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Dimensionality reduction approaches have been used to exploit the redundancy in a Cartesian
coordinate representation of molecular motion by producing low-dimensional representations of
molecular motion. This has been used to help visualize complex energy landscapes, to extend the
time scales of simulation, and to improve the efficiency of optimization. Until recently, linear
approaches for dimensionality reduction have been employed. Here, we investigate the efficacy of
several automated algorithms for nonlinear dimensionality reduction for representation of trans,
trans-1,2,4-trifluorocyclo-octane conformation—a molecule whose structure can be described on a
2-manifold in a Cartesian coordinate phase space. We describe an efficient approach for a
deterministic enumeration of ring conformations. We demonstrate a drastic improvement in
dimensionality reduction with the use of nonlinear methods. We discuss the use of dimensionality
reduction algorithms for estimating intrinsic dimensionality and the relationship to the Whitney
embedding theorem. Additionally, we investigate the influence of the choice of high-dimensional
encoding on the reduction. We show for the case studied that, in terms of reconstruction error root
mean square deviation, Cartesian coordinate representations and encodings based on interatom
distances provide better performance than encodings based on a dihedral angle representation.
© 2008 American Institute of Physics. �DOI: 10.1063/1.2968610�

I. INTRODUCTION

Understanding the relationship between the dynamic na-
ture of molecular structures and their properties and func-
tions is of critical importance for many fields of research.
However, obtaining an accurate representation of molecular
motion remains a challenge. Experimental methods such as
nuclear magnetic resonance �NMR� spectroscopy and x-ray
crystallography are severely limited in their abilities to detect
conformational motion at an atomic scale. Theoretical meth-
ods using force-field approximations of the potential energy
surface are promising approaches for the simulation of
changes in molecular conformation. Unfortunately, these ap-
proaches cannot be applied to many problems of interest due
to the excessive calculation times required. For classical mo-
lecular mechanics approaches, calculation times are propor-
tional to the number of degrees of freedom in the system,
typically the 3N Cartesian coordinates in an N-atom system.
Even when calculations can be performed in reasonable
times, the volume of data generated makes interpretation and
analysis difficult.

In most cases, a significant amount of redundancy exists
due to the encoding of molecular structure in a 3N phase
space and high similarities of the many conformations ob-

tained during simulation. For the former, the variable inter-
dependence is an obvious result of the constraints on atomic
positions due to covalent bonds and energy barriers resulting
from steric overlap. For larger molecules such as proteins,
the number of constraints can increase due to the formation
of stabilizing intramolecular hydrogen bonds and the forma-
tion of rigid secondary and supersecondary structural
elements.1 These interdependencies between the degrees of
freedom result in an inherently sparse phase space and sug-
gest that a lower-dimensional representation of molecular
structure can account for conformational changes. For ex-
ample, a recent Lyapunov analysis of the folding of alanine
peptides in aqueous solution resulted in effective dimension-
alities of approximately three to five for peptides containing
three to ten residues,2 much lower than the many thousands
of dimensions required in a Cartesian representation. Inter-
estingly, it was reported that the effective dimensionality de-
creases with peptide size despite the increase in the number
of atoms. This effect was attributed to an increase in intramo-
lecular interactions stabilizing the secondary structures of the
larger peptides. It is noteworthy that this low dimensionality
is observed not through the formation of stable hydrogen
bonds, but hydrogen bonds that are formed and broken on a
nanosecond time scale. Similar findings on the decrease in
effective dimensionality with increasing system size have
been obtained for other protein simulations.3

Investigation into the low intrinsic dimensionality of
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molecular dynamics �MD� may provide an answer to the
Levinthal paradox for protein folding.4 Experimental inves-
tigations indicate that unfolded proteins do not exhibit purely
random structure and may in fact retain structural properties
present in the folded states.4–6 Computational evidence fur-
ther suggests that excluded volume effects significantly con-
strain the unfolded ensemble.7 Lange and Grubmuller3 dem-
onstrated that the effective variables from a 90% linear
dimensionality reduction �i.e., retaining 10% of the number
of original variables� for a 5 ns protein simulation explain
most of the variance observed in a 200 ns long simulation.
This result is significant because only one of the three con-
formational states found in the longer simulation was
sampled during the short simulation. A similar finding was
reported for equilibrium simulations of the reversible folding
of a �-heptapeptide in a methanol solution.8 In this case, the
effective variables explaining 69% of the collective atomic
fluctuations were found to converge within 1 ns, despite the
significantly longer time scales required for folding.

The inherent low dimensionality of molecular conforma-
tion suggests that methods can be developed that exploit re-
dundancy for improving the efficiency of simulation, analy-
sis, and optimization. For example, low-frequency concerted
motions of atoms are known to occur in conformational re-
arrangements within proteins. These correlated motions are
thought to be responsible for important biomolecular func-
tions including protein folding, molecular recognition, in-
duced fit and catalysis, allosteric signal transduction, and
mechanical/thermodynamic energy transport. However,
analysis of these collective motions is very difficult to
achieve with MD simulation. First, the timestep for numeri-
cal integration must be sufficiently small �femtoseconds� to
account for high-frequency motions that influence the accu-
racy of the resulting trajectory and therefore limit the simu-
lation time. Second, extracting the relevant low-frequency
motions from the large amount of data generated is not
trivial. These difficulties motivated the use of dimensionality
reduction �in the form of quasiharmonic analysis or essential
dynamics� as a successful approach for isolating low-
frequency motions and obtaining improved sampling of the
phase space for MD and Monte Carlo approaches.9–17 For
example, by diagonalizing the covariance matrix of atomic
displacements, it is often found that over 90% of the atomic
motion in peptides or proteins is concentrated in correlated
motions involving only 1%–5% of the degrees of
freedom.3,12,18,19 In addition to providing reduced complex-
ity, an accurate representation for correlated molecular mo-
tions can aid in the interpretation of NMR and x-ray
studies.20–26

It has been shown that dimensionality reduction can be
used to extend the time scales of MD, and a theoretical
framework for low-dimensional simulation with Langevin
MD or metadynamics is a topic of current
investigation.25,27,28 In addition to improving the efficiency
of simulation, a logical extension is to utilize low-
dimensional surrogate spaces for problems in optimization
that occur in molecular recognition and self-assembly. Di-
mensionality reduction has already been used for efficient
incorporation of protein flexibility into ligand docking stud-

ies, for example.29,30 In another interesting approach, dimen-
sionality reduction was utilized in comparative protein mod-
eling to avoid false attractors in force-field based
optimization by using evolutionary information to reduce the
number of degrees of freedom for structure refinement.31

In addition to decreasing the complexity required for
modeling flexibility in molecular structure, dimensionality
reduction can be used to analyze the extensive data generated
from simulation into intuitive results. By lowering the num-
ber of effective degrees of freedom, more meaningful visu-
alizations might be obtained and undesirable effects from the
so-called “curse of dimensionality” can be removed.32 In ad-
dition to filtering high-frequency motions, dimensionality re-
duction of molecular simulations can be utilized to identify
discrete conformational substates24,33,34 and for understand-
ing the extent of configuration space sampling and the topog-
raphy of the system’s energy hypersurface.35 As reviewed by
Altis et al.,36 dimensionality reduction can be utilized to ob-
tain representations for reaction coordinates and free energy
landscapes as well as the transition matrix between meta-
stable conformational states.

