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The so-called “ultrafast” nuclear magnetic resonance �NMR� methods enable the collection of
multidimensional spectra within a single scan. These experiments operate by replacing traditional t1

time increments, with a series of combined radiofrequency-irradiation/magnetic-field-gradient
manipulations that spatially encode the effects of the indirect-domain spin interactions. Barring the
presence of sizable displacements, the spatial patterns thus imparted can be read out following a
mixing period with the aid of oscillating acquisition gradients, leading to a train of t2-modulated
echoes carrying in their positions and phases the indirect- and the direct-domain spin interactions.
Both the initial spatial encoding as well as the subsequent spatial decoding procedures underlying
ultrafast NMR were designed under the assumption that spins remain static within the sample during
their execution. Most often this is not the case, and motion-related effects can be expected to affect
the outcome of these experiments. The present paper focuses on analyzing the effects of diffusion
in ultrafast two-dimensional �2D� NMR. Toward this end both analytical and numerical formalisms
are derived, capable of dealing with the nonuniform spin manipulations, macroscopic sample sizes,
and microscopic displacements involved in this kind of sequences. After experimentally validating
the correctness of these formalisms these were used to analyze the effects of diffusion for a variety
of cases, including ultrafast experiments on both rapidly and slowly diffusing molecules. A series of
prototypical schemes were considered including discrete and continuous encoding modes, constant-
and real-time manipulations, homo- and heteronuclear acquisitions, and single versus multiple
quantum modalities. The effects of molecular diffusion were also compared against typical
relaxation-driven losses as they happen in these various prototypical situations; from all these
situations, general guidelines for choosing the optimal ultrafast 2D NMR scheme for a particular
sample and condition could be deduced. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2890969�

I. INTRODUCTION

Two-dimensional nuclear magnetic resonance �2D
NMR� plays an essential role in contemporary elucidations
of molecular structure and dynamics.1,2 2D NMR is based on
the classic Jeener–Ernst scheme,2–4

preparation − evolution�t1� − mixing − acquisition�t2� ,

affording a 2D time-domain signal S�t1 , t2� by incrementa-
tion of an indirect-domain evolution parameter followed by
digitization as a function of a direct-domain acquisition time.
Built into this NMR scheme is a need for collecting multiple
t1-incremented scans, regardless of sensitivity consider-
ations. To alleviate this constraint a number of proposals
have been made during the years, geared at reducing the
number of acquisitions required to complete a 2D NMR
experiment.5,6 Included among these proposals is an “ul-
trafast” alternative, capable of completing multidimensional
NMR acquisitions within a single transient.7,8 Lying at the
core of these experiments is a departure from traditional
time-domain indirect-domain encoding schemes and their re-

placement by a spatial encoding and subsequent decoding of
the indirect-domain interactions. A generic solution-state ul-
trafast 2D NMR implementation is illustrated in Fig. 1; spins
are allowed here to impart their indirect-domain evolution
effects along a particular sample direction �e.g., the z axis�,
originating site-specific patterns of spin magnetization of the
form

M+�z� � �I��1�/L�exp�iC�1�z − z0�� . �1�

�1 is here the frequency whose I��1� spectrum one is at-
tempting to measure, and C� t1

max /L is a controllable param-
eter depending on the overall indirect-domain encoding time
t1
max and the sample length L. Following a conventional mix-

ing period Tmix that preserves this spatial pattern, the
indirect-domain frequencies that acted on each site can be
revealed by subjecting spins to an additional acquisition gra-
dient Ga. Defining an acquisition wavenumber k
=�a�0

t Ga�t��dt� and assuming that Ga acts along the same
direction as used to impart the �1-driven winding of the spin
coherences, results in a signal

a�Electronic mail: yoav.shrot@weizmann.ac.il.
b�Electronic mail: lucio.frydman@weizmann.ac.il. Tel.: �972-8-9344903.

FAX: �972-8-9344123.

THE JOURNAL OF CHEMICAL PHYSICS 128, 164513 �2008�

0021-9606/2008/128�16�/164513/15/$23.00 © 2008 American Institute of Physics128, 164513-1

http://dx.doi.org/10.1063/1.2890969
http://dx.doi.org/10.1063/1.2890969
http://dx.doi.org/10.1063/1.2890969


S�k� � �I��1�/L��
L

exp�iC�1�z − z0��exp�ikz�dz

� I��1�exp�− iC�1z0���C�1 + k� , �2�

which reflects, via a series of echoes positioned at
k=−C�1, the I��1� spectrum that is being sought. Having
translated in such manner the indirect-domain encoding pro-
cess into a gradient-driven readout opens in turn the oppor-
tunity to extract full 2D NMR spectra within a single scan.
Indeed the time Ta over which the Ga readout gradient needs
to be applied in order to provide the indirect-domain infor-
mation is fairly short; kmax=�aGaTa needs to equate the
maximum spectral window to be explored scaled by the C
coefficient, leading to typical times Ta� t1

maxSW1 /�aGaL on
the order of 102–103 �s. The indirect-domain readout can
therefore be done and undone numerous times over the
course of the data acquisition by oscillating Ga, leading to a
mixed frequency/time-domain S�k /�1 , t2� interferogram.
From here, the full I��1 ,�2� 2D NMR spectrum being
sought can be retrieved by one-dimensional �1D� Fourier
analysis versus t2.

It follows from this summary that a key component in
the implementation of single-scan 2D NMR spectroscopy
lies in assuming that the z position of every spin has stayed
constant throughout the course of the full experiment: From
the beginning of the encoding, through the mixing process,
and until concluding the acquisition. Otherwise, should this
stop being the case, constructive interference processes like
the one embodied by Eq. �2� will fail to materialize and
signal losses or other forms of peak distortions would follow.
So far all the pulse sequence derivations and all the different
proposals that have been made for carrying out ultrafast
NMR’s spatial encoding and its subsequent decoding,9–15

were put forward under the assumption that the spins’ posi-
tions did indeed remain fixed throughout the various manipu-
lations. This proved a reliable approximation, yet ignoring
the effects that motions could have—and, in particular, the
Brownian molecular diffusion that is ubiquitous in liquids—
prevents one from making a full description of these experi-

ments. Therefore, unless molecular diffusion is fully ac-
counted for and compared vis-à-vis other potential sources of
signal losses such as T2 transverse relaxation, the unambigu-
ous prediction of which gradient-based strategy is best suited
to carry out a particular kind of single-scan 2D NMR acqui-
sition, may not be possible. Accordingly, this paper seeks to
provide a quantitative analysis of the effects brought about
by random diffusion on ultrafast 2D NMR. To do so, and
given the numerous different schemes that have been pro-
posed for carrying out ultrafast 2D NMR and the complex,
spatially dependent spin magnetization patterns that the com-
bined radiofrequency �rf�, gradient, and chemical shift ef-
fects impose through the course of these schemes, we de-
cided to begin by modifying the usual diffusion-based NMR
analysis so as to fit into it the peculiar nature of these kinds
of experiments. The following paragraph presents a summary
of this derivation, which results in an analytical framework
capable of examining the impact of diffusion on arbitrary
ultrafast 2D NMR sequences. With this theory at hand we
then chose to highlight the effects of diffusion for three dif-
ferent, prototypical ultrafast 2D NMR schemes: A discrete
approach relying on multiple gradient oscillations during the
encoding and decoding processes,9 a continuous real-time
scheme imparting an amplitude modulation of the spin co-
herences via a bipolar �Ge gradient oscillation,11 and a
constant-time phase-modulated scheme employing a pair of
adiabatic 	 sweeps in conjunction with a �Ge oscillation.10

These analytical predictions are validated with both experi-
ments and numerical simulations in Sec. III; Sec. IV further
exploits these analytical derivations with a comprehensive
evaluation of diffusion-induced effects on a variety of sce-
narios, including small- and macromolecular 2D experiments
as well as homo- and heteronuclear 2D correlations. Finally,
given what we believe is its novel ability to compute micro-
scopic diffusion effects over macroscopically heterogeneous
samples and length scales, an Appendix is also devoted to
describing a new numerical algorithm derived for simulating
diffusion in these kinds of experiments.

