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The authors describe a dual tube/detector micro-computed tomography (micro-CT) system that has
the potential to improve temporal resolution and material contrast in small animal imaging studies.
To realize this potential, it is necessary to precisely calibrate the geometry of a dual micro-CT
system to allow the combination of projection data acquired with each individual tube/detector in a
single reconstructed image. The authors present a geometric calibration technique that uses multiple
projection images acquired with the two imaging chains while rotating a phantom containing a
vertical array of regularly spaced metallic beads. The individual geometries of the imaging chains
are estimated from the phantom projection images using analytical methods followed by a refine-
ment procedure based on nonlinear optimization. The geometric parameters are used to create the
cone beam projection matrices required by the reconstruction process for each imaging chain. Next,
a transformation between the two projection matrices is found that allows the combination of
projection data in a single reconstructed image. The authors describe this technique, test it with a
series of computer simulations, and then apply it to data collected from their dual tube/detector
micro-CT system. The results demonstrate that the proposed technique is accurate, robust, and
produces images free of misalignment artifacts. © 2008 American Association of Physicists in
Medicine. [DOTI: 10.1118/1.2900000]
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I. INTRODUCTION

Micro-computed tomography (micro-CT) is a noninvasive
imaging modality used to assess morphology and function in
small animals."? Dual tube/detector micro-CT, in which two
imaging chains consisting of an x-ray tube and a detector
image the same object in parallel, offers several advantages
over more conventional micro-CT. Dual simultaneous imag-
ing can acquire the same amount of images as a conventional
micro-CT in half the time, which facilitates functional imag-
ing studies such as in cardiac,”* pulmonary,s’e or perfusion
investigations in small animals.” Dual tube/detector
micro-CT also facilitates dual energy imaging, in which two
different absorption coefficients at two different energies are
recorded for the same location simultaneously, enhancing
sensitivity and material differentiation.®

To realize these advantages of dual tube/detector
micro-CT imaging, it is necessary to reconstruct the images
from the individual systems in one shared geometry. To ac-
complish this, geometric calibration must be performed, in
which a set of parameters describing the geometry of the
system is calculated from a set of images acquired of some
ideal object. The calibration parameters can then be provided
to the CT reconstruction algorithm to map data from the
pixels in the detector to voxels in the object.

Several techniques have been proposed over the years for
finding these calibration parameters in individual micro-CT
systems for various geometries. These techniques have gen-
erally fallen into two categories: those based on iterative
nonlinear optimizationM3 and those based on the direct so-
lution of geometric equations.mf18 The latter category has
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become favored in recent years because of superior perfor-
mance and ease of implementation. Both categories entail the
imaging of phantoms containing point-like structures, such
as various arrangements of small metal beads, with varying
requirements about the a priori knowledge of the phantom
and the geometry.

Although similar work has been done with multiple de-
tectors in SPECT and PET,"> we have not found any prior
work on the calibration of dual tube/detector x-ray micro-CT.
Therefore, in the construction of our dual tube/detector sys-
tem, it was necessary to develop a new geometric calibration
method. In this method we first employ an analytic algorithm
to find estimates of the most important calibration param-
eters and then use nonlinear optimization to find additional
parameters and refine the results. Once this is done for both
tube/detector chains, we use the parameters to create the
cone beam projection matrices required by the reconstruction
process for each imaging chain. We then find a transforma-
tion between the two projection matrices to combine the two
sets of projection data in a single reconstructed image. In this
work we describe this method and test it in computer simu-
lations and then apply it to data collected from our dual
tube/detector system.

Il. MATERIALS AND METHODS
Il.A. Projection matrices

Our approach is based on the use of projection
matrices.”*2 A cone beam projection matrix A has a 4 X3
dimension and relates the mapping of a point in three-
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dimensions (3D) (x,y,z) to its projection (u,v) on a two-
dimensional detector in homogeneous coordinates
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where w is an arbitrary scale factor. Each projection matrix is
constructed from seven geometric parameters that define the
cone beam geometry of a single imaging chain made of one
x-ray source and one detector (see Fig. 1). These are d,, d,,
ugy, Vg, 1, 0, and @, where dg, and dg, are the source-to-origin
and detector-to-origin distances (for simplicity, we will often
use the source-to-detector distance dy=d,,+dy, instead of
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With these matrices we construct the vectors u and v which
describe the displacement of a pixel from the detector origin,
and the detector normal vector n,

