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Operationally, up and down states refer to the observation that neurons have two preferred
subthreshold membrane potentials, both subthreshold for action potential generation. The most
common method of detecting these states is the so-called all-points histogram (Cowan and
Wilson, 1994; Wilson and Kawaguchi, 1996; Paré et al., 1998). This method, borrowed from
the study of single channel currents, plots the frequency of occurrence of various values of
membrane potential for every point in a digitized record. Figure 1 shows a typical example for
a striatal spiny neuron, and for a cortical pyramidal cell in layer V, recorded simultaneously.
The histogram to the left of each one shows the amount of time the cell spends at each value
of membrane potential. Both cells toggle between two preferred membrane potentials, one very
hyperpolarized (Down state), and one more depolarized (Up state). In both cells, the Up state
is only a few millivolts from the action potential threshold. Usually, membrane potential
fluctuations around the Up state are of higher amplitude, whereas the Down state is relatively
free of noise.

Up and Down states have been most often studied in animals anesthetized with urethane or
other anesthetics that induce slow coherent oscillations in the cortex similar to those seen during
sleep or anesthesia (e.g. Steriade et al., 1993; Steriade et al., 2001; Mahon et al., 2006; Destexhe
et al. 2007). Because of this, Up and Down states are sometimes used as a synonym for slow
oscillations. That usage is avoided here, and, Up and Down states will refer only to the set of
cellular and network properties that causes neurons to respond to synaptic input in a two-state
manner. These cellular properties arise from ionic conductances that are always present in the
cell, and can continue to influence cellular activity in other circumstances not associated with
slow oscillations. For example, much of the work on Up and Down states has been obtained
in tissue slices, which are neither anethetized nor asleep, and often not showing any slow
oscillations.

Neurons may exhibit two-state behavior because of their intrinsic properties, or because they
are in a network that imposes it on them, or both, and may be expressed as a part of a variety
of activity states.

Plateau potentials and cellular bistability
The mechanisms that give rise to preferred membrane potentials can best be categorized
according to the intrinsic stability of each state. In both the cerebral cortex and the striatum,
the Down state for individual neurons is stable, and is close to the resting membrane potential
observed when all input is removed (Wilson et al., 1983b; Timofeev et al., 2001). This does
not mean that in those cells the Up state may not also be stable. It is well known that some
neurons are bistable, meaning that they simultaneously possess stable depolarized, as well as
hyperpolarized states and once placed in either state will remain there with no additional
stimululation. The stable depolarized states exhibited by some motoneurons and by cerebellar
Purkinje cells are good examples (Hounsgaard and Kiehn, 1985;; Loewenstein et al., 2005).
Many other neurons show metastable, or transiently stable depolarized states usually called
plateau potentials, which can be entered by brief depolarizations and which last for some period
of time before the membrane potential spontaneously returns to its resting state (Llinás and
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Sugimori, 1980). In these cases, stability of the membrane potential during the plateau is lost
gradually due to some slow process caused by depolarization gradually accumulates and
destabilizes the plateau.

An appropriate test for stability of the Up state is experimental depolarization of the membrane
by current injection at a time when the cell would otherwise be in the Down state. When the
current is released, a bistable neuron would remain in the Up state until perturbed again.
Lingering in the Up state, followed by a return to the Down state after a significant delay, would
be indicative of the operation of a transiently stable Up state. Likewise, attempts have been
made to evoke a stable transition to the Down state by briefly hyperpolarizing neurons to the
potential associated with the Down state. An Up state stabilized by regenerative voltage
dependent electrical activity should be vulnerable to termination in this way.