FIG. 1. �Color online� Schematic description of ultrafast 2D NMR experiments. Field gradients are used to create windings of magnetizations based on the
indirect-domain evolution frequencies �left�; these are preserved as either phase or amplitude modulations during the mixing process �center�, and finally read
out by a train of oscillating acquisition gradients creating site-specific �1-dependent echoes modulated as a function of t2 �right�. All these spatially dependent
patterns and manipulations are susceptible to influence by motions, particularly by the unavoidable effects of the random molecular diffusion considered in this
study.
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II. ANALYTICAL DESCRIPTION OF DIFFUSION
EFFECTS IN SINGLE-SCAN 2D NMR

A. Overall theoretical framework

This treatment will focus on spins undergoing random
molecular diffusion, while subject to the effects of time-,
space-, and frequency-dependent manipulations. To maintain
the problem within an analytical setting while giving it suf-
ficient generality to treat all these variables, we chose to
present it while relying on the Bloch equations; extensions to
more complex situations involving multispin coherences or
multiple-axis gradients can be made in a relatively straight-
forward manner. The differential rotating-frame equations
arising within this semiclassical framework are well
known;16–18 for a site’s transverse magnetization these are

�

�t
M+�t,z� = − i��1 + �G�t�z�M+�t,z� −

M+�t,z�
T2

+ D
�2

�z2 M+�t,z� . �3�

This expression includes the various definitions introduced in
the preceding section, as well as Torrey’s diffusion term gov-
erned by the D coefficient. In the absence of
this term the fate of a magnetization is simply
M+�t ,z�=M0 exp�−i
�t ,z��exp�−t /T2�, with the dynamic
evolution phase given by the integral over the acting fre-
quencies,


�t,z� = �
0

t

��1 + �G�t��z�dt�. �4�

In the presence of diffusion within a time-dependent linear
field gradient �G�t�z, Karlicek and Lowe showed that this
solution needs to be modified into19

M+�t,z� = M0 exp�− i
�t,z��exp�−
t

T2
	A�t� , �5�

with

A�t� = exp
− D�
0

t

K2�t��dt�� �6�

an attenuating function given by a wavenumber K�t��
=�0

t��G�t��dt�.
The actual derivation of this wavenumber follows from

having to track the changes arising in the resonance frequen-
cies of the spins, as they undergo random diffusion. The
treatment put forward by Karlicek and Lowe called for tak-
ing a first spatial derivative of the frequency �1+�G�t�z that
left solely �G�t�; hence the simple form taken by K�t�. In the
more generic scenario of a uniform sample being subject to a
nonlinear, time-dependent field B�t ,z�, Loening et al. derived
an extended form for the attenuation function that is similar
to Eq. �6� but with the wavenumber now given by K�t� ,z�
=��0

t���B�t� ,z� /�z�dt�.20 For the case of ultrafast experi-
ments like the ones to be considered here, one has to account
for an even more general scenario whereby, unlike in hitherto
proposed diffusion experiments, spins are no longer treated
in a homogeneous fashion. Instead spins now become a sub-

ject to time- and frequency- �i.e., space-� dependent manipu-
lations, which make the effects of diffusion heterogeneous
throughout the sample. To handle this extra complexity we
notice that the K wavenumbers in the above-mentioned treat-
ments were meant to reflect time integrals of the decay
brought about by local spatial variations in the spins’ fre-
quencies; equivalently, such effects could be described by
the spatial derivatives �
�t ,z� /�z of dynamic evolution
phases like the one introduced in Eq. �4�. Consequently, and
considering the proven convenience of describing the ul-
trafast experiments based on the phase variations experi-
enced by spins in proximity to arbitrary positions z0,8 we
approach the diffusion problem by introducing an effective
Klocal wavenumber describing the local phase variability ex-
perienced by spins under these manipulations as


�t,z0 + �z� = 
�t,z0� +
d
�t,z0�

dz
�z + O��z2�

� 
�t,z0� + Klocal�t,z0��z . �7�

The ensuing diffusion-induced decay will then, up to first
order, be independent of the uniform local phase and be
solely given by Klocal. With this modification a full derivation
based on the arguments that lead to Eq. �6� results in a new
attenuating function,

A�t,z� = exp
− D�
0

t

Klocal
2 �t�,z�dt��

= exp
− D�
0

t �d
�t�,z�
dz

	2

dt�� . �8�

We find this generic expression useful, as it enables one to
analyze the diffusion effects expected for arbitrary ultrafast
2D schemes by a simple operation on the corresponding

�t ,z� evolution phase functions. The following paragraphs
exploit this to derive the diffusion attenuation thus expected
from three prototypical encoding schemes: A discrete real-
time approach using multiple fast gradient oscillations over
the t1 period, a continuous real-time �amplitude-modulated�
approach based on the application of two identical 	 /2
chirped pulses, and a constant-time �phase-modulated� ex-
periment involving a hard excitation followed by two iden-
tical 	-swept pulses. The effects expected from diffusion
upon applying a �Ga oscillating gradient waveform over the
course of the t2 acquisition are also presented.

B. Rapid oscillating gradients: Diffusion effects in the
discrete real-time encoding and square-wave
decoding processes

We begin by considering the effects of diffusion on two
ultrafast-related processes that employ trains of rapidly os-
cillating gradients, and which arise within two complemen-
tary frameworks. One of these involves imparting an
�1-derived spatial encoding of the shift interactions by a
train of soft rf pulses applied in conjunction with a synchro-
nous oscillating gradient waveform;9 the other involves a
periodic decoding of the indirect-domain spectrum as a func-
tion of t2 by means of an oscillating square-wave gradient,
corresponding to the Ga-related portion of Fig. 1. The encod-
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ing process relies on applying a �Ge square-wave gradient
waveform of period �t1, together with a frequency-shifted rf
pulse train triggering the indirect-domain time evolution of
N1 independent slices throughout the initial portion of each
oscillation �Fig. 2�a��. Assuming for simplicity a magnetiza-
tion model based on the linear approximation2,18 and an in-
stantaneous excitation of each voxel at the instant of the
corresponding rf pulse’s action, leads to time- and space-
dependent phase functions


�t,z = z0 + n�z + �z�

= �0, 0 � t � n�t1

�
n�t1

t

��1 + �eGe�t��z�dt�, n�t1 � t � N1�t1. 
 �9�

Here n, �z, and �z are each slice’s index, spacing, and local
coordinates, respectively, z0 is the position of the first slice to
be excited, and all positions are dictated by the gradient Ge

and offset values �Oi�1�i�N1
used to impart the excitation.