0
dyo); (ug,vp) is the pixel location where the central ray inter-
sects the detector plane [see Fig. 1(a)]; and %, o, and ¢ are u=ARRIRY! 1
the detector rotation angles around each of the x, y, and z nTe e
axes, respectively [see Figs. 1(b)-1(d)]. Additionally, the 1
horizontal pixel distance Au and vertical pixel distance Av of -
the detector must be known in advance. 0
The rotation of the detector around the three axes is de- 0
scribed by the three rotation matrices R,, R, and Ry, v= AUR;IREIR:; e
1 0 0 0 1]
0 cosyp —siny O
R,= 0 sin 0 n=v Xu.
n Ccosm
0 0 0 1 We can now construct the projection matrix A,
|
I 0 0 ugu;+vyv,—d, n,d 0 0 mndyd
0 1/Au 0 0 01 o oY1 oVl sd losd p 0 l(s)d SO
Ugl, + vV nd,
A=[0 0 UM ORRR, = om0 0 ‘O‘d p 0 (1)
Uguz + vV n,d,
0 0 0 1 o3 +UoV3 1454
000 1 n; n, ny ndg,

To describe the planar circular trajectory of the source and
detector by angle 6 around the rotation axis, in this case z
axis, we multiply A, given by Eq. (1), by a rotation matrix to
obtain the projection matrix for each sampling angle A,

cos® —sinf 0 O
sinf@ cosf O O
A0= A
0 0 10
0 0 0 1

The tomographic reconstruction algorithm uses the A, ma-
trices to perform the 3D backprojection process. We note that
with our dual tube/detector micro-CT system, the scanned
object is rotating and the tubes/detectors are stationary. Nev-
ertheless, the two geometries with rotating tube/detector or
rotating object are equivalent. Therefore, to calibrate a dual
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tube/detector system, it is necessary first to find the param-
eters describing the cone beam geometry for each individual
tube/detector and to construct the projection matrices [see
Eq. (1)]. Next, we find a transformation that relates these two
projection matrices in one shared geometry.

II.B. Geometric calibration for a single imaging chain

To find d,, dyo, Ug. Vg, 7, 0, and ¢ for a single imaging
chain, we have taken a two-step approach. First, we obtain
initial estimates following the method described by Yang et
al.,18 and then we refine the values with a nonlinear optimi-
zation procedure. We use a phantom consisting of 20 metal-
lic beads with a 2 mm diameter inserted in an acrylic rod and
arranged along a vertical axis with distance /=5 mm be-
tween each adjacent pair of beads. The phantom is scanned
through one complete rotation [see Fig. 2(a)] of 360° using
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detector

both imaging chains and projection images acquired every
1°. Following scanning, the phantom’s projection images are
processed in MATLAB (The MathWorks, Inc., Natick, MA) to
compute the trajectories of the center of mass of each imaged
bead. Finding the beads’ centers of mass is a semiautomatic
process that requires the user to select rectangular regions of
interest (ROIs) around each bead only in the first projection
image. In each ROI, the bead is segmented using adaptive
local thresholding. An initial threshold is chosen halfway be-
tween the maximum and minimum brightness values, and
this threshold is iteratively improved. At each iteration, the
threshold divides the pixels inside each ROI into two sets
corresponding to the bead and background. The bead set is
assigned the connected component containing the central
pixel. The background set is assigned the corner pixels, and
the threshold is recalculated to be halfway between the av-
erages of these two sets. The iterations stop when the thresh-
old no longer changes. After segmentation, the center of
mass (u.,v.) for each bead is found using the bead pixel
values of the segmented bead image I(u,v),

FiG. 1. The geometry of an x-ray CT
SyStem’ deﬁned by (a) ds(v dd(v Up, Vo,
(b) 7, (c) o, and (d) o.

U = 2beadl(l’t?l)) s u
‘ 2beadl(u;v) '

v = 2beadl(l"av) *v
‘ 2beadl(uav) .