Bistable networks and balanced inhibition
Bistable networks may produce two-state behavior in cells possessing no intrinsic bistability.
An early description of this kind of network was presented by Wilson and Cowan (1972) as
an abstract model of cortical circuits. This simple model consisting of a population of excitatory
neurons and a population of inhibitory neurons mutually connected and each connected among
themselves. Depending on the strengths of synaptic connections, the model could produce a
variety of different patterns of activity, including stability of low and high activity states. The
two states were divided by a threshold, but to toggle the network between states it was not
sufficient to change the activity of one cell but required a transient change in a substantial
number of cells. The stable level of activity in both the excited and quiet states of the Wilson
and Cowan model is determined by a balance between the mutual excitation among excitatory
neurons and the feedback inhibition they generate by the way of the inhibitory population.
Most network models of Up and Down states in the cortex are extensions of the Wilson and
Cowan model. They employ mutual excitation among cortical pyramidal cells to achieve a
threshold level of excitation beyond which the population can regeneratively self-excite.
Creation of a stable Up state at moderate membrane potentials is achieved by balancing
excitation with inhibition from interneurons.

It should be noted that (like the Wilson and Cowan model) this mechanism can readily be
altered to generate rhythmic transitions between excited and quiet states of the network. To
achieve this, the Up and Down states must both be made to be transiently stable. Current
biophysically realistic versions of the network model employ synaptic depression or
accumulation of afterhyperpolarization currents to destabilize it with time (Bazhenov et al.,
2002; Compte et al., 2003;Holcman and Tsodyks, 2006; Yuste et al., 2005). Periodic re-entry
into the Up state is achieved by postulating a stochastic mechanism that randomly triggers a
transition to the excited network state from time to time.

Striatal spiny neurons
Up and Down states were first described in striatal spiny neurons (Wilson and Groves, 1981).
These neurons receive thousands of excitatory synaptic inputs located on their dendritic spines,
but the spiny cells are inhibitory cells, and the striatal network lacks a source of excitatory
feedback. The occurrence of Up and Down states in striatal neurons required phasic changes
in the cortical and thalamic inputs to striatal neurons (O'Donnell and Grace, 1995; Wilson,
1986; Wilson et al., 1983a; Wilson et al., 1983b; Wilson and Kawaguchi, 1996; Kasanetz et
al., 2006). Much of this work was done using in vivo recording in urethane anesthetized
animals, in which the activity of cortical, thalamic and striatal neurons is dominated by slow
(∼ 1Hz) oscillations (Contreras et al., 1995). It also made use of the ability of cortical and
thalamic stimulation to reset the slow oscillation. Acute cortical lesions abolished the slow
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oscillations seen in the striatum, although stimulation of the remaining axons of the ablated
cells could still evoke monosynaptic responses in the striatal cells. Cortical and thalamic
stimulation also reset the slow oscillations of cortical neurons specifically projecting to the
striatum, and so produced periods of silence and enhanced activity that precisely corresponded
to the Down and Up states seen in striatal cells. When cortical (and thalamic) inputs were
silenced by lesions or by stimulation, all striatal spiny cells exhibited stable membrane
potentials associated with the Down state. Striatal cells recorded in brain slices that interrupt
the projections from the cerebral cortex always show only one stable membrane potential,
associated with the Down state. During slow oscillations in vivo, Up and Down state in
widespread areas of the cerebral cortex are nearly synchronous (Volgushev et al., 2006), and
striatal spiny cells located as far as millimeters away likewise enter and leave the Up state
within a few milliseconds of each other (Stern et al., 1998).

Ionic mechanism of the down state in striatal spiny neurons
The stabiliity of the Down state is apparent from examination of the current-voltage (I-V) curve
for the spiny neuron. At membrane potentials associated with the Down state, the I-V curve
slope (the input conductance) increases with hyperpolarization. This is called inward
rectification, or anomalous rectification (anomalous because it isn't predicted by the Goldman-
Hodgkin-Katz equation). In the Down state, the input resistance of the spiny neuron is low
(10-30 MOhms), making the cell relatively insensitive to small synaptic inputs. The origin of
inward rectification in the spiny neuron is a hyperpolarization-activated potassium channel,
KIR2 (Nisenbaum and Wilson, 1995). The KIR2 channel is regenerative in the sense that it is
a hyperpolarizing channel that is activated by hyperpolarization. In the Down state, when
synaptic input is low, the conductance contributed by this channel is much larger than any other
influence on the spiny neuron. The spiny cell's membrane potential moves close to the
potassium reversal potential, and the cell enters a high-conductance state, in which it is
relatively insensitive to synaptic input. Because the membrane potential in the Down state is
more hyperpolarized than the chloride reversal potential, GABAA-mediated inhibitory
synapses from striatal interneurons and from recurrent collaterals of other spiny neurons are
all depolarizing in nature (Plenz, 2003).