Substituting this phase expression into Eq. �8� yields the am-
plitude attenuation affecting each slice at the conclusion of
the spatial encoding due to the effects of diffusion,

A�t = N1�t1,zn�

= exp
− �e
2D�

n�t1

N1�t1 ��
n�t1

t�
Ge�t��dt�	2

dt�� . �10�

This expression can be further simplified thanks to the gra-
dients’ bipolar rectangular waveform. The diffusion-related
contribution experienced during each oscillation cycle �t1 by
every spin packet that has gone through an excitation will
therefore be constant, and equal to


 = exp�− D�
0

�t1 
k0 + �eGet�U��t1

2
− t	 + �eGe��t1 − t�

�U�t −
�t1

2
	�2

dt��
= exp�− 2D
�t1

2
k0

2 + �eGe

�t
1

2

4
k0 +

�e
2Ge

2�t
1

3

24
�� . �11�

Here U is a step function that accounts for the sign reversal
undergone by Ge a time �t1 /2 within the bipolar cycle, and
k0 is the spin-packet’s wavenumber at the beginning of the
cycle. This wavenumber will be different from zero owing to
the incomplete dephasing/rephasing process that each slice
experiences during its first excitation cycle. According to the
linear approximation k0’s value will be −�eGe�t1 /4, leading
to 
=exp�−�e

2D�Ge
2�t

1
3 /48��. With this attenuation factor at

hand, one can derive the full attenuation experienced by
spins in the zn slice at the conclusion of the indirect evolution
time t1

max=N1�t1 as

A�t = t1
max,zn� = exp
− �e

2D
Ge

2�t
1

3

96
�
N1−n. �12�

Following this initial encoding event, additional wind-
ings may be imposed on the spins as a result of either chemi-
cal shift evolution effects—which are not, however, signifi-
cant within each of the excited discrete elements because of
the uniformity of these voxels’ excitation—and/or due to the
actions of a purging gradient. These effects are usually re-
lated to a shifting of the indirect-domain spectrum and/or to
coherence pathway selection processes, and therefore the
spacing of their winding is on the order of SW1t1

max /L; i.e.,

FIG. 2. �Color online� Description of the combined gradient/rf manipulations underlying the indirect-domain spatial encoding strategies considered in this
work. �a� Discrete real-time scheme involving a train of 	 /2 pulses applied in synchrony with an oscillating �Ge waveform. �b� Continuous real-time scheme
whereby chirped excitation and storage 	 /2 pulses are applied in the presence of a single bipolar �Ge oscillation. �c� Idem but based on a phase-modulated,
constant-time spin evolution imparted by a pair of chirped 	 pulses. Spatiotemporal encoding efficiencies for the different sequences are C=N1�t1 /L, t1

max /L,
and 2t1

max /L, respectively; the timings n �t1, t+�z�, and t−�z� refer to the fate of the lightest �yellow� z coordinate.
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small vis-à-vis �eGe�t1. Still they add up to an additional
wavenumber k1, which could be associated with significant
diffusion-driven losses when considered over relatively long
mixing periods Tmix. We therefore follow Eq. �6� and add
them in this treatment as an additional, spatially homoge-
neous diffusion-related attenuation term exp�−Dk

1
2Tmix�. Fi-

nally, during the acquisition period, an additional diffusion-
related contribution may arise due to the presence of the
oscillatory readout gradient Ga acting throughout t2. Argu-
ments analogous to the ones just used to derive Eq. �11� can
be employed to derive the gradient-induced decay brought
about by this second acquisition oscillation. Relying on the
notation used in Fig. 1 and assuming that this time the ac-
quisition commences with a k0=0, this t2-related attenuation
factor becomes

� = exp�− 2D
�

1
2Ga

2Ta
3

3
� . �13�

With this expression at hand, one can then describe the over-
all effects incurred by diffusion on a particular slice zn at the
center of the mth bipolar acquisition gradient echo as

A�t = t1
max + Tmix + m�t2,zn�

= exp
− D��e
2Ge

2�t
1

3

96
+ k1

2Tmix	�
N1−n�m. �14�

Notice that this function should be further weighted by the
appropriate relaxation-driven losses and then integrated over

the full sample length L, in order to give the ensemble de-
scription of the overall signal attenuation. The former proce-
dure involves additional multiplication by simple factors
such as �exp�−�t1 /T2,e��N1−n+1, exp�−Tmix /Trelax�, or
�exp�−�t2 /T2,a��m, while the latter involves a simple summa-
tion. All of these factors are further dealt with below within
the framework of a comprehensive comparison among the
different ultrafast encoding schemes.

C. Diffusion in continuous, real-time
amplitude-modulated encoding sequences

A continuous, real-time spatial encoding with amplitude
modulation of the t1 evolution can also be carried out by
sweeping an identical pair of frequency-chirped 	 /2 pulses,
acting within the positive and negative lobes of a �Ge bipo-
lar gradient waveform.11 The first of these pulses will pro-
gressively excite magnetizations as a function of their z po-
sition, while the second pulse does a “first in–last out”
storage of the evolved coherences. Overall this leads, by the
time when the mixing period begins, to a shift-induced but
gradient-free winding of amplitude-modulated magnetiza-
tions �Fig. 2�b��. The mechanism of action of these swept-rf/
bipolar gradient combinations has been discussed elsewhere
in detail,8,11 and hence, we only focus here on diffusion-
specific considerations of their effects. The evolution im-
parted by the first linearly swept 	 /2 pulse on the spins can
be expressed by the time- and space-dependent excitation
phase,


exc�t,z� = �0, 0 � t � t+�z�
�rf�t+�z�� + ��1 + �eGez��t − t+�z�� , t+�z� � t � t1

max/2.
� �15�

This expression follows from the assumption that an instan-
taneous spin excitation happens at a time t+�z�, correspond-
ing to the moment when the rf offset O�t� matches the spins’
resonance frequency �1+�eGez �see Refs. 21 and 22 for fur-
ther details�. In addition to an explicit z-dependence, 
exc

also depends on the �rf�t� phase accumulated by the trans-
mitter up to this time, which acts as reference for the exci-
tation, and on the overall time t1

max /2 taken by the sweep to
excite the full sample length L. With these last two param-
eters given 
exc�t ,z� can be deduced at arbitrary times; as-
suming, for instance, a sweep rate R extending over a sym-
metric range Oi=−�eGeL /2→Of = +�eGeL /2 and lasting a
time t1

max /2, it follows that

t+�z� =
�1 + �eGez − Oi

R
, �16�

the accumulated transmitter phase is then

�rf�t� = �
0

t

O�t��dt� = Oit + 1
2Rt2, �17�

and the local K wavenumber during the course of the exci-
tation becomes

Klocal�t,z� =
d
exc�t,z�

dz

= �0, 0 � t � t+�z�
�eGe�t − t+�z�� , t+�z� � t � t1

max/2.
�
�18�

Following this first excitation pulse, diffusion will also act
during the second storage period of the encoding. The rf
sweep here involved is identical to that of the first chirp,
except for the fact that it is applied under the presence of a
−Ge gradient. It will therefore act on the spins at a
z-dependent instant
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t−�z� =
�1 − �eGez − Oi