While there is substantial evidence for correlated atomic
motions within dynamic molecular structures, it is unclear
which computational method is most appropriate for detect-
ing these correlations. Historically, linear dimensionality re-
duction methods have been employed for the analysis of mo-
lecular structure. It seems, however, that this choice was
made more for mathematical convenience rather than knowl-
edge of the high-dimensional structure of a given phase
space. Indeed, it is well known that if certain requirements of
the input data are met, principal component analysis �PCA�
results in a low-dimensional encoding with minimal residual
variance and preservation of intersample distances, thereby
providing a minimal reconstruction error. PCA is a robust,
simple algorithm with no user-adjustable parameters. How-
ever, linear approaches tend to underestimate the proximity
of points on a nonlinear manifold, leading to erroneous em-
beddings. Consequently, several authors have suggested that
nonlinear dimensionality reduction methods may be more
appropriate for molecular structure analysis.19,36,37 Lange and
Grubmuller37 have used an information theoretic approach to
show that covariance matrices cannot account for all corre-
lations for the studied protein domains. In an investigation
into the use of collective Langevin dynamics for the simula-
tion of a peptide, the same authors observed that a nonlinear
dimensionality reduction would require fewer effective de-
grees of freedom to obtain equally accurate embeddings and
performed a manual construction of a nonlinear reduction
from the linear one obtained with PCA.27

The design and analysis of nonlinear dimensionality re-
duction algorithms is an active area of research, and recent
efforts have yielded new candidate methods for molecular
structure analysis. Agrafiotis and Xu38 developed a nonlinear
dimensionality reduction approach and applied it to confor-
mational studies of methylpropylether. Nguyen39 used non-
linear PCA to analyze the free energy landscapes of peptides.
Das et al. applied the Isomap40 algorithm to the analysis of
folding simulation data for a coarse-grained bead model rep-
resentative of a protein backbone, demonstrating that nonlin-
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ear dimensionality reduction provided a more accurate em-
bedding of the reaction coordinates than linear techniques.41

However, despite their promise, it is difficult to accurately
assess the efficacy of nonlinear dimensionality reduction al-
gorithms for molecular structure analysis. The difficulty
arises from two factors: �1� the intrinsic dimensionality for
most problems is unknown, and �2� there is debate for some
problems as to whether simulation approaches can provide
sufficient sampling of the phase space to facilitate an accu-
rate analysis of dimensionality reduction.3,13,24,25,27,42

In this paper, we investigate the ability of well-known
nonlinear dimensionality reduction algorithms to identify ac-
curate, low-dimensional substructures in the conformation
space for an eight-membered ring. We chose this particular
molecule for several reasons. First, the ring closure problem
provides an interesting dimensionality reduction benchmark
where mathematical insight into the underlying manifold can
be obtained. Second, although the Cartesian representation of
an eight-membered ring involves 72 dimensions, there are
effectively only two degrees of freedom, and therefore a
dense sampling of all ring conformations can be obtained.
Finally, the dynamic structure of eight-membered rings has
been extensively studied and low-energy conformations have
previously been identified.

In this paper, we describe an efficient method for enu-
meration of the conformations of eight-membered rings. Be-
cause the choice of representation for high-dimensional en-
coding �for example, dihedral angles �DHAs� versus
Cartesian coordinates� has been a topic of recent debate,36

we use the ring enumeration to generate four different high-
dimensional encodings for comparison. We provide an em-
pirical verification of the manifold dimensionality for ring
atoms and substituents. We compare the efficacy of several
canonical dimensionality reduction algorithms for finding
low-dimensional representations of molecular structure. Fi-
nally, we compare results from enumeration to those ob-
tained using samples from room temperature MD.

A. Eight-membered rings

Saturated cyclic compounds have been studied exten-
sively since the 19th century.43 Of these, eight-membered
rings have been the most popular subject due to the existence
of multiple conformers of similar energy, a complicated po-
tential energy surface resulting from the ring closure con-
straint, and significant steric influence from hydrogen atoms
on preferred molecular conformations.43–46 For these same
reasons, eight-membered rings pose an interesting challenge
for dimensionality reduction algorithms. In Cartesian space,
a saturated 8-ring requires 72 dimensions to represent a con-
formation. Taking changes in bond lengths and angles as
negligible, a conformation can also be represented by eight
variable DHAs. We can intuitively reduce this number to five
DHAs by forcing the first three atoms to lie in the xy-plane.
The placing of the remaining atoms 4, . . . ,8 of the ring, with
fixed bond angles and bond lengths, is accomplished by
choosing the values of the five dihedrals, t2 , . . . , t6 where we
use the convention that the ith dihedral ti is formed by the
atoms i−1, i , i+1, i+2 and we identify atom i+8 with atom

i. This appears to require five dihedrals in order to construct
the ring. The same result of five DHAs is achieved using the
Cremer–Pople47 puckering coordinates.

Interestingly, it can be shown that there are only two
independent variables due to the ring closure constraint.48

This is a consequence of the fact that the bond angles at
atoms 8 and 1 as well as the bond length between these two
atoms have not been used in the construction, and thus fixing
these three degrees of freedom to prescribed values intro-
duces three constraints among the five torsions, reducing the
number of independent variables among them to 2. This re-
sult allows for an excellent benchmark for dimensionality
reduction algorithms. First, we can perform a dense sampling
of the two independent variables to obtain all relevant con-
formations of eight-membered rings. Second, we can expect,
under the assumption of fixed bond lengths and angles, the
phase space of 8-rings to lie on a 2-manifold in the higher
dimensional spaces. From the Whitney embedding
theorem,32 we can expect a successful dimensionality reduc-
tion to smoothly embed the samples in a minimum of two
dimensions and a maximum of five dimensions.

Although cyclo-octane is the most commonly studied
8-ring, complications arise due to symmetry. Therefore, we
consider a substituted cyclo-octane, trans, trans-1,2,4-
trifluorocyclo-octane for all studies in this paper to remove
any symmetry issues.