Ionic mechanism of the up state in striatal spiny neurons
At depolarized potentials associated with the Up state, the I-V curve shows a strong curvature
in the other direction (outward rectification). Input resistance in this voltage range state
decreases with depolarization because of the activation of depolarization-activated K+

channels. The spiny striatal neuron possesses several of these that are activated in the range
associated with the Up state, but with a prominent contribution from channels in the Kv1 family
(Shen, et al. 2004). Unlike the KIR2 current, the currents through depolarization-activated
potassium channels are not regenerative, but rather restorative, as they tend to return the
membrane potential to the Down state. In the presence of strong depolarizing current from
excitatory synaptic input, they act to limit the sensitivity of the neuron to those inputs. When
the membrane potential has achieved a level at which these channels are strongly activating
with additional depolarization, any additional depolarization that is achieved by synaptic input
must provide enough current to counteract the voltage-dependent increase in K+ channel
activation that results from that depolarization. Outwardly-rectifying K+ channels in spiny
neurons are in the steep part of their activation range in the Up state (Nisenbaum et al. 1996),
so very large changes in synaptic input are required to achieve even small increases in
depolarization, and the membrane potential remains relatively constant despite slow
fluctuations in the level of synaptic input. Voltage-activated potassium channels do not activate
and deactivate rapidly like the KIR2 channels responsible for the Down state. Rapidly changing
synaptic currents may be able to produce brief depolarizations the opportunity to depolarize
the cell before voltage sensitive channels can be recruited to oppose them (Wilson, 1995). This
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makes the striatal spiny cell sensitive to brief and sudden changes in the level of excitation in
the Up state, and these can trigger action potentials in an irregular pattern. Spiny neurons
usually do not fire rhythmically in response to constant depolarizing current from the Up state,
although they do respond in this way to constant current applied in the Down state.

Are striatal spiny neurons bistable?
Between the Down and Up states there is a region of membrane potential in which neither set
of K+ channels are strongly activated. In this range, the input resistance of the spiny neuron is
much greater, the time constant is much longer, and small synaptic inputs are more effective.
Moreover, in part of this voltage range, KIR2 currents deactivate regeneratively. In the
transition between the Up and Down states, any regenerative current could readily create a
forbidden region of membrane potentials, some range in which if the potential reached that
point it would be regeneratively moved either in the depolarizing or hyperpolarizing direction.
Persistent sodium currents, and voltage-dependent calcium currents, have both been
demonstrated to be present in the spiny neuron, and to be activated to some degree in the voltage
ranges required. The voltage sensitivity of the NMDA channel offers an especially interesting
possibility, because it combines the slow dynamics of glutamate binding at the NMDA receptor
with the rapid voltage sensitive block and unblock of the NMDA receptor channel (Wolf et
al.,2005). In all of these cases, it is possible to show in simulations how these mechanisms
could generate bistability of the striatal spiny neuron (Gruber et al. 2003). For the limited range
of in vivo preparations that have been studied so far, there has been no evidence of
discontinuities in the I-V relationship, bistability, or forbidden values of the membrane
potential. Depolarizing current pulses presented in the Down state do not generate Up states
in striatal spiny neurons, and it is likewise impossible to terminate an Up state by application
of any current transient applied to the cells. During slow oscillations in the cortex, the onset
and offset of Up and Down states in individual spiny neurons in the striatum are highly
synchronized, offering no indication of modification by striatal neurons of the timing of these
transitions (Stern et al., 1998). For the striatal neuron in vivo for all preparations studied so far,
only the Down state is stable. The nonlinear properties of the striatal neuron sharpen up the
temporal onset and offset of the envelope of synaptic input, and buffer the membrane potential
to reduce its variability in the hyperpolarized and depolarized range, but do so in a soft manner.