R
�19�

after its initiation, and the overall phase accumulated over its course will be


store� t1
max

2
+ t,z	 = �
exc� t1

max

2
,z	 + ��1 − �eGez�t , 0 � t � t−�z�

�rf�t−�z�� − ��1 − �eGez��t − t−�z�� − 
exc� t1
max

2
,z	 , t−�z� � t � t1

max/2.
 �20�

Notice that since this pulse involves a storage process it yields, at t= t1
max /2, a magnetization pattern that is amplitude

modulated along the z-axis of the Bloch sphere according to the cosine of 
store�t1
max,z�. Differentiating Eq. �20� with respect

to z and using the various definitions given above yields the local wavenumber affecting spins during the course of the storage
process,

Klocal� t1
max

2
+ t,z	 =

d
store� t1
max

2
+ t,z	

dz
= �− �eGe
t −

t1
max

4
+

�eGez + �1

R
� , 0 � t � t−�z�

2�eGe�1

R
, t−�z� � t � t1

max/2. 
 �21�

Substituting Eqs. �18� and �21� into Eq. �8� provides the full
argument of the exponential attenuation for these kind of
experiments,

D�
0

t1
max

Klocal
2 �t��dt�

=
D�e

2Ge
2

3
�� t1

max

4
−

�eGez + �1

R
	3

+ �2�1

R
−

t1
max

4
	3

+ � t1
max

4
−

�eGez + �1

R
	3

+ 3�2�1

R
	2� t1

max

2
+

�eGez − �1

R
	� . �22�

Recalling in turn that R=2�eGeL / t1
max and that in typical ul-

trafast experiments the indirect-domain spectral range of
�1’s is small compared to the chirp’s spectral width �eGeL
allows one to further simplify this expression into

D�
0

t1
max

Klocal
2 �t��dt� �

D�e
2Ge

2�t1
max�3

12
�1

2
−

z

L
	3

. �23�

This expression still does not account for the potential
contribution of purge gradients that may have been imparted
during the indirect-domain evolution, or for the winding ef-
fects of the chemical shift �1. As already noted for the dis-
crete encoding case these effects may not be significant from
a diffusional standpoint vis-à-vis Ge-derived losses during
the course of t1, but they may certainly affect intensities
following a long mixing period Tmix� t1

max. Describing all

purge gradient windings by a common wavenumber k1 yields
the full spatially dependent degradation of the magnetization
incurred by diffusion effects up to the acquisition stage,

A�z� = exp�− D
�e
2Ge

2�t1
max�3

12
�1

2
−

z

L
	3

+ �k1 +
2�eGe�1

R
	2

Tmix�� . �24�

During the course of the acquisition, the presence of a �Ga

oscillating gradient train will lead to additional losses; one
can use arguments analogous to those employed in the dis-
crete scheme to derive the decays felt by spins at position z
upon executing the mth signal acquisition cycle as

A�t = t1
max + Tmix + m�t2,z�

= exp�− D
�e
2Ge

2�t1
max�3

12
�1

2
−

z

L
	3

+ �k1 +
2�eGe�1

R
	2

Tmix���m, �25�

where once again �=exp�−2D��a
2Ga

2Ta
3 /3��. Notice that just

as its discrete analog Eq. �14�, this expression still does not
include the potential signal losses arising from T1 and T2

relaxation during the periods of longitudinal storage or trans-
verse evolution. For the mixing and acquisition periods these
will be as in the discrete case; for the indirect domain we
remark for completion that since the time spent by the spins
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in the transverse plane will be given by the spatially depen-
dent function

tevolution�z� =
t1
max

2
− t+�z� + t−�z� =

t1
max

2
− 2

�eGez

R
, �26�

an additional z-dependent attenuation factor of the form
exp�−�t1

max /T2,e��z /L−1 /2�� will be incurred.

D. Diffusion effects under a continuous, constant-time
phase-modulated encoding

Another class of continuous spatial encoding scheme
whose diffusion effects deserve addressing concerns the use

of constant-time sequences. In parallel to the continuous
real-time scheme just described this method also imparts its
spatial encoding by employing two identical chirped pulses
acting in unison with a bipolar gradient.10 The amplitudes of
these pulses, however, are now tuned so as to invert rather
than excite/store the transverse spin packets, which will have
to be created at the beginning of the experiment by a hard
	 /2 rotation. Using the definitions in Fig. 2�c� and analogous
conventions as in Eqs. �15� and �20�, one can express the
phase accumulated by the spins during the first gradient pe-
riod as8


enc
+ �t,z� = ���1 + �eGez�t , 0 � t � t+�z�

�rf�t+�z�� + ��rf�t+�z�� − 
enc
+ �t+�z�,z�� + ��1 + �eGez��t − t+�z�� , t+�z� � t � t1

max/2,
� �27�

while following the second negative gradient, the accumulated phase becomes


enc
− �t,z� = �
enc

+ �t�	�,z� + ��1 − �eGez�t , 0 � t � t−�z�
�rf�t−�z�� + ��rf�t−�z�� − 
enc

− �t−�z�,z�� + ��1 − �eGez��t − t−�z�� , t−�z� � t � t1
max/2.

� �28�

The various definitions appearing in these expressions, including the times t+�z� and t−�z� when the first and second rf sweeps
reach the resonance frequency of spin packets at a particular z coordinate �assuming each of these sweeps begins at its own
time zero�, as well as the transmitter phases �rf taken by the B1 field at the time of these 	-flips, are similar to those given in
Eqs. �16�, �17�, and �19�. Taking then the spatial derivatives of these phases yields the relevant K wavenumbers,

Klocal�t,z� = ��Get , 0 � t � t+�z�
�Ge�t − 2t+�z�� , t+�z� � t � t1

max/2� �29�

and

Klocal� t1
max

2
+ t,z	 = �− �Ge
t + 2t+�z� −

t1
max

2
� , 0 � t � t−�z�

− �Ge
t − 2�t+�z� + t−�z�� +
t1
max

2
� , t−�z� � t � t1

max/2.
 �30�

As before, substituting Eqs. �29� and �30� into Eq. �8� pro-
vides the full argument of the exponential attenuation func-
tion,

D�
0

t1
max

Klocal
2 �t��dt�

=
D�e

2Ge
2�t1
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1
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� . �31�

Assuming once again that �eGeL��1, this expression yields
a simplified form

D�
0

t1
max

Klocal
2 �t��dt� =

D�e
2Ge

2�t1
max�3

2

�−

z

L
	3

+
1

2
� z
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	2

+
1

4
� z

L
	 +

1

24
� . �32�

When considering as above that potential purging-gradient/
shift effects may be active during a relatively long Tmix mix-
ing period, and when factoring in the losses that will be
incurred by the presence of the �Ga oscillating acquisition
gradient train, one obtains the analog of Eq. �25� but for this
constant-time scheme:

A�t = t1
max + Tmix + m�t2,z�

= exp�− D
�e
2Ge

2�t1
max�3

2

�−

z

L
	3

+
1

2
� z

L
	2

+
1

4
� z

L
	 +

1

24
� + �k1 +

4�eGe�1

R
	2

Tmix���m, �33�
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with �=exp�−2D��a
2Ga

2Ta
3 /3��. This expression accounts for

the larger spatiotemporal C efficiency active in this case, but
still ignores potential losses arising from T1 and T2 relax-
ations. For the mixing and direct acquisition domains these
will be as before; for the indirect domain and unlike what
was seen in the previous cases these will now be
z-independent, owing to the fact that all spin packets spend
the entire t1

max encoding period precessing in the transverse
plane. Therefore, an additional spatially independent attenu-
ation factor exp�−t1

max /T2,e� needs to be considered, at the
time of computing the overall signal intensity losses.