B. High-dimensional encodings

The most common encoding of a molecular conforma-
tion under classical force fields is given by the 3N Cartesian
coordinates for an N-atom system. This encoding is intuitive
in that the distance between conformations is related to the
root mean squared deviation �RMSD� of the Euclidean dis-
tances between each distinct pair of atoms. Cartesian coordi-
nates are not the only choice, however. For example, high
strain energies for bond stretching and angle bending typi-
cally result in relatively small deviations relative to move-
ments due to changes in bond torsions. Consequently, a high-
dimensional encoding utilizing only DHAs with fixed bond
lengths and angles reasonably approximates both the low-
energy conformations of molecules and their corresponding
energies.18,48 The dihedral encoding offers two advantages
over a Cartesian encoding. First, it provides a natural sepa-
ration between internal coordinates and overall translation
and rotation of a given molecule. The use of Cartesian coor-
dinates, on the other hand, requires RMSD fitting to ensure
that the Eckart conditions are satisfied.49 Second, the encod-
ing is a dimensionality reduction in and of itself. In proteins,
for example, the ratio of the number of DHAs to Cartesian
coordinates is about 1:8.18

DHA encodings do introduce some complications, how-
ever. DHAs are periodic variables and therefore a Euclidean
distance metric might not be appropriate for dimensionality
reduction. To address this issue, a circular variable transfor-
mation �CVT� has been proposed to transform the input data
from dihedral space to a linear metric coordinate space using
trigonometric functions or a complex representation of
angles.36 A related but unaddressed issue results from the
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complicated relationship between the magnitude of change in
DHAs and the resulting change in molecular conformation.
For example, a change of a few degrees in a DHA located
near the middle of a long chain molecule causes a drastic
change in the overall conformation of the molecule, while a
change in the DHAs of terminal atoms results in no change
in conformation.48 While Cartesian RMSD represents an in-
tuitive metric for quantifying conformational differences,
one can imagine circumstances where a large change in
DHAs ultimately results in very similar conformations.
Some authors have reported preliminary results showing that
an angle-based analysis of conformational data is very sen-
sitive to noise and prone to error.50 Further, allowing fluctua-
tions in bond lengths and angles might have the effect of
making the DHAs more flexible,18 as evidenced by differ-
ences obtained from normal mode analysis when using
DHAs rather than Cartesian coordinates.

Interatom distances represent a fourth alternative encod-
ing of molecular structures, and the set of related techniques,
known as distance geometry, has been extensively developed
in the context of molecular structure studies due in part to its
application to NMR structure determination.51 However in
the present context it presents two immediate disadvantages.
First, for larger systems, the dimensionality is actually in-
creased from 3N to N�N−1� /2. Second, in order to recover
structure, an additional embedding is required to calculate
the atomic positions from the interatom distances. Nonethe-
less, it has been reported that PCA performed on interatom
distances is more powerful for the purposes of topographical
discrimination than is PCA using either Cartesian coordi-
nates or DHAs.52,53 Additionally, this approach also provides
a natural separation between internal motion and overall ro-
tations and translations. In this paper, we compare the effec-
tiveness of dimensionality reduction using all four encoding
schemes: Cartesian coordinates, DHAs, DHAs with CVT,
and interatom distances.

II. METHODS

A. Dimensionality reduction

In general, dimensionality reduction algorithms provide
a method for taking a set of samples �x1 , . . . ,xn��RD and
calculating a corresponding low-dimensional representation
�y1 , . . . ,yn��Rd. Because dimensionality reduction is often
used for visualization, some algorithms do not generate an
explicit map from the high-dimensional coordinates to the
low-dimensional representation. For many applications,
however, it is desirable to have an explicit forward map,
��x� :RD→Rd, that gives the low-dimensional representa-
tion of an arbitrary point x and an explicit reverse map
��y� :Rd→RD that gives the high-dimensional representa-
tion of an arbitrary point y. This allows for mapping new
samples that were not available at the time of the initial
reduction and also provides a common metric for compari-
son of algorithms. Therefore, for the purposes of this work,
we consider dimensionality reduction as the problem of gen-
erating � and � from a training set of n samples, XD�n

= �x1 , . . . ,xn�. Because some methods do not generate ex-
plicit maps, we describe an approach for generating maps
from a dimensionality reduction below.

We evaluate the performance of each algorithm using the
reconstruction error. Ideally, a forward map of an arbitrary
point followed by a reverse map will give the same point
back. Typically, the reconstruction error is given by �x
−����x���. Here, however, we must compare between dif-
ferent high-dimensional encodings. Additionally, since we
are using molecular conformations as samples, RMSD be-
tween a molecular structure and the reconstructed structure
offers a more intuitive approach. Therefore, if the high-
dimensional encoding is a Cartesian coordinate, we use the
reconstruction RMSD ��� as a metric,

� =
�x − ����x���

�a
, �1�

where a=D /3 gives the number of atoms in the molecule x.
If the high-dimensional encoding is not Cartesian, the Carte-
sian representations of x and ����x�� are used to calculate
the RMSD. Throughout the paper we use the term “molecu-
lar RMSD” in order to distinguish from a statistical defini-
tion that is not normalized by the number of atoms. For each
reduction method, we evaluate the algorithm performance
using the mean molecular RMSD, 	� /m, for a test set of m
molecules not present in the training set.

Many algorithms and variants have been proposed for
the problem of nonlinear dimensionality reduction including
independent component analysis,54,55 kernel PCA,56 self-
organizing maps,57 neural network autoencoders,58 locally
linear embedding �LLE�,59 Isomap,40 and others.60 Here, we
compare three canonical nonlinear algorithms to PCA: Iso-
map, LLE, and a neural network autoencoder.

B. PCA

PCA is a linear dimensionality reduction approach that
has been widely applied to problems in almost every field of
experimental science. The goal of PCA is to find a coordinate
representation for data where the most variance is captured
in the least number of coordinates. This representation can be
found by performing an eigenvalue decomposition �or singu-
lar value decomposition� such that the resulting eigenvectors/
singular vectors provide an orthonormal basis for the data
while the eigenvalues/singular values provide information on
the importance of each basis vector. Given the training set X,

a row-centered matrix is calculated as X̃D�n= �x̃1 , . . . , x̃n�,
where x̃i=xi−m and mD�1 gives the row means. Eigende-

composition of the training set covariance matrix, �1 /n�X̃X̃T,
is performed to give UPUT. The forward map is then given

by �PCA�x�= ÛT�x−m�, where Ûd�n is the matrix composed
of the first d columns of U corresponding to the eigenvectors
with the largest eigenvalues. The reverse map is calculated as

�PCA�y�= Ûy+m. The reconstruction error for PCA will be
zero for d� =D−z, where z is the number of nonzero eigen-
values in P. A review of PCA, its history, examples, and
applications can be found in Refs. 32, 60, and 61.
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C. LLE

LLE is a nonlinear dimensionality reduction method.
LLE is performed by first solving for the location of each
sample xi in terms of its neighbors. For each sample, the
neighbors are determined as all samples within a ball of
specified radius centered on the sample or as the k nearest
neighbors. A weight matrix W is obtained by determining the
weights in a linear combination of neighbors that best recon-
struct each sample,

minWE�W� = 	
j

xi − 	

j

wijx j
2

�2�

subject to�wij = 0 if xi not neighbor x j

	
j

wij = 1 for every i , �
where W= �wij�. This problem has a closed form solution and
assures not only that each approximation xi	 jwijx j lies in
the subspace spanned by the k neighbors of xi but also that
the solution W is invariant to translation, rotation, and res-
caling. These properties allow, by design, calculation of a
linear mapping that is also invariant to translation, rotation,
and rescaling. This mapping from the n data samples xi to
the low-dimensional embedding yi is performed by minimiz-
ing the embedding cost function

� = 	
i=1

n 
yi − 	
j=1

n

wijy j
2

. �3�

In this case, the weights wij are fixed and the low-
dimensional coordinates are optimized. This is a quadratic
minimization problem with a unique global minimum. It can
be solved as a sparse n�n eigenvalue problem where the
bottom d nonzero eigenvectors provide the embedding �the
bottom eigenvalue is zero�. From Eq. �2�, it can be seen that
LLE assumes that a sample and its neighbors can be treated
in a linear fashion. Global structure is maintained due to the
overlap of neighbors in each local patch in the embedding
cost function. A detailed description of LLE can be found in
Refs. 59 and 62.