Does balanced inhibition contribute to the up state in striatal spiny neurons?
Excitatory input to the striatum generates local inhibition via feedforward and feedback
pathways. Feedforward inhibition is generated by inhibitory GABAergic interneurons that
receive excitatory inputs from the same sources as the striatal spiny neurons. Feedback
inhibition is generated by the recurrent axon collaterals of the spiny neurons themselves. A
direct measure of the contribution of inhibition to the synaptic input to the spiny neuron in the
Up state can be obtained by measurement of the reversal potential of the Up and Down states
after removal of voltage-sensitive conductances by intracellular application of blockers
(Wilson and Kawaguchi, 1996). The conductance in the Up state under these circumstances is
much greater than the Down state, reflecting the contribution of synaptic input. For the striatal
cell Up state, the reversal potential was -10 to -20 mV. For excitation and inhibition to be in
balance, the Up state membrane potential would have to be near this value. The synaptic
potential evoked by cortical stimulation reversed at the same membrane potential as the Up
state, consistent with the Up state being essentially a maintained excitatory input barrage to
the striatal spiny neuron, balanced primarily by voltage-sensitive potassium currents.

Cortical pyramidal cells
Like striatal spiny cells, many cortical pyramidal cells also toggle between preferred
depolarized and hyperpolarized subthreshold membrane potentials, and spontaneous switching
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between these membrane potential states is most conspicuous when the cortex is exhibiting
synchronized slow wave oscillations (Cowan and Wilson, 1994; Timofeev et al., 1996). Strong
electrical stimuli applied to the cortex or thalamus resets the slow oscillation, resulting in a
reliable Down state followed reliably by an Up state. Slow oscillations can also be observed
in isolated slabs and slices, and slice cultures of cerebral cortex under appropriate
circumstances (Sanches-Vives and McCormick, 2000; Timofeev et al., 2000; Plenz and
Aertsen, 1996), and even in isolated slices of the thalamus (Hughes et al., 2002). These
phenomena offer the opportunity for a clear dissection of the ionic currents responsible for the
Up and Down states, within the context of the slow oscillation. Because the slow oscillation
is largely generated locally within the cortex, Up and Down states in cortical pyramidal cells
are not as easily separated from slow oscillations as they are in the striatum.

The down state of the cortical pyramidal neuron
Although inward rectification is a common feature of cortical pyramidal neurons, they
generally do not show as strong inward rectification as striatal spiny cells, and there is evidence
that inwardly rectifying K+ currents other than KIR2 may be critical, at least in some kinds of
pyramidal cells (Cunningham et al., 2006). Despite this difference, the fundamental properties
of Down states in pyramidal neurons are roughly the same as those of the striatal spiny cell.
That is, the Down state is a stable equilibrium achieved during periods of decreased synaptic
input. Intracellular infusion of unspecific K+ channel blocker, Cs+, abolishes hyperpolarization
associated with down states during sleep (Timofeev et al., 2001). Hyperpolarization produced
by reduction of synaptic excitation, rather than to an increase in inhibition, is called
disfacilitation, and this has been shown to be the mechanism responsible for spontaneous Down
states during slow oscillations of the cortex and in the Down state triggered by cortical or
thalamic stimulation (Shu et al., 2003; Sanchez-Vives and McCormick, 2000; Waters and
Helmchen, 2006; Timofeev et al., 2000; Contreras et al., 1996). Most excitatory input to cortical
pyramidal cells arises from thalamocortical neurons or other pyramidal cells, so the Down state
must arise from some influence that quiets these inputs.