III. EXPERIMENTAL AND NUMERICAL VERIFICATIONS

Prior to exploiting the theoretical models just derived to
judge diffusion penalties under various prototypical ultrafast
2D NMR conditions, these derivations were subject to a
number of verifications and tests. These in turn involved two
complementary routes: An experimental one where confi-
dence was sought based on a �necessarily limited� series of
comparisons, and a numerical one which—like the analytical
expressions above—has the flexibility to accommodate a
large number of different situations as well as arbitrary dif-
fusion and spin-relaxation parameters.

To validate experimentally the theoretically derived at-
tenuation profiles, multiple measurements were conducted on
a solution of 0.01% H2O /D2O using a Varian iNova®

500 MHz NMR spectrometer. These measurements were car-
ried out at room temperature using a conventional 5 mm
gradient-equipped probe possessing a sample length L
�1.80 cm, conditions for which a literature-derived D=1.9
�10−9 m2 /s self-diffusion coefficient could be assumed in
the data analysis.23 In order to quantitatively evaluate the
models’ correctness, and keeping in mind the equal
Ga-derived effects that all sequences predict for the signals,
experimental data were analyzed by focusing on the results
afforded by the first m=1 echo of an ultrafast 2D acquisition.
Given the different z-dependencies predicted by Eqs. �14�,
�25�, and �33� for the diffusion effects—as well as relaxation
losses that as mentioned are also distinctive for different en-
coding schemes—data were analyzed by subjecting the sig-
nals to a Fourier analysis that provided the spatial distribu-
tion of their decays. The local attenuations displayed by the
resulting 1D profiles were further normalized by referencing
them versus 1D images acquired on simple pulsed gradient-
echo sequences, devoid from spatial encoding manipulations.

As a complement to these experimental verifications,
further backup for the analytical derivations was sought in
numerical simulations of full ultrafast experiments that si-
multaneously consider the effects of coherent manipulations,
of diffusion, and of relaxation. Several methods have been
proposed for calculating diffusion effects in NMR,24–26 in-
cluding a convolution algorithm which we adopted as basis
for the calculations. An attractive starting point of such algo-
rithm is its reliance on a discretization of both the space and
time domains, a feature already built-in in previous ultrafast
simulations,9,21,22 whereby spin packets placed at a series of
equispaced z positions throughout the sample were propa-
gated under the effects of piecewise constant Bloch equa-

tions with varying rf- and gradient-related coefficients. A
problem, however, arises upon introducing random Brown-
ian motions into such algorithms: Given the minute distances
�z��2D�t over which typical diffusion coefficients will
displace spins during the relatively short propagation times
�t that are dictated by rf and gradient manipulations, an
extremely large number of microscopic elements spread over
the full sample range L becomes necessary for reproducing
the macroscopic spin signal. The calculation of arbitrary
pulse sequences with diverse spatial and temporal features
therefore becomes a highly demanding computational task,
ill suited to use as a tool for systematic tests and verifica-
tions. In order to deal with this feature—which is absent in
conventional calculations owing to the spatial uniformity
with which the rf and gradients in standard diffusion mea-
surements treat the spins throughout the sample’s volume—a
novel algorithm was developed based on phase-continuity
requirements and on the reliance on an analytical diffusion
kernel for describing the effects of motion at a microscopic
level. Further details on this algorithm, which allowed us to
carry out calculations using spatial increments �z exceeding
by orders of magnitude the diffusion-dictated �z distances
and whose operation was extensively tested before employ-
ment on these ultrafast 2D evaluations, are presented in the
Appendix.

Figure 3�a� compares the behavior observed from a typi-
cal set of real-time modulation experiments carried out using
continuous spatial encoding pulses of different durations
against predictions arising from both the analytical and nu-
merical models. For simplicity these experiments involved a
very short, mixing-less storage period, and hence they are
mainly meant to describe the diffusion and relaxation losses
over the t1 encoding. As expected the amplitude-modulated
nature of the encoding yields maximal values of 1

2 for the
normalized profiles; also expected is the asymmetric nature
of the attenuation, as both diffusion and T2 relaxation bias
the losses at one end of the sample �in this case the z�0
edge that was first excited� over the other. Relevant to our
discussion is the fact that the analytical predictions follow
very closely the experimental observations; this in spite of
containing no adjustable parameters once the experimentally
dictated gradient strengths, timings, known diffusion coeffi-
cient, and an a priori measured T2

*=0.37 s value, are all
given. Also following very closely the experimental profiles
are the numerical simulations, calculated using the same pre-
defined parameters. In fact, the sole significant deviation be-
tween the numerical/theoretical profiles and the experimental
diffusion-weighted images arises at the edges of the sample
and reflects the fact that neither simulations nor derivations
considered the smoothed-out profiles used as envelops of the
experimental chirped rf sweeps. Complementing these
amplitude-modulated tests, Fig. 3�b� shows a second set of
experiments, this one obtained with the constant-time, phase-
modulated pulse sequence approach. Once again the experi-
mental and numerical results in this set show quantitatively
similar profiles to the theoretical function derived in Sec.
II D; notice that these profiles are different in both amplitude
and shape from the counterparts arising in the real-time ul-
trafast experiments, lacking the latter’s differential T2
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z-weighting and reaching a maximum at �z��L /6 rather than
at one of the sample’s edges. Notice as well that by contrast
to the real-time case, Fig. 3�b� reveals a minor systematic
deviation between the analytical model and experimental re-
sults for the shorter-t1

max experiment. We ascribe this to the
fact that the chirped rf sweeps in these experiments are char-
acterized by larger adiabaticity parameters,10 for which the
“instantaneous” spatial and temporal locality assumptions
underlying Sec. II are less justified. Numerical simulations
on the other hand make no assumptions regarding the pulses’
localized nature, and therefore are less constrained in repro-
ducing the experimental results.

IV. COMPARING DIFFUSION AND RELAXATION
LOSSES AMONG ULTRAFAST 2D SCHEMES

Having validated the theoretical derivations of Sec. II,
these were employed for evaluating the diffusion and relax-
ation losses expected for the typical parameters involved in
2D ultrafast experiments. The present section discusses the
main features observed during such survey paying specific
attention to �i� the magnitude of the diffusion-related losses,
�ii� their relative effects vis-à-vis competing relaxation
losses, and �iii� the optimized pulse sequence approach to be
used in different instances to maximize sensitivity. While not
exhaustive of all sequences or cases of relevance, we focus
here on, certain representative instances including 2D homo-
and heteronuclear NMR experiments, as well as experiments
on both small �e.g., organic� molecules and on proteins/
biopolymers.

