain and appears restricted
to the ARC and mammilary area. (D) Fto and Ftm expression measured by Real Time PCR in
whole brains of 13.5 dpc Lepob and +/+ mice. Transcript levels were normalized to Gapdh.
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Figure 4. Effects of obesity mutations in Fto and Ftm expression
Fto and Ftm expression measured by qPCR in various tissues of Ay, Lepob and +/+ (C57BL/
6J) mice. Transcript levels were normalized with Gapdh. N=5 each group.
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Figure 5. Comparison of Fto and Ftm expression in various tissues and obesity models
Fto and Ftm expression quantified by qPCR in (A) mesenteric fat, (B) subcutaneous fat, (C)
liver and (D) hypothalamus of Leprdb, Cpefat, tub, Diet Induced Obese C57BL/6J (DIO), DIO
C57BL/6J control (DIO C) and chow-fed +/+ (C57BL/6J) mice. Transcript levels were
normalized with Gapdh. N=5 each group.
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Figure 6. Comparison of Fto and Ftm expression in fed/fasted mice
Fto and Ftm expression measured by qPCR in (A) hypothalamus and (B) mesenteric fat of fed/
fasted Lepob, +/+ (C57BL/6J) mice and +/+ mice fed at 4°C for 30min. Transcript levels were
normalized to Gapdh. N=5 each group.
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Figure 7. FTO and FTM are expressed in adipocytes and stromal vascular cells
Fto/Ftm expression determined by qPCR in adipocytes and stromal vascular cells (SVC) from
epididymal fat of +/+ (C57BL/6J) and Leprdb mice (68). N=2 each group
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Figure 8. CUTL1 regulates the transcription of FTO and FTM
(A) rs17817449 and rs8050136 are located within CUTL1 recognition sequences as identified
by MatInspector (Genomatix; http://www.genomatix.de). Complementary mouse sequence is
aligned to the human sequence. Bases that fit the consensus are highlighted. (B) Lightcycler
chromatogram showing the crossing point of PCR reactions containing DNA fragments
isolated by ChIP with CUTL1, HES1 and mouse IgG antibodies. (C) Pyrosequencing using
DNA extracts isolated by ChIP with the Cutl1 antibody. Genomic DNA isolated from
fibroblasts heterozygous for rs8050136 (A/C) was used as control. (D) Expression analysis of
CUTL1, FTO and FTM in human fibroblasts heterozygous for rs8050136 (A/C) where CUTL1
has been knocked down with siRNA.
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