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Because of the double-helical structure of DNA, in which two strands of complementary nucleotides
intertwine around each other, a covalently closed DNA molecule with no interruptions in either
strand can be viewed as two interlocked single-stranded rings. Two closed space curves have long
been known by mathematicians to exhibit a property called the linking number, a topologically
invariant integer, expressible as the sum of two other quantities, the twist of one of the curves about
the other, and the writhing number, or writhe, a measure of the chiral distortion from planarity of
one of the two closed curves. We here derive expressions for the twist of supercoiled DNA and the
writhe of a closed molecule consistent with the modern view of DNA as a sequence of base-pair
steps. Structural biologists commonly characterize the spatial disposition of each step in terms of six
rigid-body parameters, one of which, coincidentally, is also called the twist. Of interest is the
difference in the mathematical properties between this step-parameter twist and the twist of
supercoiling associated with a given base-pair step. For example, it turns out that the latter twist,
unlike the former, is sensitive to certain translational shearing distortions of the molecule that are
chiral in nature. Thus, by comparing the values for the two twists for each step of a high-resolution
structure of a protein-DNA complex, we may be able to determine how the binding of various
proteins contributes to chiral structural changes of the DNA. © 2009 American Institute of Physics.
�doi:10.1063/1.3273453�

I. INTRODUCTION

The structure of a DNA molecule is often described as a
succession of base pairs, each represented as a rectangular
plane.1 A knowledge of the relative locations of origins po-
sitioned within these planes and the relative orientations of
the short and long axes of the rectangles allow one to deter-
mine for each pair of adjacent base pairs in the molecule—a
so-called base-pair step—the numerical values of six rigid-
body parameters, three translational: shift, slide, and rise and
three angular: tilt, roll, and twist.2–7

Some 40 years ago mathematicians defined a “twist”
which, shortly after its introduction, was applied to DNA and
used, like the step-parameter twist mentioned above, to char-
acterize the secondary structure of the molecule.8–10 This
twist was defined as the value of a certain integral involving
two continuous space curves. In the application to DNA, the
structure of which at that time was often depicted in terms of
space curves.11 One of the curves was taken to be the axis of
the double helix, and the other curve was one of the strands
winding about this axis. Using this framework, one then
went on to compute the twist of the DNA, a unitless scalar
representing the number of times the strand wound about the
helical axis.

Here we are concerned with differences in the properties
of these two twists, the step-parameter twist and the twist of
the preceding paragraph, which, because of its connection
with the global shape of the helical axis of a closed DNA
molecule, a plasmid, for example, we shall refer to as the

twist of supercoiling. In the next section we begin by review-
ing the definition of the twist of supercoiling, and its well-
known connection with the writhing number and the linking
number.12,13 Then, after characterizing two space curves con-
sistent with today’s picture of DNA as a succession of dis-
crete rectangular planes, we go on to describe a method for
the computation of the twist of supercoiling for a single
base-pair step. We also point out how easy it is to compute
the writhe for the case of a closed molecule with an axial
curve envisioned as a succession of line segments connecting
the origins of the base pairs.

Of particular interest is the difference in properties be-
tween the step-parameter twist and the twist of supercoiling.
We note that in a relaxed, undeformed configuration of a
DNA molecule, the two twists are expected to be close in
value for all base-pair steps. However, we find that although
translations of the base pairs leave the step-parameter twist
unchanged, that is not generally the case for the twist of
supercoiling. It, instead, is sensitive to translational distor-
tions that are chiral in nature. To illustrate the point, we
compare the values of the two types of twist for base-pair
steps in a model DNA structure having both a bend and a
shear. We find in this case a base-pair step for which the
value of the step-parameter twist and the twist of supercoil-
ing are significantly different.

II. THE TWIST OF SUPERCOILING

As we pointed out above, in much of the early theoreti-
cal work describing the equilibrium configurations of DNA,
the atomistic details of the molecule were ignored, and in-a�Electronic mail: tobias@rutchem.rutgers.edu.
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stead, the structure of the molecule was, in fact, described in
terms of two space curves. The tertiary structure of the mol-
ecule was represented, as shown in Fig. 1, by the shape of a
smooth space curve C mirroring the shape of the axis of the
double helix.