A common feature of the various schemes treated in Sec.
II is their reliance on the use of an oscillatory gradient during
the course of the acquisition. An idea of the impact that
diffusion will have upon using this gradient waveform can be
gathered from evaluating first the sensitivity losses associ-
ated with the discrete excitation scheme, which also employs

oscillating gradients during the course of both its indirect-
and direct-domain evolution periods. An attractive feature of
beginning such comparison with this scheme stems from the
fact that, given the sequence’s discreteness, it can lead to
analytical expressions for both the overall diffusion- and for
the relaxation-related losses. Indeed the total echo signal S
observed in these cases for the mth acquisition cycle will be
given by a summation of Eq. �14� over all the 1�n�N1

excited slices,

S�t = t1
max + Tmix + m�t2�

= �
n=1

N1

exp
− D��e
2Ge

2�t1
3

96
+ k1

2Tmix	�
N1−n�m

= exp
− D��e
2Ge

2�t1
3

96
+ k1

2Tmix	�1 − 
N1

1 − 

f�m, �34�

where f is a fixed number representing the fraction of spins
that has been excited within each slice �z, as dictated by the
shape chosen for doing the selective pulse excitation. We
recall that � here represents the losses associated with one
�t2=2Ta acquisition decoding cycle �Eq. �13��; the decoding
acquisition conditions that define � are in turn a function of
the desired 2D spectral parameters, and for the discrete ex-
citation case they must fulfill �aGaTa=�t1�N1 /L�SW1.9 Tak-
ing this as well as the potential acquisition T2,a relaxation
effects into account leads to

� = exp�− 2D
�a

2Ga
2Ta

3

3
�exp�−

2Ta

T2,a
�

= exp�− 
D
SW1

2�t1
2

3
�N1

L
	2

+
1

T2,a
��t2� . �35�

With these equations at hand we proceed to consider the
most unfavorable of all diffusion-derived scenarios, involv-

FIG. 3. �Color online� Experimental and numerical verifications of the theoretical models derived in Eqs. �25� and �33� utilizing �a� a real-time and �b� a
constant-time spatial encoding sequence. These experiments are extensions of the basic schemes illustrated in Figs. 2�b� and 2�c�, incorporating a number of
extra purging gradients to ensure cleaner single-scan profiles. Rather than obtaining a full 2D interferogram, a single echo �i.e., the first t2 point� was collected
and Fourier analyzed to obtain the spatial profiles illustrated under each sequence. The experiments employed rf pulses sweeping from Oi= +50 to
Of =−50 kHz programmed on the basis of the Shinnar–LeRoux algorithm �Ref. 27� with a finite envelop whose smoothing was not accounted for in the
theoretical analyses �hence the departures of the experimental data at the sample’s edges�. Further details on the numerical simulation procedure used to carry
these comparisons are given in the Appendix.
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ing a 1H homonuclear experiment on a small molecule pos-
sessing a waterlike diffusion coefficient of 10−9 m2 /s. Given
this low molecular weight assumption we also considered
relatively long T2’s and desired spectral width and resolu-
tions of 2000 and 20 Hz, respectively, for each of the do-
mains. For the discrete excitation case one also needs to
recall that spectral widths and resolutions dictate the gradient
amplitude and number N1 of pulses that will be needed
throughout the encoding, according to �eGeL /N1=�O
�2 /�t1.28 This leads to a relatively high gradient Ge

�52 G /cm and a total duration t1
max�50 ms, for the realiza-

tion of such discrete encoding conditions. Even under such
relatively demanding high-gradient, long-encoding, fast-
diffusion conditions, Fig. 4�a� illustrates the spatial profiles
that can be expected in the absence and presence of T2,e

relaxation; as adumbrated9 these diffusion losses remain neg-
ligible throughout the encoding period. Also worth exploring
are the �-driven diffusion losses expected to arise in such
cases during the acquisition period; Figs. 4�b� and 4�c� illus-
trate these for a relaxation-free scenario as a function of dif-
ferent Ta=�t2 /2 periods, assuming that the SW1 spectral
window �i.e., the GaTa product� is kept constant throughout
these changes. Figure 4�b� demonstrates that �i� diffusion-
related losses will also in this case be very small and �ii� that
even if one was to choose differing Ta values, diffusion
losses will remain constant when viewed as a function of the
overall acquisition time t2=m�t2. This follows again from
Eqs. �34� and �35�, which predict that only when viewed as a
function of the index m will modest diffusion losses show up
in the long-Ta limit �Fig. 4�c��. Of more significance and still
covered by Eq. �14� �even if not contemplated in this particu-
lar set of calculations� may end up being in these discrete
cases k1-derived losses associated with diffusion over rela-
tively long Tmix mixing periods.

It follows that diffusion’s main influence will arise when
gradients remain constant over relatively long periods of
time, as happens to be the case for the continuous encoding
schemes treated above. To evaluate the sensitivity of such
experiments to diffusion, we focus first on small molecules
and consider a mixingless homonuclear 1H correlation ex-
periment where D=10−9 m2 /s, T2,e=0.1 s, and spectral

width/resolution requirements are 2000 /20 Hz, respectively.
Giving the differing spatiotemporal C ratios of the real- and
the constant-time encoding schemes,10,11 fulfilling such res-
olution requirements implies that the t1

max encoding durations
need to be set at 25 and 12.5 ms, respectively. Unlike in the
discrete encoding scheme, however, where also the Ge’s am-
plitudes were uniquely set by these spectroscopic require-
ments, both continuous encoding schemes have the freedom
to set encoding gradient at more or less arbitrary amplitudes
over the duration of their rf sweeps. The only constraints that
we find necessary for carrying then out a proper exploitation
of the full sample length and achieving a good rf pulse per-
formance is setting the rf sweep widths used for spatial en-
coding large relative to the spectral spread of the shifts to be
encoded; i.e., �eGeL�SW1. For the calculations the rf
sweeps were thus given realistic bandwidths of 40 kHz, cor-
responding to the application of Ge= �5.2 G /cm gradients
over a 1.8 cm sample length. The profiles of the diffusion-
related losses arising under such small molecule conditions
in the presence and absence of T2 relaxation effects are
shown in Fig. 5�a� for the real- and the constant-time encod-
ing sequences. As can be appreciated the real-time scheme
shows higher diffusion-related losses vis-à-vis its constant-
time counterpart, reflecting the longer t1

max duration de-
manded by the former to achieve the same spectral resolution
as the latter. Nevertheless it is also clear that under these
conditions the diffusion losses are in all cases tolerable and
not much larger than those arising from T2 relaxation.

In addition to these cases the analytical formalism was
used to explore biomolecular scenarios such as those ex-
pected when dealing with proteins, where diffusion can be
expected to be slower, relaxation times shorter, and spectral
resolution demands less stringent than in low molecular
weight experiments. A representative homonuclear 1H test
might then involve D�10−10 m2 /s,29 T2�20 ms, and spec-
tral width and resolution requirements of 2000 and 40 Hz,
respectively. Ultrafast-derived profiles calculated using these
spectral and diffusion parameters in the presence and ab-
sence of transverse relaxation are displayed in Fig. 5�b�. No-
tice that the slower diffusive motion experienced now by the
spins coupled to the shorter t1

max durations required by this

FIG. 4. �Color online� �a� Attenuation profiles predicted by Eq. �12� for the discrete encoding experiment executed on a small molecule, in the presence and
absence of T2 relaxation effects. Calculation parameters were as described in the text: SW1=2 kHz, �t1=0.5 ms, N1=100, L=18 mm, Ge=52 G /cm, D
=10−9 m2 /s. ��b� and �c�� Different renderings of the diffusion-related losses expected during the course of the acquisition, for different values of Ta

=�t2 /2. In all cases the parameters of panel �a� were assumed; i.e., the �aGaTa product was kept constant at 55.5 cm−1. Notice the very minor and identical
decay arising for different Ta’s under such conditions �center�; only for long Ta’s and many �Ga gradient repetitions m do these losses become notable �right�.
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kind of experiments due to their limited resolution needs,
results in minor diffusion-related losses–approximately 1%
of the integrated signal intensity even for the more lossy
real-time encoding scheme. By contrast, and owing to the
shorter T2 values, the constant-time scheme becomes more
susceptible to relaxation-derived losses than its real-time en-
coding counterpart in spite of its more efficient spatial
C-encoding value.