The radius of the bead projection is found by calculating
the average distance from the perimeter to the center

Eerimeer"’ - 02+ - 02
= Zperimeer\ (U = )"+ (0 =07 (2)

2 perimeter 1

Unlike in the first projection image, the ROIs in subsequent
projections are constructed automatically by predicting the
location of the bead center using a linear fit of the most
recent locations and setting a square around the predicted
location with a side length equal to twice the radius given by
Eq. (2).

For each bead i, an ellipse is fitted to the set of all centers
of mass over all projection images. Point p in ellipse i is
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FIG. 2. (a) An x-ray image of the calibration phantom,
with the centers of the projections of the beads overlaid
in white, and (b) the ellipses that are fit to the centers.
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denoted a;,=(u;,,v,;,), and the distance between points
a;, and aj, is denoted a;,a;,. The center, a;y=(u;9,v,0), and
four principal corners, a;;, a;», a3, and a4, are recorded for
each ellipse [see Fig. 2(b)]. The centers of the ellipses, a,
are computed as the mean of all points, @;,, on the ellipse.
The major axis line is obtained by linear regression on all the
points, and the minor axis line is the line perpendicular to the
major axis that passes through the center. The angle of the
major axis is obtained as the inverse tangent of the slope. All
points a;, are then projected onto the ellipse axes, and the
corners are the extreme points of the projections. With these
ellipse parameters we now calculate the calibration param-
eters, using geometric relations derived by Yang et al.'®

II.B.1. Calculation of ds4q and v,

For each bead i, we construct

Ui~V
x,-— N
a;3ai4
_ViitUp
Yi= 5

The x; and y; are related by the linear function
Yi=Ugp+ deAv'xi'

We find v, and dy by linear regression over all i.

Il.B.2. Calculation of n and uy,

For each bead i, u;y, and v;, are related by the linear
function

Up=a-+ bvio.

We find a and b by linear regression over all i, and then
calculate

uy=a+bvy,

n=arctan b.

1I.B.3. Calculation of dg,
For each pair of beads i and j,

l

a;pa jOAU

dy,= dgg-

We average d,, for each adjacent pair i and j. This formula is
simpler than the one described by Yang et al.,'® since we
assume that our phantom is placed parallel to the z axis.
While this assumption may not always be valid, we note that
the geometric parameters obtained by this analytic approach
are just initial estimates that are further refined through an
optimization procedure.

Il.B.4. Nonlinear optimization

The method described by Yang et al. ' does not determine
the out-of-plane detector rotations o and ¢, since it is
claimed that careful mechanical placement can reduce these
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parameters to less than 5°, below which these values have
little impact on reconstruction. However, in an imaging sys-
tem with components that are frequently moved, as in our
case, we cannot guarantee that the detectors will always be
so well aligned. Furthermore, in a dual tube/detector system,
the small changes caused by erroneous values for o and ¢
will be amplified, since overlapping systems with slight in-
dependent misalignments will produce pronounced double
contours in the reconstruction. These rotations may be
present in our system and should be addressed, so we use a
nonlinear optimization program to move from an initial esti-
mate of [dy dg, uy vy 70 0] to [dy dy, ug vy 7 T @J.

For the objective function, we must first construct the
projection lines from the x-ray source to the beads’ projec-
tion centers of mass using the initial estimates of the geomet-
ric parameters. These projection lines are constructed for all
beads in all projections. For each bead the minimum pair-
wise distance between all its associated projection lines is
computed. The objective function returns a vector with an
entry for each bead representing the sum of the minimum
pairwise distances between projection lines.

We pass this objective function to a nonlinear least-
squares minimization function which successively recom-
putes selected parameters in order to minimize the distances
between projection lines. We run the program in two steps.
First, we allow o and ¢ to vary while holding the other
parameters fixed since these parameters have no values and
would distort the other parameters. Next, we allow all pa-
rameters dy, dg,, Uy, Vg, 7, 0, and ¢ to vary together. This
technique estimates o and ¢ accurately and refines the esti-
mates of the other parameters.

I.C. Geometric calibration for a dual tube/detector
system

After computing the geometric parameters for each indi-
vidual imaging chain, we can construct their respective pro-
jection matrices A; and A, using Eq. (1). However, these
matrices describe projection in two different systems of ref-
erence. We need a transformation matrix T that will allow us
to transform projection matrix A, into AJ=A,T in the coor-
dinate system of A ;.

