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Abstract
The atheroprotective effects of HDL are mediated by several mechanisms including its role in reverse
cholesterol transport and via its anti-inflammatory properties. However, not all HDL is functionally
similar. HDL and apolipoprotein A-I may become dysfunctional or even pro-inflammatory, and thus
promote atherosclerosis. ApoAI post-translational modification can have a large impact on its
function. Myeloperoxidase modification of apoAI impairs it function as a cholesterol acceptor, and
the molecular changes induced by myeloperoxidase have been studied in detail. These studies provide
the basis for the development of an oxidant resistant form of apoAI and clinical measures of HDL
modification and dysfunction, which may be useful as a treatment criterion.
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HDL-cholesterol (HDL-C) is an independent protective factor for coronary artery disease
(CAD), as demonstrated by numerous epidemiological studies, such as the Framingham Heart
Study1. In interventional settings, niacin, which effectively raises HDL levels, given as a
monotherapy or combined with other drugs has been shown to reduce CAD and
cerebrovasuclar events2. There are many proposed pathways by which HDL may protect
against CAD. HDL and its major protein constituent apolipoprotein A-I (apoAI) play prime
roles in mediating reverse cholesterol transport (RCT), the transfer of cholesterol from
peripheral tissues, such as arterial wall cells, to the liver for excretion, and this likely plays a
central role in the mechanism of HDL’s atheroprotective effect3,4. RCT involves many steps,
including the removal of cholesterol from cells (through ABCA1, which is responsible for the
formation of nascent HDL, along with ABCG1, and SR-BI), the maturation of HDL through
lecithin cholesterol acyltransferase (LCAT) mediated free cholesterol esterification, and the
uptake and excretion of HDL cholesterol by the liver.

HDL cholesterol esters can also be transferred to apoB containing lipoproteins through the
action of cholesterol ester transfer protein (CETP), and this cholesterol pool can participate in
RCT by delivery to the liver through LDL receptor mediated uptake. Although CETP inhibition
raises HDL-C levels, the recent failure of torcetrapib, a CETP inhibitor, in a clinical outcomes
trial5 raised the specter that CETP inhibition may lead to the production of dysfunctional HDL.
However, due to the off target effects of torcetrapib on blood pressure and the plasma levels
of potassium, sodium, bicarbonate, and aldosterone it is impossible to determine if the failure
of this drug could be due to the formation of dysfunctional HDL5. In a post hoc analysis of the
torcetrapib study by intravascular ultrasound, atheroma regression, rather than progression,
was observed in the subjects who achieved the highest levels of HDL-C, suggesting that CETP
inhibition does not lead to dysfunctional HDL6.

Phone: 216-444-2248, smithj4@ccf.org.

NIH Public Access
Author Manuscript
Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2011 February 1.

Published in final edited form as:
Arterioscler Thromb Vasc Biol. 2010 February ; 30(2): 151–155. doi:10.1161/ATVBAHA.108.179226.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



HDL has many other activities aside from its role in RCT that can also contribute to its
protective mechanism. These include the removal and/or detoxification of oxidized sterols and
phospholipids, anti-inflammatory activity, antioxidant activity, anti thrombotic activity, and
its protective and healing activities on endothelial cells3,7,8. So, HDL-cholesterol is the “good
cholesterol”, but there are many unresolved questions: are all HDL particles equally good, does
HDL from different subjects perform the same; can HDL become dysfunctional; and, can “good
cholesterol” be made into “better cholesterol”? This review describes the evidence for
dysfunctional HDL and its underpinnings, as well as the potential use of HDL functionality as
a diagnostic tool and therapeutic target.