In addition to homonuclear protocols, ultrafast se-
quences have been applied within the context of hetero-
nuclear 2D correlations involving indirect- and direct-
domain evolutions of nuclei with differing Larmor
frequencies. Most often sensitivity considerations suggest
keeping 1H as nucleus of observation, leaving the lower-�
species as targets for the spatial encoding. Taking, for ex-
ample, a 2D 15N– 1H heteronuclear single-quantum
correlation30 �HSQC� as a test case, the fact that �e �i.e., �N�
will be smaller by approximately an order of magnitude
compared with that of �a ��H� makes a strong reduction on
the effect of the diffusion-related encoding losses. Indeed
typical HSQC spectroscopy conditions for an indirect-
domain characterization would then involve SW1

�1000 Hz ��20 ppm on a 11.7 T magnet� and a resolution
of �20 Hz. This in turn calls for sweeping the chirped rf

pulses over �20 kHz ranges for either 25 or 50 ms t1
max;

when translated in terms of 15N encoding this corresponds to
a gradient amplitude Ge�26 G /cm. The diffusion losses that
under the influence of such parameters can be expected for
the z profiles in the presence and absence of T2 relaxation are
illustrated in Fig. 6 for both small- and macro-molecules.
Qualitatively speaking these graphs are all similar to those
arising in homonuclear cases, albeit less affected by diffusion
losses.

The immunity of these experiments against diffusion
stems from the small gyromagnetic ratio involved in �e. Cer-
tain widespread heteronuclear 2D experiments such as the
multiple-quantum correlation �HMQC� sequence,30 however,
involve the simultaneous evolution of two nuclei with differ-
ent magnetic moments �e.g., 15N and 1H�—even if only one
of these becomes encoded in the indirect domain. In parallel
to the HSQC protocol, excitation gradients in this HMQC
case will have to be set relatively strong in order to impart
the desired spatial encoding on the low-� 15N nuclei. And
although the diffusion-driven gradient losses arising directly
from the nitrogen may still remain relatively small, the pro-
ton portion of the t1 spin coherence may significantly mag-
nify the diffusion effects. In order to evaluate such phenom-
ena spectral parameters identical to those assumed for the

FIG. 5. �Color online� Comparison between the predictions made by the real-time �RT� and the constant-time �CT� analytical models described in the text for
diffusion losses, upon executing homonuclear single-scan 2D correlation on �a� small molecule �left-hand panels� and �b� macromolecular �right-hand panel�
spin systems. To put these diffusion effects in perspective, relaxation-free and realistic T2-derived effects are also compared in corresponding top and bottom
panels. The real-time plots assumed the sequence in Fig. 2�b� with Ge=5.2 G /cm, t1

max=25 and 50 ms for the large and small molecule experiments,
respectively, Oi=−Of =−20 kHz �notice the sign reversal vis-à-vis in the experiments in Fig. 3� and L=1.80 cm. The constant-time plots used the sequence in
Fig. 2�c� with the same values except for t1

max=12.5 and 25 ms for the large and small molecules, experiments.
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HSQC experiments were taken and used to simulate ultrafast
HMQC acquisitions where both the diffusion- and the
relaxation-driven decays of the 15N and 1H components mak-
ing up the MQ coherence were assumed independent of each
other. Spatial profiles thus calculated for small- and for
protein-sized molecules are shown in Fig. 7. Most evident
from these calculations is the fact that in the case of small
molecules, the relatively long encoding durations needed to
achieve proper spectral resolution couple to the large diffu-
sivities and strong gradients that are required, to yield sub-
stantial diffusion-driven losses that make both continuous
versions of the ultrafast HMQC scheme impractical. For
more slowly diffusing proteins on the other hand, the shorter
durations demanded from t1

max as well as the smaller diffu-
sion coefficients, make the decays tolerable and comparable
to the losses arising from T2 transverse relaxation.

All the plots given so far were presented as relative sig-
nal losses imparted a function of the spins’ positions
throughout the sample. This representation highlights the
spatially dependent nature of ultrafast NMR and gives a fair
idea of the ensuing attenuation. In practical experiments,
however, sensitivity will effectively be reflected by the
strength of the Ga-driven echoes following their t2 Fourier
transform. As shown in Eq. �2� these signals represent an
integration over the full sample; Table I presents this alter-
native way of comparing the various schemes heretofore

treated by providing the integrated attenuations that will
characterize different ultrafast acquisitions as a result of
diffusion-related losses.

V. CONCLUSIONS

Spatially selective pulses applied in the presence of os-
cillating gradients lie at the heart of liquid-phase single-scan
2D NMR experiments. The assumption of static spins proves
valuable in the conceptual and developmental aspects of this
methodology, yet the fact that this is solely an approximation
should not be ignored. Molecules will inevitably change their
positions throughout the course of the spatial encoding and
decoding processes and, while certain systematic motions
such as flow and/or convection can be minimized, random
diffusive motions cannot and will therefore influence the out-
come of any ultrafast experiment. The present work ad-
dressed these phenomena in a systematic way by providing a
general analytical and numerical basis capable of evaluating
diffusion effects for arbitrary spatially selective pulse se-
quences, and then using these to evaluate the effects of trans-
lational motions for three prototypical pulse schemes often
employed in ultrafast 2D NMR acquisitions. For these cases
it was shown that the losses incurred by diffusion affect
mainly the indirect domains of the continuous spatial encod-
ing schemes as well as mixing-related processes, while re-
maining negligible during the direct domain as long as one

FIG. 6. �Color online� Idem as in Fig. 5 but for heteronuclear HSQC correlations involving a spatial encoding of the 15N with Ge=26.1 G /cm, t1
max=50 and

25 ms for the real- and constant-time experiments, and Oi=−Of =−10 kHz.
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employs fast acquisition gradient oscillations. Even for the
continuous encoding sequences, diffusion-related losses re-
mained comparable or smaller that those arising from natural
T2 relaxation. A main exception to this behavior arose upon
considering the execution of HMQC-type sequences on
small molecules, where the demands for relatively strong Ge

gradients couple with the diffusion losses associated with 1H
coherences to severely reduce the fraction of spins in the
sample that can actually contribute to the echo formation
during the course of the acquisition period. Naturally, the

same approach employed here to analyze these three proto-
typical approaches could also be employed to examine dif-
fusion and/or convection effects in the remaining 2D single-
scan sequences hitherto proposed, on new pulsed approaches
to ultrafast 2D NMR, or on higher-dimensional versions of
these single-scan experiments.