A second curve D, identified with one of the helical
strands, was that traced out by the head of a vector �d�sC�,
where � is a constant, and d�sC� is a unit vector normal to the
tangent tC�sC� to C at a position having an arc length sC

along C.
The tC�sC�, d�sC� pairs associated with two nearby points

along C having arc lengths sC and sC+dsC are, in general,
somewhat rotated with respect to each other. The relative
rotational orientation of the two pairs before and after a small
change in arc length dsC is such that there exists a single
rotation of the initial pair �at sC� by a small angle about some
axis that leads to tC�sC+dsC� and d�sC+dsC�. The vector d�,
the differential of the Darboux vector �, points in the direc-
tion of this axis of rotation and has a magnitude equal to the
small angle of rotation. The change dtC�sC� and dd�sC� that
the vectors tC�sC� and d�sC� undergo during this change in
arc length dsC is simply the cross product of d� with the
vector itself. That is, if vC�sC� stands for either tC�sC� or for
d�sC�,

dvC�sC� = d� � vC�sC� . �1�

For the case of the tangent, Eq. �1� leads to the equation

d� = tC�sC� � dtC�sC� + �d� · tC�sC��tC�sC� . �2�

One of the Frenet–Serret equations, the three equations
relating the tangent to the principal normal nC�sC� and the
binormal bC�sC� �=tC�sC��nC�sC��, allows us to write
dtC�sC�=nC�sC��C�sC�dsC where �C�sC� is the curvature of
C. The first term on the right-hand side of Eq. �2� then be-
comes

tC�sC� � dtC�sC� = bC�sC���sC�dsC. �3�

The second term in that equation, the one containing the
component of d� along tC�sC�, is proportional to the twist
density. Replacing tC�sC� by d�sC� in Eq. �2� and then taking
the projection of the resulting expression for d� along the
tangent shows that

d� · tC�sC� = �d�sC� � dd�sC�� · tC�sC� . �4�

The twist T�D ,C�, in units of number of turns, of D
about a length l of C is

T�D,C� = � 1

2�
��

sC1

sC2

d� · tC�sC� , �5�

where sC2
−sC1

= l.
If the curves C, given by rC�sC�, and D, given by rD�sD�,

are closed, the conventional twist is simply related to two
other integrals,12,13 so-called Gauss integrals, the linking
number L�D ,C�,

L�D,C� = � 1

4�
�

�� tD�sD� � tC�sC� · �rD�sD� − rC�sC��
	rD�sD� − rC�sC�	3

dsDdsC,

�6�

and the writhing number W�C�, or writhe for short,

W�C� = � 1

4�
�

�� tC�sC� � tC�sC� � · �rC�sC� − rC�sC� ��
	�rC�sC� − rC�sC� ��	3

dsCdsC� . �7�

The linking number is an integer, a topological invariant,
equal to the number of times that the curve D passes through
a surface bounded by C.14 �In computing this sum each pass-
through is assigned a value of either +1 or �1 according to a
convention consistent with the form of the Gauss integral.�
This integer remains unchanged for all distortions in shape of
the curves C and D as long as the curves do not intersect
each other during the distortions. The writhe, a property of
closed curve C alone, is a measure of the chiral distortion of
the curve from planarity. Fuller pointed out that its value is
also what one would get by averaging, over all orientations
of a plane P, the sum of the signed self-crossings occurring
in the planar curves resulting from the perpendicular projec-
tion of C on P.10

The connection between the twist, the writhe, and the
linking number mentioned above is given by the well-known
equation9 �For another derivation, see Appendix A.�,

L�D,C� = W�C� + T�D,C� . �8�

Some additional mathematical properties of the twist, writhe,
and linking number integrals are discussed in a more recent
paper.15

III. THE TWIST OF SUPERCOILING FOR THE
MULTISTEP DNA MOLECULE

As we have mentioned, details of the structure of DNA
are now more realistically represented, not in terms of
smooth space curves, but as a sequence of base pairs. Two
adjacent base pairs enclose a base-pair step. Various math-
ematical procedures have been formulated for going from the
atomic coordinates �determined from high-resolution struc-
tural measurements and simulations� of two associated bases
to a base-pair plane such as that shown in Fig. 2. Each plane
contains an origin o from which a triad of mutually orthogo-
nal unit vectors emanate, a short axis s, a long axis l, and a
normal n�=s� l�. The method employed here for determin-