Because the low-dimensional representation is optimized
directly in Eq. �3�, no explicit maps are generated. Here, we
use �NRM and �NRM to perform mapping in terms of the
initial LLE reduction as described below.

D. Isomap

Isomap is an alternative nonlinear dimensionality reduc-
tion algorithm, first introduced in Ref. 40. The first step in
the Isomap algorithm is to impose a graph structure
G�V ,E ,W� on the input data set X. Each sample xi�X is
represented by a node vi�V, and two nodes vi and v j are
connected by an edge �vi ,v j��E with weight wij �W if xi is
a neighbor of x j. Neighbors are calculated in the same man-
ner as performed in LLE. The weight of wij is given by the
Euclidean distance between xi and x j. The second step in
Isomap involves computation of the shortest paths between
all nodes in G. These distances are stored pairwise in a ma-
trix DG. The distance matrix DG is intended to represent the

distances between all samples on the manifold—the geodesic
distances. Because these distances are Euclidean for each
sample and its neighbors, Isomap makes the same assump-
tion of local linearity as LLE. Unlike LLE, global distances
between all neighbors are explicitly calculated with the
graph approximation to geodesic distances.

Because all pairwise distances are available, multidi-
mensional scaling �MDS� can be applied to DG to perform a
low-dimensional embedding. MDS is a variant of PCA that
starts with a distance matrix DG, converts the distance matrix
to an inner product matrix, and calculates the eigenvalue
decomposition of the resulting matrix �see, e.g., Havel et
al.63�. For the case presented here, this is performed by
squaring each element in the distance matrix DG, double cen-
tering the resulting matrix, and performing the eigenvalue
decomposition to give UPUT. The low-dimensional embed-

ding is then given by Y = ÛP̂, where Ûd�n is the matrix com-
prised by the first d columns of U corresponding to the

eigenvectors with largest eigenvalues, and P̂d�d is the diag-
onal matrix containing the square roots of the largest d ei-
genvalues.

Like LLE, Isomap does not calculate explicit maps in
order to perform an embedding. Here, we use �NRM and
�NRM to perform mapping in terms of the initial Isomap
reduction as described below.

E. Autoencoder neural networks

An autoencoder performs dimensionality reduction via a
bottleneck architecture neural network. Autoencoders were
originally introduced sometime in the early 1990s,32 but they
have not been widely applied due to the extreme difficulty of
the optimization problem associated with training the result-
ing network. However, a method was recently proposed for
pretraining an autoencoder neural network using a restricted
Boltzmann machine �RBM� in order to accelerate the opti-
mization process.58 This method was used to obtain impres-
sive results on a very large benchmark data set of handwrit-
ten digits.

The autoencoder introduced in Ref. 58 consists of
weighted sums and compositions of the well-known function
��x�=1 / �1+exp�x��. These functions are separated into dis-
tinct layers, with interconnections between functions in ad-
jacent layers defining the network structure. At each layer in
the network, inputs into the next layer consist of terms of the
form ��bj +	iviwi�, where bj represents a bias, wi represents
a weight, and vi represents an input from the previous net-
work layer. The inputs to the first layer are taken to be the
components of the original vectors in our data set X
= �x1 , . . . ,xn�. The weights and biases are then optimized
such that the mean reconstruction error 1 /n	ixi

−�AE��AE�xi�� is minimized �where �AE is the forward map
and �AE is the reverse map given by the network�.

To provide an illustrative example, suppose we have a
data set X with native dimension 784, for which we want to
construct a two-dimensional �2D� embedding. We first define
a network structure such as 784–1000–500–250–2, where
the integers in the sequence represent the number of � func-
tions in each layer. When appropriately trained, this structure
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will perform a reduction of 784-dimensional data to a two-
dimensional embedding. The justification for the initial in-
crease in dimension to 1000 is that because the � functions
are inherently binary, we may experience a loss of informa-
tion when going from normalized data in �0,1� to values in
0,1; the possible loss of information resulting from this pro-
cess is potentially counterbalanced by an initial increase in
dimensionality. The encoding structure is then mirrored to
form a 2–250–500–1000–784 decoding network structure.
The encoder and decoder networks are then joined and train-
ing is performed on the aggregate network.

As mentioned above, the optimization procedure for ob-
taining the autoencoder weights proceeds in two steps. In the
first step, a RBM is trained. This training is performed for a
user specified number of iterations. In the second step, the
autoencoder weights are fine tuned using back propagation
�BP�. This step is also performed for a user specified number
of iterations. In both cases a training set is used for the op-
timization and a test set is used to avoid overtraining. The
training set is also split into batches to avoid overtraining, as
well as to improve algorithm speed. During each iteration all
of the batches are used in sequence.

The layers of the neural network and corresponding
weights yield an analytic expression for both the forward
��AE� and reverse ��AE� maps that are optimized during
training. This allows for future mapping of arbitrary points.

F. Neighbor reconstruction mapping

LLE and Isomap produce a low-dimensional embedding
Yd�n= �y1 , . . . ,yn��Rd from the samples in X without gen-
erating an explicit map. Here, we have considered dimen-
sionality reduction as a problem of finding the maps � and �
from training data. For LLE and Isomap, we accomplish this
with the maps �NRM�X ,Y ,x� and �NRM�X ,Y ,y� that allow
for dimensionality reduction to be performed on future
samples based on the initial embedding of training data. A
natural choice for these maps is some method that retains the
positioning of a sample relative to its neighbors in the train-
ing set. Because LLE and Isomap assume that a sample and
its neighbors are locally linear, we can perform the mapping
using a linear combination of a sample’s k neighbors,

�NRM�X,Y,x� = 	
i=1

k

wiyi �4�

and

�NRM�X,Y,y� = 	
i=1

k

wixi. �5�

That is, the training set neighbors for an arbitrary point x or
y can be identified in the input dimensionality and used to
determine the sample mapping based on their positions �xi or
yi� in the desired dimensionality. The question is how to
choose the weights wi. The equations bear a strong resem-
blance to the reconstruction approach used in LLE �Eq. �2��,
and it has been suggested that this same approach can be
used to map new samples.62 In this case, wi are determined in
a least-squares optimization with a closed form solution.