Evidence for and causes of dysfunctional HDL
Fogelman and colleagues developed an assay to measure the anti-inflammatory activity of
HDL by determining the extent to which HDL inhibits monocyte chemotaxis induced by LDL
using an in vitro reconstituted artery wall model by the co-culture of smooth muscle cells and
endothelial cells9. Other assays for HDL function include cell free anti-oxidant activity10,
inhibition of endothelial cell adhesion molecule expression11, and the ability of HDL to act as
an acceptor of cellular cholesterol. Navab, Fogeleman, and colleagues using this artery wall
model system have demonstrated several conditions in which HDL can lose its anti-
inflammatory properties, including during the acute phase response when serum amyloid A
partially replaces apoAI in HDL, during influenza A infection, and in apolipoprotein AII
transgenic mice12,13,14. In a seminal study, Ansell et al. discovered that HDL from CAD
subjects who had high levels of HDL had less anti-inflammatory activity, in this co-culture
assay, than HDL derived from healthy control subjects, thus indicating that HDL from CAD
subjects is dysfunctional10. In fact, HDL from many CAD patients was actually
proinflammatory, thus increasing monocyte chemotaxis in response to LDL, unlike the HDL
from healthy controls that reduced monocyte chemotaxis10. There are many possible alterations
between this dysfunctional HDL and normal functional HDL.

One possibility is a change in the protein composition of HDL. Human HDL particles are quite
heterogeneous, encompassing a range of sizes and densities. Each HDL particle carries apoAI
and may also carry other apolipoproteins, such as apoAII, apoAIV, apoE, apoCs. In addition,
HDL is associated with a panoply of accessory proteins, including LCAT, phospholipid transfer
protein (PLTP), paraoxonase 1 (PON1), myeloperoxidase (MPO), serum amyloid A1, (SAA1),
and platelet activating factor acetylhydrolase (PAF-AH). The HDL proteome is quite large15,
and each HDL particle cannot accommodate all of the accessory proteins; thus, a minority of
the HDL particles must be associated with each accessory protein. Changes in HDL protein
composition due to infection, inflammation, or diabetes have been shown to be associated with
decreased function12,14,16. An HDL proteomic study of HDL3 from different subjects found
that the levels of PON1, PON3, and apoL-I correlate with HDL’s antioxidant activity17. Also,
mouse models have been used to determine the effects of HDL protein composition changes,
for example, HDL isolated from transgenic mice over expressing apoAII or PLPT show
reduced function compared to control HDL13,18.

Many studies have been performed to investigate the changes in HDL associated with
inflammation. de Beer and colleagues have shown extensive HDL remodeling after treatment
of mice with endotoxin, or in humans after surgery, leading to the so-called acute phase HDL,
in which SAA and group IIa secretory phospholipase A2 (sPLA2-IIa) are increased and apoAI
levels (and CETP levels in humans) are decreased19. Since SAA itself can act as an acceptor
for cellular cholesterol via ABCA1, SR-BI, and other pathways20,21,22, the consequences of
acute phase HDL on HDL function and RCT must be determined experimentally. Post surgical
human serum containing acute phase HDL maintains most of its ABCA1 and ABCG1
dependent cholesterol acceptor activity despite decreased HDL-C and apoAI levels23. The in
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vitro incubation of HDL with SAA, sPLA2-IIa, and CETP leads to the marked displacement
of apoAI from HDL generating lipid free or lipid poor apoAI, expected to undergo more rapid
catabolism, but also expected to be a good ABCA1-mediated acceptor of cellular lipids23. The
over expression of SAA and SR-BI in mice via adenoviral vectors also leads to the production
of small lipid poor apoAI particles which are more rapidly cleared24. Recently, Reilly’s lab
demonstrated that LPS treatment in mice decreases RCT, although this was mediated primarily
through the inhibition of liver sterol excretion associated with decreased expression of hepatic
ABCG5, ABCG8, and ABCB1125.

Another factor that might make HDL dysfunctional is a change in the HDL associated lipids.
HDL may acquire oxidized lipids from cells and by exchange with other particles, or HDL
lipids may be oxidized in situ. Lipid peroxides may interfere with HDL’s antioxidant, anti-
inflammatory, and cholesterol acceptor activities. For example, treatment of HDL with 15-
lipoxygenase, an enzyme forming lipid peroxides, reduces HDL cholesterol acceptor and anti-
inflammatory activities26,27. HDL carries the bulk of lipid hydroperoxides in plasma28. These
lipid hydroperoxides can be converted into less reactive lipid hydroxides through specific
methionine residues of apoAI and apoAII, with the concomitant formation of methionine
sulfoxide29. Fully functional HDL may promote lipid hydroperoxide metabolism and its uptake
and clearance by the liver, which would be protective28. In contrast, dysfunctional HDL might
promote the transfer of lipid hydroperoxides to apoB containing lipoproteins and promote
VLDL and LDL oxidation30.