FIG. 1. Schematic representation of DNA. The double-helical axis is given
by curve C and one of the helical strands by curve D. For the purpose of
calculation of the twist of D about C, D is to be thought of as being traced
out by the head of a vector �d�sC� everywhere normal to the tangent vector
tC�sC�.
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ing the position and orientation of these planes is the one
agreed upon by DNA structural and computational biologists
in 1999 at the Tsukuba Workshop on Nucleic Acid Structure
and Interactions and subsequently reviewed and approved by
the International Union of Biochemistry and Molecular Bi-
ology Commission on Biochemical Nomenclature.16

We begin the application of the concept of the twist of
supercoiling, described above, to a succession of base-pair
planes by imagining that there are simply line segments con-
necting the origins of adjacent base pairs. How then can a
smooth curve C be chosen that gives such a picture of the
DNA, a picture that seems to show a curve with a discon-
tinuous change in its tangent at each base pair? That is, for
each base pair, the ith for example, the incoming line segment
has a unit tangent we call t�i−1�. The tangent of the outgoing
segment is t�i�. Both of these vectors are defined in terms of
the origins oi−1, oi, and oi+1 of the ith base pair and the two
base pairs adjoining it,

t�i−1� =
oi − oi−1

	oi − oi−1	
,

�9�

t�i� =
oi+1 − oi

	oi+1 − oi	
.

�Note: Subscripts enclosed in parentheses label base-pair
steps and those not enclosed in parentheses label individual
base pairs.�

We can envision a limiting process, shown in Fig. 3, in
which we start with a curve along which the tangent changes
smoothly from t�i−1� to t�i� in the vicinity of base pair i as one
moves along a circular arc lying in a plane spanned by these
two vectors, i.e., lying in the plane having as its normal bi

given by

bi =
t�i−1� � t�i�

	t�i−1� � t�i�	
. �10�

Then the arc of the circle is allowed to decrease to zero as its
curvature increases to infinity, with the tangent vectors t�i−1�
and t�i� remaining unchanged. This process is repeated at
each base pair. Thus, base pair i+1 has an incoming tangent
t�i� and an outgoing tangent t�i+1� determined as in Eq. �9�
from the origins of base pairs i+1 and i+2. When the tan-
gent becomes t�i� the curve abruptly becomes a line segment
of length 	oi+1−oi	 directed along t�i�. At base pair i+1 the
curvature abruptly becomes infinitely large again but with
the tangent still changing smoothly from t�i� to t�i+1�, along a
circular arc lying in a plane with

bi+1 =
t�i� � t�i+1�

	t�i� � t�i+1�	
�11�

as its normal.
We now can define in greater detail the nature of a single

step, the ith. At base pair i curve C for the step begins at that
point in the circular arc where the tangent, call it t̃i, is mid-
way between t�i−1� and t�i�, i.e.,

t̃i =
t�i−1� + t�i�

	t�i−1� + t�i�	
, �12�

and ends at the corresponding point at base pair i+1, i.e.,
where the tangent is

t̃i+1 =
t�i� + t�i+1�

	t�i� + t�i+1�	
. �13�

The unit vector di
l at the beginning of the step we first

take to be in the direction of the projection of the long axis li

on the plane containing oi perpendicular to t̃i. The unit vector
di+1

l at the end of the step points along the projection of li+1

on the plane containing oi+1 perpendicular to t̃i+1,

di
l =

�li · bi�bi + �li · t̃i � bi��t̃i � bi�

	�li · bi�bi + �li · t̃i � bi��t̃i � bi�	
�14�

and

di+1
l =

�li+1 · bi+1�bi+1 + �li+1 · t̃i+1 � bi+1��t̃i+1 � bi+1�

	�li+1 · bi+1�bi+1 + �li+1 · t̃i+1 � bi+1��t̃i+1 � bi+1�	
.

Let us call �i
l the angle �in radians� that di

l makes with bi,
and �i+1

l the angle that di+1
l makes with bi+1, or, more pre-

cisely,

cos �i
l = bi · di

l, sin �i
l = t̃i · bi � di

l �15�

and

cos �i+1
l = bi+1 · di+1

l , sin �i+1
l = t̃i+1 · bi+1 � di+1

l .