While the drastic attenuations that diffusion brings to the
HMQC-derived spatial profiles may bear a poor prognosis
for constant-gradient ultrafast experiments of this kind, they
also suggest that a new tool may be here found for the com-
putation of diffusion coefficients—operating, like its 2D
counterparts, within a single scan. Indeed if sequences can be
devised where spatial profiles of the kind illustrated in Figs.
5–7 strongly depend on the diffusion coefficients, a new win-
dow of opportunity would open up in the single-scan char-
acterization of molecular Brownian motions at a site-
resolved level. In particular, it turns out that the non-
monotonic, T2-independent profiles afforded by constant-
time experiments illustrated in Figs. 6 and 7, provide a
practical starting point for the site-specific single-scan quan-
tification of diffusion coefficients. And the analytical deriva-
tions presented in this work serve as proper starting points to
perform their quantitative evaluation. Further extensions of
these concepts and demonstrations of their practical use will
be described in an upcoming study.

FIG. 7. �Color online� Idem as in Fig. 6 but for heteronuclear HMQC correlations; the effective MQ T2 values indicated reflect hypothetical values dictated
by the sum of 1H+ and 15N+ transverse relaxation rates assumed in Figs. 5 and 6.

TABLE I. Integrated diffusion-induced losses for various ultrafast 2D ac-
quisition protocols, neglecting T2 decay and under spectral conditions akin
to those described in Sec. IV.

Target
Encoding
strategy

Homonuclear
correlation

HSQCa

correlation
HMQCa

correlation

Small Moleculeb Real timec 0.687 0.889 0.242
Small Moleculeb Constant timed 0.883 0.969 0.144
Proteine Real timec 0.993 0.987 0.865
Proteine Constant timed 0.998 0.997 0.961

aAssuming 15N– 1H correlations.
bD=10−9 m2 /s.
cWith t1

max=50 ms.
dWith t1

max=25 ms.
eD=10−10 m2 /s.
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APPENDIX: AN EFFICIENT APPROACH TO THE
NUMERICAL PROPAGATION OF HETEROGENEOUS
DIFFUSION EFFECTS

As hinted to in Sec. III, computing numerically the time
and space dependencies that arise in ultrafast 2D NMR ac-
quisitions is a considerable challenge if one wishes to in-
clude the effects of molecular diffusion. Consider as an ex-
ample the evaluation of the spins’ behavior upon applying a
frequency-chirped pulse lasting 50 ms and sweeping a
40 kHz bandwidth while in the presence of a field gradient.
Nyquist-type criteria would suggest solving Bloch’s equa-
tions by taking �25 �s �t time increments and propagating
the combined rf/gradient/shift effects over �2000 time steps.
A typical ultrafast 2D NMR simulation would then mimic
the signal arising from a macroscopic sample by coadding
these time responses for a few 100’s of z elements, equally
spaced over a typical L�2 cm sample length. On the other
hand incorporating the effects of diffusion onto these calcu-
lations would require following over the full macroscopic
sample volume, the fate of spin packets at a spacing
that is now dictated by diffusion lengths �z��2D�t
�10−5 cm—leading to a need to consider 10 000’s of differ-
ent z elements and to an orders-of-magnitude increase in the
time needed for the computation. In order to deal with such
complications we decided to modify an existing convolution
algorithm,26 so as to enable its use even while retaining a
�z��2D�t spatial resolution.

Convolution algorithms cope with NMR diffusion ef-
fects by calculating magnetization components for each ele-
ment z0 at a time t+�t, based on a coherent propagation of
the z0 magnetization over an interval �t and on an additional
convolution of the resulting vector by contributions that may
have diffused from neighboring spatial elements. In other
words these methods still need to discretize both space and
time and solve diffusion-free Bloch equations, but will then
account for diffusion effects by convolving at each time in-
crement the resulting spatial pattern with a normalized kernel
K��z ,�t�, reflecting a weighted migration among neighbor-
ing positions according to

S�z0,t + �t� =� dz�S�z�,t�K�z0 − z�,�t� . �A1�

Here S�z , t� represents the spatial distribution of either the
transverse or longitudinal magnetization at a time t, and K is
the diffusion-correcting kernel possessing a spatial span on
the order of �2D�t. For instance, a kernel derived by Gud-
bjartsson and Patz using conditional random walk
assumptions26 and adopted for the present study reads

K��z,�t� =
1

�4	D�t
exp
−

��z�2

4D�t
− �2G2�t3

12

+ i�G�z�t� , �A2�

with D the diffusion coefficient and G the active gradient’s
amplitude. Taking into consideration that the integral in Eq.
�A1� needs to be calculated using discrete elements, it fol-
lows that accurate results will only be obtained if one carries
out its Riemann integration by employing a high �z reso-
lution dictated by D and �t. To avoid such a taxing demand
we decided to modify these calculations—retaining still the
kernel formalism but now switching to spatial incrementa-
tions �z��2D�t—by exploiting the very local nature of the
diffusion effect over the considered �t time scales. To com-
pute diffusion effects at the very short �z distances de-
manded by Eq. �A2�, a Taylor expansion of S around z0 was
then used, whereby longitudinal or transverse magnetizations
at these diffusion-relevant length scales were interpolated as

S�z = z0 + �z� = A�z�ei��z�

� 
A�z0� + A��z0��z +
A��z0�

2
�z2�

�ei���z0�+���z0��z+���z0�/2�z2�. �A3�

The relevant derivatives could then be evaluated on the basis
of values computed for the nearest neighbors at larger �z
incrementations, defined by requirements based on the con-
tinuity of the amplitude and phase of the spin’s magnetiza-
tion rather than by diffusion considerations. Amplitudes, for
instance, were assumed

FIG. 8. �Color online� Comparison between the classical exp�−bD� predic-
tions expected from a pulsed-gradient spin-echo experiment for a variety of
D diffusion coefficients �solid lines� and numerical predictions arising for
the corresponding cases from the model introduced in the Appendix �points�.
Calculation parameters assumed �=5 ms, �=30 ms, �=4.257 kHz /G, and
a maximum gradient �G�=20 G /cm.
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A��z0� =
A�z0 + �z� − A�z0 − �z�

2�z
,

�A4�

A��z0� =
A�z0 + �z� − 2A�z0� + A�z0 − �z�

�z2 ,

and similarly for the phase coefficient derivatives. With these
first- and second-order derivatives at hand, Eq. �A2� could be
analytically evaluated to quantify the effects of diffusion

from neighboring elements. It predicts that diffusion-related
changes in the longitudinal magnetization will be given by

Mz�z0,t + �t� = Mz�z0,t� + Mz��z0,t�D�t , �A5�

while analogous effects on the transverse magnetization will
be

M+�z0,t + �t� = I�z0,t�ei��z0,t�
A�z0,t� + iA��z0,t�
D�t��G�t + ���z0,t��

1 − 2i���z0,t�D�t

+ A��z0,t�
D�t�1 − 2iD�t���z0,t� − 2D�t��G�t + ���z0,t��2�

�1 − 2i���z0,t�D�t�2 � , �A6�

where

I�z0,t� =
1

�1 − 2i���z0,t�D�t
exp
−

D�t��G�t + ���z0,t��2

1 − 2i���z0,t�D�t
−

�2G2D�t3

12
� . �A7�

With these expressions accounting for the effects of diffusion
over a time increment �t, the reminder of the calculation on
the fate of transverse or longitudinal magnetizations could be
evaluated using classical diffusion-free propagation routines.
Figure 8 illustrates the good reproduction that such numeri-
cal model, used throughout the simulations that accompanied
this work, yields for the very well characterized case of a
classical pulsed-gradient spin-echo experiment18 assuming
different diffusion coefficients.
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