Since both systems image the same rotating object, they
must share the same axis of rotation, i.e., the z axis. Conse-
quently, the transform between the two systems of coordi-
nates can consist only of rotation « around the z axis and
translation Az along the z axis and thus the transformation
matrix T is given by

cosa —sina 0 O
sinae cosa 0O O
1o 0 1 Az
0 0 0 1

Therefore, once we calibrate the individual systems, we need
an additional step to find Az and « to calibrate the entire dual
system (see Fig. 3).
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FiG. 3. The geometry of a dual micro-CT system, defined by Az and « in
addition to the parameters of the individual systems.

We first compute Az, using the sets of projections of the
same calibration phantom described previously which were
acquired with both imaging chains simultaneously. The
movement of each bead of the phantom is described by ro-
tation around the z axis, therefore we expect the z coordinate
to remain constant at each rotation step, and a single z value
for each bead can be found in each system of geometry [see
Fig. 4(a)]. The same beads should be matched in the two sets
of projection images from the two imaging chains. Knowing
the system parameters allows us to write the expressions of
vectors s for the x-ray source and p for a detector point (u,v)
in the object system of reference

axis of rotation z

detector 2
detector 1

source 2

source 1 source 1
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In a rotating object geometry as in our dual micro-CT sys-
tem, the point at the center of the rotation of a bead should
project to the center of the ellipse trajectory that we found in
the individual system calibration, and therefore we set (u,v)
in Eq. (3) to be equal to (u;y,v;0) for ellipse i [see Fig. 4(b)].
The line from the x-ray source s to the pixel p is constructed
and its intersection with the z axis is given by

P
p
p

SO

+k 2

3

—_ N O O

—

FIG. 4. (a) The projection of beads
onto detectors in the dual system cali-
bration technique, (b) the method for
finding Az using the line segments
from the x-ray sources through the
axis of rotation to the centers of the
ellipses, (c) the lines from the x-ray
sources through a bead to the ellipses,
and (d) the method for finding « using
the different x and y values found from
the lines through the same bead.

source 2

source 1
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Scan phantom

v

For each imaging chain
’ Segment beads |

Fit ellipses

Calculate d,,, d,, Uy, vy, N
Using method of Yang et al.

v

Minimize with 1sgnonlin:

Given calibration parameters

For each projection, for each bead:

construct line
from X-ray source to bead projection center

v

calculate shortest distance

from this line to all previous lines for this bead

Fig. 5. A flowchart of the complete
calibration process.

Return sum of distances for each bead

I

Find dual transform matrix

| Find (x,y,z) for each bead at each angle I

v

| Difference of z values between imaging chains:

Az|

v

| Difference of angles around z-axis between imaging chains: a |

v

| Nonlinear optimization (same as above) |

'

Construct projection matrices for reconstruction

kZA
pl+dso’
Z=Ppsk,

where k is the parameter describing the location of a point
along the line. This gives us the z value for each bead in each
geometry. The vertical displacement Az between the two sys-
tems is the difference between the z coordinates for the same
bead in the two different systems. We compute this value for
each bead i and report the average value as Az [see Fig.
4(b)].

Following the computation of the z coordinate for each
bead, we proceed to determine the x and y coordinates at
each rotation step by constructing the line from s to p as
described before, where the pixel location (u,v) is now the
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center of the projection of the bead [see Fig. 4(c)]. The x and
y coordinates for each bead at each rotation step are com-
puted

k=—,
P3

X = k(pl + dso) —dyo»

y=kp,.

We can now compute the angle « around the z axis between
the two imaging chains. For this purpose, we first find the
angle of rotation 6 of each (x,y) from some arbitrary starting
point. Since tan #=(y/x), we find #=arctan(y/x). There are
two values of 6, i.e., 6; and 6,, corresponding to each imag-
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FIG. 6. Our in-house implemented dual tube/detector micro-CT system.

ing chain [see Fig. 4(d)]. The rotation angle « is computed as
a=6,—6,. We perform this calculation for each bead in each
simultaneous projection and report the average value as «
[see Fig. 4(d)].