These vectors and angles are pictured in Fig. 4.
To determine the twist of supercoiling of the ith base-pair

step we carry out five rotations during which di
l is converted

to di+1
l . All of the vectors involved during this process can be

thought of as emanating from a single point. For each of the
rotations of the d1 vector, the rotational axis, d�, also pass-

FIG. 2. The vectors associated with a base-pair plane: an origin o and a
mutually orthogonal triad of unit vectors, the short axis s, the long axis l,
and the normal n.

FIG. 3. The passage from a smooth curve with circular segments of curva-
ture � to the entirely linear segments that connect the origins of the base-
pair planes consistent with a high-resolution structure of DNA.
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ing through this point, will either �a� lie along a tangent
which is not changing its direction, or �b� the axis will coin-
cide with one of the two constant b vectors. For a-type ro-
tations, according to Eq. �5�, the twist of supercoiling is sim-
ply the angle of rotation while for b-type rotations with the
axis perpendicular to the tangent, the twist is zero. We start
with the plane containing di

l and bi. The normal to this plane
is t̃i. The sequence of five rotations is as follows: �i� rotation
of di

l about t̃i until the angle between d1 and bi changes from
�i

l to �̄�i�
l where �̄�i�

l = ��i
l+�i+1

l � /2; �ii� rotation of d1 about bi

until the normal to the plane containing these vectors
changes from t̃i to t�i�. At this point the plane contains bi+1 as
well as bi; �iii� rotation of d1 about t�i� until d1 makes an
angle of �̄�i�

l with bi+1; �iv� rotation of d1 about bi+1 until the

normal changes from t�i� to t̃i+1; and �v� rotation of d1 about
t̃i+1 until the angle between d1 and bi+1 changes from �̄�i�

l to
�i+1

l . The d1 vector has now become di+1
l . There is a nonzero

twist associated with the a-type rotations �i�, �iii�, and �v�,
since, for each of these steps, the vector d� is directed along
the tangent. Rotations �ii� and �iv�, on the other hand, since
the axis of rotation is perpendicular to the tangent, are b-type
rotations with zero twist. In the case of rotation �i� and �v�
the twist angle is ���i�

l /2 where ���i�
l =�i+1

l −�i
l. For rotation

�iii� the angle of rotation, which we call ��i�, has as its cosine
and sine: cos ��i�=bi ·bi+1 and sin ��i�= t�i� ·bi�bi+1. The
twist of supercoiling of the base-pair step associated with
these rotations T�i�

l �in units of number of turns� is, thus,

T�i�
l =

���i�
l + ��i�

2�
. �16�

The beginning and ending d vectors in the rotations
leading to the twist given by Eq. �16� are those defined in

Eqs. �14� and �15�, the unit vectors in the direction of the
projections of the long axes li and li+1 onto the planes per-
pendicular to t̃i and t̃i+1, respectively.

For an unnicked closed DNA molecule with nB base
pairs, Eq. �8� tells us that



i=1

nB

T�i�
l = L�D,C� − W�C� . �17�

If one now were to calculate the T�i�’s for the same five
rotations but using as the d-vectors those derived from the
short axes si and si+1, we would find that for a single step the
two twists, call them T�i�

l and T�i�
s , would be somewhat differ-

ent. The sum 
i=1T�i�
s , however, would have exactly the same

value as that obtained before, that given by the right-hand
side of Eq. �17�. We define the twist of supercoiling of the
step, T�i�, as the average of T�i�

l and T�i�
s . Clearly, Eq. �17� is

also satisfied for T�i�’s so defined. The average of �i
l and �i

s

will be denoted as �i.
In the calculation of the twist of supercoiling for the case

of a DNA molecule with an open helical axis, for the initial
step we take t̃1 to be in the direction of t�1�, and for the final
step we take t̃nB

in the direction of t�nB−1�. The step-parameter
twist of the base pair step can be derived in a similar way. In
this case the d vectors are the long and short axes them-
selves. Carrying out the rotations starting with li and ending
with li+1 gives the same value for the twist as starting with si

and ending with si+1. There is thus no need to do the aver-
aging indicated in the definition of the twist of supercoiling.
Figure 5 shows the vectors and angles that play a role in the
determination of the step-parameter twist.