There are issues in implementing this approach, however.
For the case when the number of neighbors k is greater than
the intrinsic dimensionality of the manifold, the solution for
wi is not unique. Because it can be desirable that k is variable
and because the intrinsic dimensionality is not necessarily
known a priori, it is not straightforward to decide when the
problem must be conditioned to provide a unique solution.
While this is worth investigating, for this work we have cho-
sen wi to be the inverse Euclidean distance between the
sample and the neighbor i. This approach allows for an arbi-
trarily high number of neighbors, however, will clearly fail in
the case when a sample is outside the convex hull of its
neighbors �due to the constraint that wi is positive�.

G. Estimating intrinsic dimensionality

We have described methods for obtaining a map
��x� :RD→Rd for dimensionality reduction. How do we de-
termine d? One obvious choice is to determine some metric
for quantifying the success of dimensionality reduction and
evaluate the reduction performance at different embedding
dimensionalities. For PCA and MDS, this metric can be the
residual variance. The eigenvalues obtained in these ap-
proaches give the variance in each dimension, and therefore
the sum of the d+1 to D eigenvalues is a measure of the
variance that is not accounted for in the reduction. When this
value is near zero, little is gained from adding a dimension.
Although LLE also solves an eigenproblem, the eigenvalues
obtained have been shown to be unreliable in determining
d.62

An alternative metric utilized in Isomap40 is a geodesic
distance correlation residual given by 1−R2�DG ,DY�, where
R2�DG ,DY� is the correlation coefficient between geodesic
distances DG and distances in the low-dimensional space DY.
This metric requires knowledge of the geodesic distances,
however. For linear subspaces, the geodesic distances are
given by the Euclidean distances. Otherwise, a method for
estimating the geodesic distances, such as the one provided
in Isomap, must be utilized. As discussed earlier, a more
general method that allows comparison between different al-
gorithms is the reconstruction error.58,64

The approaches listed above are often cited as methods
for estimating the intrinsic dimensionality of a manifold.
However, they all rely on dimensionality reduction methods
that attempt an embedding of sample data in a space with
lower dimensionality. Therefore, these approaches are really
only suitable for estimating the smooth embedding dimen-
sionality. This subtlety is important because the Whitney em-
bedding theorem32 dictates that a smooth embedding of a
d-manifold may require as many as 2d+1 dimensions.
Knowledge of the smooth embedding dimensionality is de-
sirable for performing dimensionality reduction. For deter-
mining the intrinsic dimensionality, however, methods such
as local-PCA �Ref. 65� might be more accurate for manifolds
with complex structure. This is because they do not rely on a
single-coordinate embedding of the entire manifold.
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H. Algorithm implementations

We have implemented each of the four dimensionality
reduction algorithms in a high-speed, multithreaded C++ li-
brary for computing intrinsic dimensionality estimates, low-
dimensional embeddings, and forward and reverse
mappings.66 Multithreading was performed using OPENMP

and through an interface to multithreaded BLAS and LAPACK

routines available in the Intel Math Kernel Library �MKL�.
For PCA and Isomap, we performed eigendecomposition us-
ing the relatively robust representation algorithm.67 For LLE,
the divide-and-conquer algorithm was used.68 As discussed
above, our extended implementations of LLE and Isomap
support computation of forward and reverse maps via recon-
struction from neighboring points. When the geodesic dis-
tance graph in Isomap is disconnected, each connected com-
ponent is embedded separately using MDS, yielding
nonoverlapping regions in the low-dimensional embedding
space. This allows for forward and reverse mappings in the
case of disconnected graphs, but will produce erroneous re-
sults for extrapolation outside of any individual component.

I. Ring enumeration

For this work, we have utilized two approaches
for sampling trans, trans-1,2,4-trifluorocyclo-octane
conformations—a deterministic enumeration and MD simu-
lation. For the former, we assume that bond lengths and
angles are invariant, and therefore we only require an enu-
meration of carbon atoms in each conformation �hydrogen
and fluorine atoms are at default positions�. As will be de-
scribed, this treatment is advantageous in that it allows for a
dense sampling of all ring conformations regardless of en-
ergy. Additionally, the conformational space is known to be
2D. Because bond angles and lengths will exhibit small
changes, we also perform analysis of samples obtained from
MD simulation.

For ring enumeration, we set all eight bond lengths to a
constant, canonical value, and all bond angles to the same
value of 115°. There are eight free torsions, from which two
are used as control parameters and sampled to a prescribed
resolution. The remaining six torsions are adjustor variables,
set by the requirement of loop closure. As is well known,69

the loop closure problem can be reduced to the solution of a
generalized eigenvalue problem of degree 16, and thus there
can be at most 16 solutions, corresponding to the real gener-
alized eigenvalues. Our numerical results indicate that the
solution manifold is smooth, in agreement with a recent
study of the same problem by Porta et al.70 An earlier study
of the problem given by Manocha and Xu71 was not carried
out at a sufficient resolution to allow for a comparison.

We employed two distinct algorithms for this calculation
in order to guard against algorithm related degeneracies: �1�
our own implementation of Lee and Liang’s72 algorithm �LL
for the solution of the 7R problem of inverse kinematics� and
�2� the triaxial loop closure algorithm of Coutsias et al.,69,73

�TLC�. Both algorithms result in an optimal formulation as a
generalized eigenproblem of degree 16, whose formulation
and solution requires less than 10 ms on a 2 GHz Pentium
processor. Our results for the two algorithms were in close

agreement for the case where torsions separated by two de-
grees of freedom, e.g., t5 and t8, were used as control param-
eters. Employing different combinations of control dihedrals
produced alternative representations for the conformation
space, which were shown by detailed pointwise comparison
to be equivalent.

Some of the advantages of using this particular problem
and data set are as follows. �1� The underlying manifold is
smooth. �2� Its dimensionality is known, but its structure is
nontrivial, although completely known in principle. �3� It is
compact and can be completely bounded in torsion space: for
any set of solutions, each of the torsions is bounded in a
closed subinterval of �−t� , t��, where t�	180°. �4� However,
the manifold does appear to have nontrivial topology �not
proven�, involving cycles in terms of generalized coordinates
or pseudorotations.74 �5� Molecular dynamics studies may be
employed to obtain local coverings of subsets of the mani-
fold. �6� The data set is 2D to very high accuracy and pro-
vides a sufficiently fine cover of the manifold since the un-
derlying eigenproblem is mostly very well conditioned.75 �7�
Although the actual minimal dimensionality of a smooth em-
bedding is not known, it has a strict upper bound of five. �8�
The structure of this manifold is of somewhat generic char-
acter, which may be expected to be found in any situation
where localized torsional motions of constrained flexible mo-
lecular chains may occur.