Finally, we refine these estimates with the same nonlinear
optimization program used for the individual calibrations, by
constructing the transformed projection lines from the differ-
ent detectors through the same beads and minimizing the
pair-wise distances between the lines.

A flowchart of the complete calibration process is shown
in Fig. 5.

Il.C.1. Implementation

The above equations are implemented in MATLAB (Ver-
sion 7.0). The optimization function used is Isqnonlin, part of
the MATLAB Optimization Toolbox, which uses precondi-
tioned conjugate gradients constrained by a subspace trust
region. The ray-tracing programs called in the optimization
process were written in C to reduce computation time.

For our in-house developed dual tube/detector system (see
Fig. 6), we use two Varian A197 x-ray tubes with dual focal
spots fs=0.6/1.0 mm. The tubes are designed for angio-
graphic studies with high instantaneous flux and total heat
capacity. Two high frequency x-ray generators (EPS 45-80,
EMD Technologies, Quebec, Canada) are used to control the
x-ray tubes. The system has two identical detectors with a
Gd,0,S phosphor (XDI-VHR 2 115 mm, Photonic Science,
East Sussex, UK) with pixels of 22 um, 115 mm input taper
size, and 4008 X 2672 image matrix. Both detectors allow
on-chip binning of up to 8 X 8 pixels, and subarea readout to
allow high speed readout of more than 10 frames/s, i.e., a
time resolution of 100 ms. Both tubes and detectors are
mounted on a table together with the rotation stage. The
vertically positioned animal is placed in a cradle that is ro-
tated via an Oriel model 13049 digital stepping motor. The
x-ray generators, tubes, detectors and the rotation are con-
trolled by a sequencer application written in LABVIEW (Na-
tional Instruments, Austin, TX) that also allows for in vivo
studies, the flexible integration of cardiac and respiratory
physiology with the imaging sequence.23 Images of the ro-
tating object are acquired with a step-and-shoot acquisition
scheme.
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TaBLE 1. Calibration results for the single system parameters, compared with
results in similar conditions by Yang er al. (Ref. 18), from ten computer
simulations, with Gaussian noise of standard deviation 0.4 pixels added to
simulated bead projection centers, 500 images, eight beads.

True values Our method Yang’s method

dyy (mm) 400.00 399.99 £0.06 401+1
dy, (mm) 150.00 149.62 £0.06 150.2£0.5
uy (pixel) 1005.0 1005.0=0.0 1005.9+0.3
v, (pixel) 480.00 479.90 £0.15 480+1

7 (°) —1.0000 —1.0001 £ 0.0002 -0.990.03

o (°) 1.2000 1.1961+0.0116

¢ (°) 1.5000 1.5018 = 0.0046

For geometric calibration, the phantom described previ-
ously, containing an array of steel beads placed in an acrylic
rod, is attached to the imaging cradle and scanned prior to
the animal experiments. The projections and the computed
projection matrices are used with the COBRA EXXIM software
package (EXXIM Computing Corp, Livermore, CA) that
implements Feldkamp’s algorithm24 to reconstruct tomogra-
phic data as 3D image arrays (512%). The projection matrices
computed with our method are written to a geometry file
containing one line for each angle, which is read by COBRA.

II.C.2. Experiments

To test our geometric calibration method we used both
simulated and experimental data. Using Eq. (1) we simulated
the projection operation on the calibration phantom in MAT-
LAB and performed the calibration method. Since our method
first involves finding the geometric parameters for each im-
aging chain, it made sense to compare our results with those
from previous articles for single chain micro-CT systems.
We used the same parameters as in Yang et al.," with the
same number of projections and beads, and the same noise
conditions: 48 wm X 48 um pixel pitch, 500 projection im-
ages over 360°, eight beads, distance between beads [
=2 mm, duy=400 mm, d,=150 mm, uy=1005, v,=480,
n=-1°, 0=1.2°, and ¢=1.5°. We ran ten simulations with
Gaussian noise with standard deviation 0.4 pixels added to
the simulated bead projection centers.

We then simulated the projection operations with two or-
thogonal imaging chains as in our dual tube/detector system
in which the parameters for the first chain were the same as
before, and the parameters for the second chain were dy
=420 mm, d,,=160 mm, ©,=900, v7=500, »=2°, 0=2°,
and ¢=-2°. The dual parameters were Az=5 mm for the
z-axis displacement and @=90° between the central rays of
the two systems. We again performed ten simulations with
Gaussian noise with standard deviation 0.4 pixels added to
the simulated bead projection centers.