The analog of t̃i and t̃i+1 are the normals ni and ni+1,
and bi and bi+1 become the single vector, b�i�

sp =ni�ni+1 /
	ni�ni+1	. The step-parameter twist T�i�

sp of the step �in units
of number of turns� thus, is, simply,

T�i�
sp =

���i�
sp

2�
, �18�

where ���i�
sp is the difference between the angle �i+1

sp that li+1

�or si+1� makes with b�i�
sp and the angle �i

sp that li �or si� makes
with b�i�

sp.

FIG. 4. The vectors involved in the calculation of the twist of supercoiling
of the DNA base-pair step bounded by the ith and the �i+1�st planes. Shown
in �a�, the four base-pair plane origins needed for the determination of the
three vectors depicted in �b�, t�i−1�,t�i�, and t�i+1�, which, in turn, are needed
for specifying t̃i and t̃i+1. These last two are normal to the two planes seen in
�c�. Each of these planes contains a d vector and a b vector. Two of the
angles needed for the twist calculation as given by Eq. �16� are denoted in
�d�, an enlargement of �c�.

FIG. 5. The vectors needed for the calculation of the step-parameter twist of
the same step shown in the previous figure. Here knowledge of the direction
of the two normals allows the determination of the single vector b�i�

sp, which
lies in each of the two base-pair planes. Also indicated are the two angles
needed for the use of Eq. �18� for the twist calculation.
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IV. THE WRITHE OF THE CLOSED MULTISTEP DNA
MOLECULE

The shape of the closed axial curve of the DNA mol-
ecules we are dealing with, consistent with the smooth space
curves we have described, is a succession of line segments
connecting the origins of the base pairs. A method for com-
puting the writhe of such a segmented closed curve was el-
egantly put forth many years ago by Levitt.17 Here we get an
equivalent result using a different approach. We first note
that for this type of curve, the Gauss integral �Eq. �7�� for the
writhe for a molecule with nB base pairs, and therefore, nB

base pair steps, takes the form of a sum of contributions
w�i��j� of all pairs of base-pair steps,

W�C� = 

i,j

w�i,j� �19�

with

w�i,j� = � 1

2�
�� � t�i� � t�j� · r�i,j��s�i�,s�j��

	r�i.j��s�i�,s�j��	3
ds�i�ds�j�, �20�

where

r�i,j��s�i�,s�j�� = r�i��s�i�� − r�j��s�j�� = X�i,j� + t�i�s�i� − t�j�s�j�

�21�

is a vector which points from a point on the jth line segment
to a point on the ith. The constant vector X�i,j� is perpendicu-
lar to each of the tangents. Its magnitude is thus the distance
of closest approach of the segments. Terms involving a base-
pair step with itself, and terms involving pairs of adjacent
steps are zero.

Given Eq. �21�, Eq. �20� can be cast into the form

w�i,j� = � 1

2�
��

s�i��1�

s�i��2� �
s�j��1�

s�j��2� t�i� � t�j� · X�i,j�

	X�i,j� + t�i�s�i� − t�j�s�j�	3
ds�i�ds�j�,

�22�

where s�i��1� , s�i��2� , s�j��1� and s�j��2� denote the arc
lengths of the endpoints of the segments.

The three vectors t�i�, t�j�, and r�i.j��s�i� ,s�j�� determine a
dihedral angle 	�i.j��s�i� ,s�j�� we define as follows in terms of
its sine and cosine,

sin 	�i,j� = −
r�i,j� · �r�i,j� � t�j�� � �t�i� � r�i,j��

	r�i,j�		r�i,j� � t�j�		t�i� � r�i,j�	

= −
	r�i,j�	�r�i,j� · t�i� � t�j��

	r�i,j� � t�j�		t�i� � r�i,j�	
,

�23�

cos 	�i,j� =
�r�i,j� � t�j�� · �t�i� � r�i,j��

	r�i,j� � t�j�		t�i� � r�i,j�	
.

It follows from its definition that 	�i.j��s�i� ,s�j�� is the angle
between the vectors normal to two planes, the one spanned
by r�i.j��s�i� ,s�j�� and t�i� and the one spanned by
r�i.j��s�i� ,s�j�� and t�j�.