J. Test data sets

The enumerated conformations were used to generate
four sets of input data for use in testing the various dimen-
sionality reduction algorithms. The DHA data set consists of
samples encoding the conformations using ring DHAs, yield-
ing a native dimensionality of 8. The CVT data set consists
of samples encoding the conformations using the circular
variable transform,36 in which each DHA is represented by a
pair specifying the angle sine and cosine; the CVT data set
has native dimensionality 16. Samples in the XYZ data set
encode conformations using the Cartesian coordinates of the
ring, hydrogen, and fluorine atoms, yielding native dimen-
sionality 72. All atoms were initialized in default positions
and then minimized in the MM3 force field76 to a RMS gra-
dient of 0.01 kcal /mole Å with the ring atoms frozen. Mini-
mization was performed using the program TINKER. Finally,
samples in the IPD data set encode conformations using the
interparticle distances between each distinct pair of atoms,
yielding a native dimensionality of 276. For each conforma-
tion, we used the corresponding Cartesian encoding in the
XYZ data set to calculate the MM3 intramolecular potential
energy for each sample, again using TINKER.

III. RESULTS

A. Ring enumeration and clustering

The actual data set used for the present study employs
torsions t6 and t8, a combination that was seen to give the
simplest representation. This combination necessitated the
use of the LL algorithm, as the TLC algorithm requires that
the adjustor torsions form three coterminal pairs. The sam-
pling of the control torsions was carried out at 0.5° incre-
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ments, and the values of the adjustor and control torsions
were tabulated for all alternative conformations. This par-
ticular representation was found to produce 0, 2, 4, or 6
solutions as the control torsions ranged in the intervals
t6� �−179.75° ,180.25°� and t8� �180° ,180°�, where
solutions were found for t6� �−131.25° ,131.25°� and
t8� �−131.5° ,131.5°�. The domain of values that give a
nonzero number of solutions was seen to be connected. Pre-
liminary analysis of the conditioning of the eigenvalue prob-
lem indicates that the resolution was adequate to capture all
bifurcations of real eigenvalues. Certain interesting conflu-
ences of eigenvalues and degeneracies were observed, inde-
pendent of the algorithm employed, but were found to occur
away from actual real eigenvalue bifurcations. A careful
analysis of these data will be presented elsewhere.75 The cal-
culation resulted in 1 031 644 conformations. By compari-
son, the detailed study reported by Porta et al.70 employed
distance geometry methods, requiring roughly 4 months of
computer time.

Uniform conformational sampling in the space given by
two independent torsion variables does not yield uniform
sampling in either Cartesian or dihedral space. To correct for
this situation, we performed clustering on each of the four
data sets generated from the enumeration, further subdivid-
ing the resulting samples into distinct training and test sets.
Clustering was performed by randomly choosing a sample
and adding it into the training or test set only if the Euclidean
distance �with respect to a given encoding� to all other points
in the selected set was greater than some threshold dt; we
repeated the process until all samples were evaluated. Be-
cause the training and test sets were generated independently,
samples appearing in both sets were identified and removed
from the test set. We used dt=0.12 to construct the XYZ data
set, resulting in 8375 and 8229 samples for the training and
test sets, respectively. For the DHA data set, we used dt

=0.04, respectively. yielding 7830 and 7692 samples for the
training and test sets. For the CVT data set, we used dt

=0.01, resulting in 7790 training set samples and 7678 test
set samples. For the IPD data set, we simply calculated all of
the interparticle distances from the XYZ data set to give
training and test sets of 8375 and 8229, respectively.

B. Empirical verification of manifold dimensionality

In order to verify that the manifold embedded in each
native-dimensional space is indeed 2D, we performed a vari-
ant of local PCA,65 referred to here as point PCA, in order to
estimate the intrinsic dimensionality. Taking the same ap-
proximations used in LLE and Isomap, we assume that a
local region of a manifold given by a point and its k-nearest
neighbors is approximately linear �local PCA differs from
point PCA in that generalized clustering techniques such as
vector quantization are used to determine locality�. This as-
sumption allows for estimation of intrinsic dimensionality by
assessing the error in fitting each set of points to a lower-
dimensional hyperplane. PCA can be utilized to perform this
task; for a d-dimensional manifold, the residual variance
should be near zero given an encoding with d principal com-
ponents. For example, in the present case of a two-

dimensional manifold, the neighborhood of each point
should reside on a two-dimensional plane, and therefore the
variance in the data should be explained entirely by the first
two principal components. This is shown in Fig. 1 for each
of the data sets using k=5 �Euclidean� neighbors per point,
varying the number of principal components from 1 to 6. It is
desirable to keep the number of neighbors small in this type
of approach in order to reduce the fits to local regions of a
manifold, reduce the computational time required, and re-
duce the total number of samples required. It is important to
note, however, that the residual variance at k+1 dimensions
with PCA should always be zero. For example, in the case
presented here, the residual variance at six dimensions in
Fig. 1 should always be zero regardless of the intrinsic di-
mensionality. Therefore the number of neighbors should al-
ways be adjusted to assure that it is higher than the intrinsic
dimensionality.

C. Algorithmic dimensionality reduction

We first evaluated each previously described dimension-
ality reduction algorithm considering only the ring �carbon�
atoms in the various data sets. Our primary goal was to as-
sess the ability of each algorithm to identify an embedded,
low-dimensional manifold with low reconstruction error. For
each combination of algorithm and data set, the training sets
were used to compute forward and reverse maps for embed-
ding dimensionalities ranging from 1 to 8. Each sample in
the test set is mapped forward to the embedded manifold and
subsequently reverse mapped to the native-dimensional
space. Because it is difficult to directly compare the recon-
struction error across disparate high-dimensional spaces, we
utilize the mean molecular RMSD in Cartesian space as a
comparative metric. Thus, each reverse-mapped native-
dimensional encoding in the test set is �if necessary� con-
verted to Cartesian coordinates, the resulting molecule is su-
perimposed over the reference molecule, and the molecular
RMSD between the two structures is calculated.

Several issues arise when converting samples from the
DHA, CVT, and IPD data sets to Cartesian coordinates. For
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FIG. 1. �Color online� Empirical estimation of intrinsic dimensionality for
the four data sets using point PCA. For DHAs and the circular variable
transform, the bond torsions for the ring atoms are included. For the other
data sets, hydrogen atoms are also included. For all data sets, an intrinsic
dimensionality of 2 is obtained.
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the CVT data set, DHAs are calculated from the mean of the
angles obtained from the arcsine and arccosine of the trans-
formed variables. Because reconstruction error can lead to
transformed variables with values greater than 1, all such
variables were truncated to 1 in the reconstructed CVT data
set to avoid a complex result from the inverse transform.
When translating IPD encodings to Cartesian space, a diffi-
culty arises due to the fact that the distances do not neces-
sarily preserve stereochemistry and therefore care must be
taken in the embedding to prevent reflections that would alter
the stereochemistry of the molecule through improper rota-
tion �as given by sign changes in the eigenvectors used for
embedding�.