The up state in the cortex
Cortical pyramidal cells have a variety of somato-dendritic regenerative currents that could
produce stability or metastability in the Up state, but physiological studies have not revealed
widespread bistability among cortical pyramidal cells in vivo. Here there is a place for caution
because of the heterogeneity of cortical pyramidal cell types. For example, some cortical
pyramidal cells, called intrinsic bursting cells, regenerative cellular activity is much more
evident than in other pyramidal cells, which are usually considered to be regular spiking
(Connors and Gutnick, 1990), and these cell may have a special role in cortical dynamics
(Timofeev et al., 2000). Still, most cortical pyramidal cells that exhibit clear Up and Down
states do not show any indication of cellular stability in the Up state. The somato-dendritic
membrane nonlinearity responsible for the Up state in striatal cells have been observed in
cortical pyramidal cells (Waters and Helmchen, 2006), and NMDA-dependent plateau
potentials have been proposed as a potential mechanism (Milojkovic et al. 2005), but most
attempts to explain the Up and Down state have featured network, rather than cellular properties
to explain the Up state.

Inhibition is everywhere apparent in the cortex. Any strong stimulus applied to the cortex
evokes a clear IPSP component as a part of the response. Both feedforward and feedback
inhibition in the cortex are mediated by the wide variety of GABAergic interneurons, and any
activation of pyramidal neurons invariably leads to a graded inhibitory response that could act
to balance any mutual excitatory effects among pyramidal cells (Haidner et al., 2006; Rigas
and Castro-Alamancos, 2007; Destexhe et al. 2003; Rudolph et al., 2007). This offers a simple
network mechanism that could create Up and Down states in pyramidal cells and not require
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any particular cellular mechanisms like those in striatal cells, and that mechanism has been
studied in a number of variants (Bazhenov et al., 2002; Compte et al., 2003; Holcman and
Tsodyks, 2006; Yuste et al., 2005). In all, the Down state of the network is a state of mutually-
enforced quiet. Any input to any subset of cells will trigger some mutual excitation and some
associated inhibition. If enough excitation is present, the network will re-excite itself
explosively, and the cells will depolarize toward the Up states. The inhibition generated by
pyramidal cell activity will also be recruited,, and the combined excitatory and inhibitory
conductance will impose a more negative reversal potential for the net conductance change. If
the balance of excitation remains high enough to maintain self-sustained activity, the effect of
the network on any one cell will appear as a synaptic conductance with the reversal potential
set by the balance of excitation and inhibition. If this balanced membrane potential were
reliably subthreshold, the network could not maintain self-sustained activity and the Up state
would fail. But because random (or oscillatory) fluctuations in membrane potential in the Up
state trigger some action potentials in at least some of the neurons, the Up state may sustain
itself as a stable or at least a transiently stable state. Some accumulating fatigue, due perhaps
to short term synaptic plasticity, AHP currents or other similar mechanism, makes the Up state
gradually lose stability, returning the network to the Down state. After some time in the Down
state to recover, the network would be ready for another Up state transition, but would need
some additional stochastic mechanism that would produce the next Up state. The thalamic
input is an obvious choice for this mechanism, but it has been shown that slow oscillations
(although slower than that seen in vivo) can be seen in the absence of thalamic input to the
cortex. Thus although the thalamus may regulate timing of slow oscillations in vivo, the cortex
can create Up states without that input (see review in Destexhe and Sejnowski, 2003).
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Figure 1.
Up and down states.

Wilson Page 9

Scholarpedia J. Author manuscript; available in PMC 2010 January 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Measurement of input resistance and rectification with a small depolarizing or hyperpolarizing
pulse in the Up and Down states
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Figure 3.
EPSPs and Down state transitions evoked in cortical and striatal neurons by cortical stimulation
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