In Appendix B, it is shown that the integrand in the
integral appearing in Eq. �22� is equal to −�2	�i,j� /�s�i��s�j�

so that the contribution to the writhe of base-pair step i and
base-pair step j, w�i,j�, is simply related to the four dihedral
angles associated with the endpoints of the steps, i.e.,

w�i,j� = � 1

2�
��− 	�i,j��s�i��2�,s�j��2�� + 	�i,j��s�i��2�,s�j��1��

− 	�i,j��s�i��1�,s�j��1�� + 	�i,j��s�i��1�,s�j��2��� . �24�

We note that w�i,j� has the same sign as t�i�� t�j� ·X�i,j�.

V. COMPARISON OF THE TWIST OF SUPERCOILING
AND THE STEP-PARAMETER TWIST

Like T�i�
sp of Eq. �18�, the twist of supercoiling of a step in

the form as expressed in Eq. �16� is independent of the di-
rection of propagation along the DNA molecule. However,
whereas T�i�

sp does not depend at all on the properties of the
two steps adjacent to the ith base-pair steps, T�i� depends on
the previous step �i−1�, and on the following step �i+1�. In
particular, t̃i depends on the origin oi−1 and t̃i+1 depends on
oi+2. For Eq. �17� to be satisfied for unnicked closed DNA
molecules, the twist of supercoiling must depend on the way
the tangent vectors are changing. In the case of the step-
parameter twist, on the other hand, the sum 
i=1T�i�

sp has no
particular significance.

Because in relaxed DNA, the normals of the base pairs
and the associated t̃ vectors are approximately collinear, for
each step we expect the two twists to be close in value.
When the base pairs are forced to undergo translations of a
chiral nature, however, unlike the step-parameter twist,
which is unaffected by pure translations, we expect the twist
of supercoiling to change.

To demonstrate how differences in values of the step-
parameter twist and the twist of supercoiling can arise we
consider the simple model depicted in Fig. 6. We start with a
DNA molecule with four base pairs having origins that are
equally spaced and collinear, Fig. 6�a�. In addition, the base-
pair planes are oriented so that their normals coincide with
the t-vectors. Here, for each of the three steps, the twist of
supercoiling equals the step-parameter twist. To change the
structure to that labeled �b�, base pairs 3 and 4 are first ro-
tated as a unit by 9° about an axis lying in base pair 2 and
passing through the origin of that base pair, and then rotated
as a unit by 9° about an axis parallel to the first axis but lying
in base pair 3 and passing through the origin of that base
pair. After this total bend of 18° is introduced, the origins of
the base pairs are no longer collinear, but they remain copla-
nar. �In the figure the common plane of the origins is taken to
be the plane of the page.� A calculation shows that for the
new structure neither the step-parameter twist nor the twist
of supercoiling for each of the three steps has changed in
value so that the equality seen in �a� of the two types of twist
for each step carries over to �b�. Finally, base pairs 3 and 4
are translated in a direction perpendicular to the plane on
which they had been lying in �b� either up to give �c�, or by
the same amount down to give �d�. This shearing motion has
no effect on the step-parameter twists, but the connection
between the twist of supercoiling and the writhing number in
closed molecules given by Eq. �17� demands that the chiral-
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ity that now characterizes the positions of the origins in the
structures �c� and �d� leads to a change in the value of the
twist of supercoiling. We find that if the size of the transla-
tional shear is taken to be half as large as the spacing be-
tween the base pairs in �a�, that the twist of supercoiling of
the middle step, �2�, of the structure with the right-handed
jog, �c�, is 4.3° greater in value than the step-parameter twist
for that step, and 4.3° lower in value for the middle step of
the structure with the left-handed jog, �d�. Shearing of this
magnitude is typical of values seen in high resolution struc-
tures. For the two steps, �1� and �3�, adjacent to the middle
step in both �c� and �d�, the two types of twist are now very
close in value but not exactly equal.

We have pointed out that there is not one, but various
procedures that have been proposed for going from the mea-
sured atomic coordinates of two associated bases to the ideal
base-pair plane containing an origin o and the vectors s and
l. The approach employed here is the one agreed upon by the
international structural and computational biology
community.16 The question arises—how might the results re-
ported here change had we used a different method. For one
thing, the values of the step-parameter twists would not have
changed by any significant amount. These twists are defined
in terms of the vectors s, l, and n only, and it turns out that s,
l, and n are little dependent on which method is chosen.6 The
twists of supercoiling, however, also depend on the position
of the origins. In the absence of distortions such as buckling,
which change the angle between the normals of the bases
when viewed in projection along a plane perpendicular to the
short, pseudodyad axis of the base pair, the various methods
used to describe the spatial arrangements of DNA bases and
base pairs introduce a coordinate frame with an origin lo-
cated in the midst of the hydrogen-bonding of the base pairs.