The RMSD reconstruction error for each algorithm on
all four data sets, over the range of experimental embedding
dimensionalities, is shown in Fig. 2. For Isomap, the results
are relatively insensitive to the number of neighbors k chosen
to form the adjacency graph; here, we use k=5. In contrast,
the results for LLE were sensitive to the selection of k. We
obtained the best results with k=10, which is the setting we
used to obtain our experimental results. In the case of the
autoencoder, a distinct test set is used during training to pre-
vent overfitting. Here, approximately 20% of the samples in
each baseline training set were used for this purpose. The
RBM and BP batch sizes were, respectively, set to 200 and
100 in all runs. Further, 50 and 600 iterations were respec-
tively used for RMB and BP training. The sizes of the net-
work layers were set to �8 16 8 n� for the DHA data set,
�16 32 16 8 n� for the CVT data set, �72 128 64 n� for the

XYZ data set, and �276 384 64 n� for the IPD data set; n
represents the target embedding dimensionality.

The results from Fig. 2 demonstrate that the XYZ and
IPD encodings produce the most accurate dimensionality re-
ductions in terms of reconstruction error. The improved ac-
curacy relative to the DHA and CVT encoding can be attrib-
uted to two causes. First, conversion of DHAs to Cartesian
coordinates requires atoms to be placed relative to previously
positioned atoms, which can result in an amplification of
error. Second, the change in conformation associated with a
change in a DHA is not independent of the other DHAs.
While the CVT encoding performed slightly better than the
DHA encoding in the case of nonlinear reduction algorithms,
there is a drastic difference in the two encodings under PCA.
This can be explained by the fact that the CVT is itself a
nonlinear transformation. The results from the XYZ and IPD
data sets are overall very similar with the IPD encoding per-
forming slightly better at low embedding dimensionalities
and the XYZ encoding performing slightly better at high em-
bedding dimensionalities.

With the exception of results at embedding dimension-
alities equal to 1 on the CRT and IPD data sets, the nonlinear
dimensionality reduction techniques significantly outperform
the baseline linear PCA algorithm. LLE and Isomap yield
very similar results. In all cases, the autoencoder obtains
lower RMSDs at embedding dimensionalities of 1 and 2 than
Isomap and LLE, but with Isomap and LLE outperforming
the autoencoder at larger embedding dimensionalities. How-
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FIG. 2. �Color online� Mean molecular RMSD obtained from reconstruction of the ring atoms for the four test sets using different dimensionality reduction
algorithms. The error is obtained by mapping the samples in the test set to the low-dimensional embedding and subsequently employing the reverse map to
reconstruct the molecule in the native-dimensional space.
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ever, autoencoder performance could potentially be im-
proved by a better parametrization or longer optimization.

The results in Fig. 2 concern the error associated with
reconstruction of molecular Cartesian coordinates from a
low-dimensional embedding space, which indirectly captures
the ability of dimensionality reduction algorithms to both
identify embedded manifolds and the associated bidirectional
mapping to/from a native encoding. For certain applications,
such as visualization of energy landscapes, this process—in
particular the reverse map—is unnecessary and only a low-
dimensional embedding of the training data is required. In
this case, an alternative metric can be utilized: the geodesic
distance correlation residual.40 This metric quantifies the cor-
relation between �1� geodesic distances in the native high-
dimensional space and �2� Euclidean distances in the embed-
ded low-dimensional space. Geodesic distances are
computed via the combination of adjacency graph construc-
tion and shortest-path computation that underpin the first
phase of Isomap. Figure 3 illustrates the geodesic distance
correlation residual �one minus the square of the standard
correlation coefficient� for each of our four training sets;
low-dimensional embeddings in all cases were obtained with
Isomap. Under this metric, we find that the DHA and CVT
encodings are slightly more effective at preserving the native
geodesic distances in low-dimensional embeddings. Interest-
ingly, the IPD encoding yields a dramatic improvement over
alternative encodings for embedding dimensionalities of 3
and 4, potentially due to the fact that this encoding does not
preserve stereochemistry.

Neither Fig. 2 nor Fig. 3 suggest an intrinsic dimension-
ality of 2 for any of the data sets, despite the fact that only
two degrees of freedom were used in our data generation
process. Although this would initially appear to be incorrect,
we observe that the ring closure problem is multivalued in
these two degrees of freedom, with multiple conformations
corresponding to a single pair of torsion angles. Therefore,
we cannot expect a successful embedding in only two dimen-
sions. From the Whitney embedding theorem we can expect
up to five dimensions to be required for a smooth embedding

of the 2-manifold, and indeed, all nonlinear methods are able
to embed each data set with minimal reconstruction error
given four or five embedding dimensions. As discussed in
Sec. II, this result provides an excellent example of the dif-
ferences in estimating intrinsic dimensionality and embed-
ding dimensionality.

This issue is illustrated nicely by the three-dimensional
Isomap embedding of the XYZ data set shown in Fig. 4�a�.
The graphic shows a surface reconstruction of the embed-
ding manifold in three dimensions; physical training samples
are colored white. The manifold is essentially a two-
dimensional hour-glass shaped surface that intersects a 2D
ball shaped surface. Although the training samples are essen-
tially embedded as a 2-manifold, singularities �at the surface
intersections� result in a slightly elevated RMSD reconstruc-
tion error relative to other samples as shown for the XYZ
data set in Fig. 2. While the error is relatively small
�	0.1 Å�, it is difficult to imagine a 2D embedding of this
structure. The symmetrical structure of the manifold results
from symmetry in the ring conformations �e.g., the relative
position of fluorine atoms within a boat-chair conformation�.
Figure 4�b� shows, for example, all boat-chair conformations
of the molecule on the inner surface of the hour-class sub-
structure together with the crown and boat conformations on
the outer surface of the ball-like substructure. The reference
structures for Fig. 4�b� are taken from Evans and Boeyens,74

who present Cartesian coordinates of the canonical cyclo-
octane conformations originally described by Hendrickson.46

When hydrogen and fluorine atoms are included in the di-
mensionality reduction, a very similar embedding is obtained
�Fig. 4�c��. While the reconstruction error is higher for this
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FIG. 3. �Color online� Correlation residual between Euclidean distances in
the low-dimensional embedding space and geodesic distances in the native-
dimensional space. Dimensionality reduction was performed using Isomap.
Results for DHA and CVT data sets overlap.

FIG. 4. �Color� 3D embeddings of the XYZ data set using Isomap. �a�
Surface reconstruction of the ring-atom manifold using training samples
shown as white balls. �b� Color coding of ring conformations within 0.2 Å
RMSD from the ideal boat-chair �blue�, crown �green�, and boat �red�. �c�
Embedding of XYZ data set using all atoms with training samples colored by
log�MM3 energy�, with red=high energy and blue=low energy. �d� Samples
from MD simulation �blue� mapped onto the full XYZ manifold �light gray�.
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case at lower embedding dimensionalities, all nonlinear di-
mensionality reduction algorithms produce a low-error em-
bedding in four to five dimensions �Fig. 5�.