For the validation of our calibration method, experiments
involving our dual tube/detector system were also per-
formed. We performed three sets of scans with the system,
with the parameters of 80 kVp, 100 mA, and 10 ms per
exposure. The small focal spot of 0.6 mm was used, and we
set the sampling distances to approximately d4=750 mm
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TaBLE II. Calibration results for the dual system parameters from ten computer simulations, with Gaussian
noise of standard deviation 0.4 pixels added to simulated bead projection centers, 500 images, eight beads.

System 1 True values Estimates System 2 True values Estimates
dyy (mm) dgg (mm) 400.00 399.99 £ 0.06 dyy (mm) 420.00 419.84+0.14
dg, (mm) 150.00 149.62 £0.06 dg, (mm) 160.00 159.96 £0.10
uy (pixel) 1005.0 1005.0=0.0 U, (pixel) 900.00 899.99 +0.01
vy (pixel) 480.00 479.90£0.15 Vo (pixel) 500.00 500.19£0.18
7 (°) —-1.0000 —1.0001 +0.0002 n (°) 2.0000 2.0000 £ 0.0002
o (°) 1.2000 1.1961 £0.0116 o () 2.0000 1.9997 £ 0.0065
¢ (°) 1.5000 1.5018 £ 0.0046 ¢ () —-2.0000 —1.9985 +0.0029
Dual True values Estimates
Az (mm) 5.0000 4.9947 £ 0.0062
a () 90.000 4.9947 = 0.0062

and d,,=650 mm to ensure that the penumbral blurring
caused by focal spot is less than the detector pixel size of
0.88 mm. In the first scan, we acquired 360 images with each
imaging chain over a 360° rotation of the calibration phan-
tom. Next we acquired 372 projections with each imaging
chain over a 186° (180° +fan angle of 6°) scan angle of a
cylindrical phantom containing water. Finally, we acquired
372 projections over a 186° scan angle of a dead C57BL/6
mouse.

The images from the first scan were provided as input to
the calibration program, and the system parameters were ob-
tained. These parameters were then used to reconstruct the
objects in the next two scans. Single detector images were
reconstructed using 372 projections acquired with the same
imaging chain. For dual tube/detector reconstructions we
used 186 projections acquired with the first imaging chain
over 93° and 186 projections over the other 93° acquired
with the second imaging chain. All projection images are
corrected for distortions by the acquisition software of the
detectors. The reconstructed data of the cylinder phantom
was used to calculate the modulation transfer function of the
individual and dual systems according to the method de-
scribed in the ASTM.”

lll. RESULTS

The values estimated in the simulation by our calibration
program for the geometric parameters of an individual sys-
tem are shown alongside the values found by Yang et al.¥ in
Table I. Overall the two sets of results compare well and they

show similar performance in the noise-affected situation. Un-
like Yang’s method, note that our method also gives esti-
mates of two detector rotation angles o and ¢. This is pos-
sible due to the refinement part based on optimization.

Next, the values estimated for the dual tube/detector sys-
tem parameters are shown in Table II. Again, the results pro-
vided by the calibration procedure match the known values
quite well.

The geometric parameters estimated for our dual tube/
detector system are shown in Table III. While the real values
of these variables are unknown, we can judge the perfor-
mance of the calibration results by the image quality of the
reconstructions. We know that imperfect calibration would
cause double contours, and blur the reconstructed images.
Therefore, we used the modulation transfer functions
(MTFs) as a more quantitative figure of merit to assess the
performance of the calibration. Figure 7 presents the MTFs
plots for the following: single detector reconstruction using
refined parameters; single detector reconstruction using un-
refined parameters as in Yang’s method, i.e., without the two
angles o and ¢; dual tube/detector reconstruction using re-
fined parameters; and dual tube/detector reconstruction using
unrefined parameters. The MTF at 10% appears to be about
3.4 Ip/mm for refined single detector reconstructions and 3.3
Ip/mm for unrefined single detector reconstructions, 2.3
Ip/mm for refined dual tube/detector reconstructions, and 1.9
Ip/mm for unrefined dual tube/detector reconstructions.