In this case, the values of the twist of supercoiling, like those
of the step-parameter twist, would be method independent.

The origins introduced in three analysis schemes—
NUPARM �a Nucleid Acid Parameter Determination Pro-
gram� from Bansal and associates,18,19 CEHS �the Cam-
bridge University Engineering Department Helix
Computation Scheme� from El Hassan and Calladine,4 and
FREEHELIX �a computation of base-steps parameters “to-
tally independent of any choice of helix axis”� from the
Dickerson laboratory5—lie midway between the positions of
two carbon atoms, one on each base �C6 on pyrimidine and
C8 on purine� near the DNA backbone. For these three meth-
ods, buckling has the effect of moving the origin outside of
the hydrogen-bonded region of the base pair. By contrast, the
origins defined here would remain near the center of the
purine-pyrimidine complex.

In Fig. 7 an example is given of a protein-induced struc-
tural distortion that would not have changed the twist of
supercoiling for a DNA step had the NUPARM, CEHS, or
FREEHELIX schemes been employed �origin shown as a red
dot�, but do produce such a change with the method we use
here �origin shown as a blue dot�. The structure labeled �a� in
Fig. 7 is identical to structure �d� in Fig. 6, the one with the
left-handed jog. During the passage to Fig. 7�b�, base-pair 3
is subjected to a buckling-type distortion. Before the distor-
tion the two origins are superimposed, but after the distor-
tion, they are separated. For the placement of the two origins
shown, we find that our method gives a twist of supercoiling
for the middle step in the buckled structure Fig. 7�b� greater
than what it was in structure Fig. 7�a�. For the other method,
the twist of supercoiling is insensitive to this particular struc-
tural change, one commonly found when a protein inserts an
amino acid side group between two base pairs.20

VI. SUMMARY

We have defined a twist of supercoiling consistent with
the high-resolution atomic structure of DNA starting from
the original definition of the twist of one smooth space curve

FIG. 6. Construction of a model DNA structure characterized by a chiral
deformation. Image labeled �a� shows four equally spaced and parallel base-
pair planes having their origins lying on a line. The sequence of base-pair
planes in �b� depicts the structure after the bend described in the text is
introduced. The four origins are still coplanar, and the viewing direction is
chosen to be normal to this plane. A translation of base pairs 3 and 4 as a
single unit along the viewing direction, depending on the direction of the
motion, results either in �c�, a structure with a right-handed jog, or �d�, one
with a left-handed jog.

FIG. 7. Structural deformation of DNA leading to a twist of supercoiling
change dependent on the method used to determine the position of the
origin, the method used here, or that in which the origin lies on a line
connecting two carbon atoms on the bases. In structure �a�, the same as
structure �d� in Fig. 6, both methods lead to an origin for all four base pairs
located in the same position. However when base pair 3 is buckled as shown
to form structure �b�, the origin determined by our method �blue dot� moves,
but that of the other method �red dot� does not. One then observes a method-
dependent twist of supercoiling for the middle step.
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about another. The twist of supercoiling is to be distin-
guished from one of six step parameters, also called the
twist, now in common usage to describe DNA structure. The
twist of supercoiling, unlike the step-parameter twist, is con-
nected to the topological invariant, the linking number, and
the writhing number of closed DNA molecules. Given this
association, the twist of supercoiling, as we show, must be
sensitive to chiral structural distortions. We give an example
of a chiral distortion that has no effect on the step-parameter
twist. In fact, in future work, we plan to compare the values
of these two twists for DNA steps in a selection of protein-
DNA complexes to gain insight into details of the distortion
that the proteins may be inducing.
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APPENDIX A: A DERIVATION OF EQUATION „8…,
THE FUNDAMENTAL EXPRESSION OF DNA
TOPOLOGY