It is interesting to note that the singularities occur at
relatively high energy conformations of the molecule �Fig.
4�c��. For this reason, and also to evaluate the effects of
sampling, we decided to perform tests on data generated
from MD simulation rather than the enumerated conforma-
tions. In this case, bond angles and lengths are variable and
high energy conformations are not sampled. Starting from
100 random conformations, MD simulations were performed
in TINKER at 1.0 fs timesteps for 0.5 ns at 300 K with con-
formation samples taken every 0.5 ps. These results were
then compiled and clustered as before using dt=0.7 to pro-
duce a training set with 5167 samples and a test set with
3610 samples. A plot of the conformations sampled �as
mapped onto the Isomap manifold obtained from the XYZ
data set� is shown in Fig. 4�d�. Boat-chair, crown, and boat
conformations were all sampled; however, no interconver-
sions between conformers were seen within any single 0.5 ns
run.

The results from the dimensionality reduction on this
data set are shown in Fig. 6 for Cartesian coordinates. Be-
cause the MD sampling occurred in distinct regions of the
high-dimensional space, there was not a single connected

graph, but rather multiple connected components. For Iso-
map, this can be handled with separate embeddings in non-
overlapping regions of the low-dimensional space. LLE,
however, has no inherent method for dealing with multiple
components. The resulting weight matrix constructed by
LLE has no information on how to position components rela-
tive to one another and the algorithm performs very poorly
as illustrated in Fig. 6. Isomap and the autoencoder perform
well, however, and are able to obtain good results at a di-
mensionality of 2. For the MD sampling, we do not obtain
near-zero errors for any of the first eight dimensionalities.
Because there is no constraint on bond angles or bond
lengths within the ring, hydrogen and fluorine atoms are able
to deviate from their minimum energy orientations, and the
sampling is random.

The run times for training and mapping on a single CPU
core are shown in Figs. 7 and 8. Although the autoencoder
has a linear time complexity in the number of samples �as-
suming constant optimization iterations�, its run times far
exceed those for the other methods for the sample sizes in-
vestigated. In terms of high dimensionality, Isomap and LLE
scale much better than the autoencoder and require smaller
run times. For mapping, PCA and the autoencoder are orders
of magnitude faster. Since LLE and Isomap do not provide
explicit maps, neighbors must be calculated for every sample
to perform mapping.

IV. DISCUSSION AND CONCLUSIONS

We have used an eight-membered ring to demonstrate
the importance of nonlinear correlations in molecular motion
and also to demonstrate the efficacy of automated algorithms
for nonlinear dimensionality reduction. For high-dimensional
encodings ranging from 8 to 276 dimensions, these algo-
rithms are able to provide low-error embeddings within the
theoretical limit of 5 dimensions. We have chosen a rela-
tively small molecule for performing these tests in order to
avoid sampling issues and to allow for a benchmark against
results that can be obtained analytically. However, it is im-
portant to note that many of these same constraints can be
utilized for larger molecules such as proteins. For example, a
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FIG. 5. �Color online� Mean of the molecular RMSD obtained from recon-
struction of all atoms for the XYZ test sets using different dimensionality
reduction algorithms.
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similar loop closure constraint has been used for sampling
flexible loops between rigid secondary structure elements in
proteins.

DHAs have been proposed as a natural encoding for di-
mensionality reduction of molecular conformation due to the
separation of internal degrees of freedom from overall mo-
tion. One issue with this approach is that sensitivity of DHAs
to overall conformational changes within a molecule is not
constant; relatively small changes in one DHA can cause
drastic conformational changes while large changes in an-
other can result in relatively little change. Here, an issue is
that the conformational change resulting from deviation of
one DHA is not independent of the other angles. A scheme
for weighting DHAs based on conformational change is not
trivial. For the case we studied, the use of DHAs �or the
circular variable transform of these variables� resulted in
poor reconstruction errors when a Cartesian RMSD is uti-
lized as a metric. Interatomic distances provide another
method of separating internal motion; however, they require
an increase in the number of variables considered and an
additional embedding must be performed to retrieve the Car-
tesian coordinates. Since it is relatively straightforward to
remove any net rotation and translation of the entire mol-

ecule, we find a Cartesian coordinate representation to be the
simplest approach for encoding molecular conformations.

We have evaluated three automated algorithms for non-
linear dimensionality reduction. In general, the performance
of LLE and Isomap was very similar for the case presented.
LLE is attractive from a theoretical standpoint in that only
local Euclidean distances are considered. From a numerical
standpoint, however, we have found the algorithm difficult to
implement due to numerical issues in solving for the smallest
eigenvalues and the problem of solving for reconstruction
weights when the number of neighbors is larger than the
intrinsic dimensionality of the manifold. The autoencoder
performed best at low dimensionalities, generates fast ex-
plicit forward and reverse maps, and considers reconstruction
error explicitly in the objective function. The main drawback
for the autoencoder is the excessive run times required when
the input dimensionality is high. While we have improved
this to some extent with a multithreaded implementation, al-
gorithmic changes or a distributed-memory parallel imple-
mentation may be necessary for efficiently investigating
large problems.

Despite their simplicity, dimensionality reduction on
eight-membered rings involves two complications that make
for an interesting benchmark case. First, although the ring
closure problem is 2D and possible conformations lie on a
2-manifold in the high-dimensional space, the problem is
multivalued and the manifold cannot necessarily be embed-
ded in two dimensions. However, for the applications pre-
sented in this paper, a strict preservation of topology is not
necessarily required; rather, it is desirable to obtain a low-
error representation in as few dimensions as possible. There-
fore, algorithms that provide an implicit or explicit mecha-
nism for “manifold tearing”65 might be desirable. For
example, improved results at two dimensions were obtained
when only the low-energy MD results were used. A second
issue involves symmetry in the molecule. Here, we have
used a trisubstituted ring in order to avoid any symmetry
issues. In practice, however, algorithms capable of detecting
or enforcing symmetry might be beneficial.77

Although we have focused dimensionality reduction ap-
proaches on the coordinated movements of molecules, di-
mensionality reduction in the general sense has been central
to the field of molecular physics. Single particle representa-
tions for atoms, rigid-body approximations, and spherical78

and aspherical79 point-particle representations for groups of
atoms have been utilized for some time to improve the effi-
ciency of simulation and remain topics of current investiga-
tion.
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FIG. 8. �Color online� Run times on a single CPU core for each dimension-
ality reduction algorithm as a function of input dimensionality given by the
four test sets. Top: Time required for obtaining the forward and reverse
maps. Bottom: Time required for applying the forward map followed by the
reverse map for 7500 test samples. PCA and autoencoder run times overlap
as do LLE and Isomap times.
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