Finally, Fig. 8 displays micro-CT images of slices in
axial, coronal and sagittal orientations of the mouse head

TaBLE III. Calibration results for our dual micro-CT system.

System 1 Estimates System 2 Estimates Dual Estimates
dg; (mm) 808.80 dy (mm) 753.22 Az (mm) 1.2357
dg, (mm) 706.41 dg, (mm) 653.32 a (°) —-90.846
U, (pixel) 543.95 uy (pixel) 459.43
vy (pixel) 326.80 vy (pixel) 356.20

7 (°) 1.9983 7 (°) 1.4183

o (°) —4.4962 o (°) 2.1522

¢ (°) 1.1031 e (°) 2.7240
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using the single and dual tube/detector reconstructions. Al- V. DISCUSSION

though projections from both imaging chains were used in
the reconstruction of the dual tube/detector micro-CT im-
ages, they show no misalignment artifacts and the image
quality of single and dual chain micro-CT are comparable,
visual proof that the calibration method performed well.

FiG. 8. Axial [(a), (b)], sagittal [(c), (d)], and coronal [(e), ()] slices from a
reconstruction of a mouse from a single chain micro-CT system [(a), (c), (e)]
and a dual micro-CT system [(b), (d), (f)].
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We have presented here a geometric calibration method
suitable for a dual tube/detector micro-CT system. We are
not aware of other published prior work on this subject.
Since our method involves the geometric calibration of each
individual chain, we could compare part of our results with
the previous work.'® Table 1 demonstrates that our method
finds the calibration parameters with good accuracy and pre-
cision, and improves upon the results of previous work for
single chain imaging systems. We find values for dgq, uy, vy,
and # that are both closer to the correct values and have less
variance in the presence of noise than the method of Yang et
al."® The values for d,, are within the margin of error of
previous methods, but are not improved by the optimization,
so we typically exclude d, from the optimization process.
The values for angles o and ¢ that were not estimated with
other methods are now found accurately. Although we par-
tially use the same formulas as Yang et al."® to initially esti-
mate five of the geometric parameters, our method for single
chain calibration shows advantages due to added refinement
based on optimization. Table II demonstrates that we also
find accurate and precise values for the dual tube/detector
system parameters including Az and a. The discrepancy be-
tween the two chains in the accuracy of estimation of d,
further indicates the fragility of this parameter estimation.

The optimization-based refinements improve the quality
of reconstruction as shown by the MTF plots (see Fig. 7).
The dual tube/detector system does not match the quality of
the single chain, but is reasonably close. We suspect that this
loss in quality is due to the compounding of slight errors in
the separate single chain calibrations, since the impact of
optimization is much stronger on the dual tube/detector MTF
than the single tube/detector MTF. Further reductions in im-
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age quality are caused by detector distortion, which is not
completely corrected by the imaging software. We will ad-
dress this issue in future work.

Figure 8 demonstrates that reconstructions from the dual
micro-CT system look very much like the reconstructions
from a single micro-CT system, and both reconstructions
show few misalignment artifacts.

In our step-and-shoot acquisition scheme, with each tube/
detector acquiring one quadrant, the radiation dose should be
the same as in the single tube/detector system.

Although the method shown here was tested for our dual
tube/detector micro-CT system that is built with a rotating
object geometry, we believe that the method could be
adapted for rotating gantry geometry and could be used with
other cone beam CT systems. We hypothesize that our
method could be extended to correct for other sources of
misalignment artifacts, such as reproducible wobbling gantry
motion in C-arm-based systems.26 This could be accom-
plished by adding an angle-dependent perturbation parameter
that could be found in the optimization step in the same
manner as ¢ and ¢. Further work would be required for the
validation of this hypothesis.

V. CONCLUSIONS

We have developed a method that accurately finds the
parameters necessary to perform reconstruction with dual
micro-CT imaging systems. The method is currently used
with a newly developed dual micro-CT system and is robust.
The accuracy of the parameters estimated for the individual
sources and detectors is equal to or higher than the accuracy
of previous single micro-CT methods, and the parameters
found for the combined system enable accurate reconstruc-
tions free of misalignment artifacts.
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