We begin the derivation of Eq. �8� by expressing the
connection between curve D and curve C, by writing for rD,

rD�sD� = rC�sC� � + �d�sC� � , �A1�

where � is a constant and d�sC� � is a unit vector perpendicular
to the tangent tC�sC� � to curve C, i.e., d�sC� � · tC�sC� �=0. Equa-
tion �A1� implies that the unit tangent tD�sD� to curve D is of
the form

tD�sD� = k�tC�sC� � + �
dd�sC� �

dsC�
� , �A2�

where k is the reciprocal of the magnitude of the vector
contained in the parentheses. These two expressions are sub-
stituted into the integrand appearing in the Gauss integral
form for the linking number, Eq. �6�. We then allow � to
approach zero. Beyond a certain point in this limiting pro-
cess curve C and curve D no longer can intersect each other,
and thereafter the linking number remains unchanged.10 The
factor k approaches one as � approaches zero. We also find
that, in this limit, the terms in the integrand that are linear in
� are zero. Thus one can write for the linking number

L�D,C� = W�C� + lim
�→0

� �2

4�
�

�� d�sC� �
dd�sC�

dsC
· tC�s�C�

�	rC�sC� − rC�sC� �	2 + �2�3/2dsC�dsC, �A3�

where W�C� is the writhing number as given in Eq. �7�.
Furthermore, because

lim
�→0

�2

�	rC�sC� − rC�sC� �	2 + �2�3/2

= lim
�→0

�2

��sC − s�2 + �2�3/2

= 2
�sC − sC� � , �A4�

where 
�sC−sC� � is a Dirac delta function, the integration
over sC� in the second term of Eq. �A3� can be readily carried
out:

lim
�→0

� �2

4�
�� d�sC� �

dd�sC�
dsC

· tC�sC� �

�	rC�sC� − rC�sC� �	2 + �2�3/2dsC�dsC

= � 1

2�
�� 
�sC − sC� �d�sC� �

dd�sC�
dsC

· tC�sC� �dsC�dsC

= � 1

2�
�� d�sC� �

dd�sC�
dsC

· tC�sC�dsC. �A5�

This completes the proof of Eq. �8�.

APPENDIX B: DERIVATION OF THE EXPRESSION
THAT FACILITATES THE PASSAGE FROM EQUATION
„22… TO EQUATION „24…, THE CONTRIBUTION
TO THE WRITHE IN TERMS OF DIHEDRAL ANGLES

We begin by deriving an expression for −�	�i,j� /�s�j�.
Since, for example,

� cot 	

�s�j�
=

d cot 	

d	

�	

�s�j�
, �B1�

we see that

−
�	

�s�j�
= sin2 	

� cot 	

�s�j�
. �B2�

Given the definition of the dihedral angle �Eq. �23��, and
the fact that t�i�� t�j� ·r�i,j� is independent of s�i� and s�j�, this
last equation can be rewritten as

−
�	

�s�j�
= −

	r�i,j�	2�t�i� � t�j� · r�i,j��

	r�i,j� � t�j�	2	t�i� � r�i,j�	2

�
�

�s�j�
� �r�i,j� � t�j�� · �t�i� � r�i,j��

	r�i,j�	
� . �B3�

After noting that the explicit dependence of r�i,j� on s�i�
and s�j� as given in Eq. �21� leads to the fact that

	r�i,j�	2 = 	X�i,j�	2 + s�i�
2 + s�j�

2 − 2�t�i� · t�j��s�i�s�j�,

t�i� � t�j� · r�i,j� = t�i� � t�j� · X�i,j�,

	t�i� � r�i,j�	2 = 	X�i,j�	2 + 	t�i� � t�j�	2s�j�
2 ,

�B4�
	r�i,j� � t�j�	2 = 	X�i,j�	2 + 	t�i� � t�j�	2s�i�

2 ,
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�r�i,j� � t�j�� · �t�i� � r�i,j��

= − ��t�i� · t�j��	X�i,j�	2 + 	t�i� � t�j�	2s�i�s�j�� .

We find, after performing the indicated differentiation
with respect to s�j� in Eq. �B3� and simplifying the resulting
expression, that

−
�	

�s�j�
=

�t�i� � t�j� · X�i,j���s�i� − �t�i� · t�j��s�j��

�	X�i,j�	2 + 	t�i� � t�j�	2s�j�
2 �	r�i,j�	

. �B5�

Differentiating Eq. �B5� again, this time with respect to
s�i�, yields

−
�2	�i,j�

�s�i� � s�j�
=

t�i� � t�j� · X�i,j�

	r�i.j�	3
. �B6�
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