A prominent factor that can lead to HDL dysfunction is the post-translational modification of
apoAI. Copper mediated oxidation of HDL leads to altered HDL migration on an agarose gel,
apoAI proteolysis, and decreased ability of HDL to unload cholesterol esters from cholesterol
loaded macrophages31. Malondialdehyde modification of HDL leads to similar changes in
regard to HDL structure and function, and is associated with the loss of lysine and tryptophan
residues, and apoAI polymerization32. HDL from diabetic subjects has evidence of glycated
apoAI and apoAII, and this glycated apoAI has altered structure and lipid binding activity33,
34. Similarly, HDL incubated with high glucose results in a reduction in paraoxonase activity
and decreased anti-inflammatory activity35. Lipid peroxides added to human plasma can
covalently modify apoAI36. Also, incubation of HDL with activated neutrophils was shown to
render apoAI more negatively charged and decrease its cellular cholesterol acceptor
activity37,38.

Myeloperoxidase modification of apoAI
Myeloperoxidase (MPO) is an enzyme found in neutrophils, monocytes, and some
macrophages that uses hydrogen peroxide to generate chlorinating and nitrating oxidants,
which play an important role in killing microorganisms. However, these same reactive species
can also modify host proteins and lipids. MPO is enriched in human atheroma 39, and its
presence may promote lesion progression, by increasing LDL oxidation, and block plaque
regression, by modifications of apoAI/HDL that impair RCT. Bergt et al. demonstrated that
incubation of HDL with MPO, in a chlorinating reaction (MPO/H2O2/Cl−) that produces HOCl
(chlorine bleach), or with reagent HOCl (at a very high 100:1 ratio of HOCl:apoAI) leads to a
loss of unsaturated fatty acids in phospholipids and cholesterol esters, and the loss of cholesterol
acceptor activity40. Bergt et al. also showed that modification of lipid-free apoAI at an
HOCl:apoAI ratio of 25:1 led to the loss of apoAI methionine residues40, consistent with the
high sensitivity of methionine to MPO/H2O2/Cl−41. Subsequently, it was shown that selective
apoAI methionine oxidation does not disrupt its structure, and actually leads to an increase in
lipid binding and cellular lipid acceptor activities42; although apoAI Met-148 modification by
MPO is associated with loss of LCAT activation43. Bergt et al. also used mass spectroscopy
to identify specific alterations caused by reagent or MPO generated HOCl and they confirmed
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the disappearance of the methionine-containing tryptic peptides with concomitant production
of methionine sulfoxide-containing peptides44. The cholesterol acceptor activity of
recombinant HDL (rHDL) made by cholate dialysis using apoAI and phosphatidylcholine is
much more sensitive to the HOCl treatment, with loss of activity starting at an HOCl:apoAI
ratio of 5:140. In addition to decreased lipid acceptor activity, Panzenboeck et al. also showed
that MPO or HOCl modified HDL was more susceptible to uptake and degradation by
macrophages, thus turning HDL from a lipid accepting lipoprotein to a lipid loading
lipoprotein45. Although methionine and cysteine residues (apoAI has no Cys residues) are the
most sensitive to MPO generated oxidants, tyrosine, lysine, tryptophan, and other residues are
also targets, with 3-chlorotyrosine being used as a fingerprint for MPO oxidants, as HOCl
uniquely forms this adduct46,47.

Since 2004, the combined Smith, Hazen, and Kinter labs at the Cleveland Clinic, and the
combined Heineke and Oram labs at the University of Washington have each examined the
MPO induced molecular alterations in apoAI and their functional significances. Both teams
fundamentally agree that MPO modification of apoAI is physiologically relevant by
demonstrating that: 1) apoAI in plasma and more so in arterial lesions is a selective target of
MPO modification that leads to the nitration and chlorination of specific apoAI tyrosine
residues; 2) plasma apoAI nitro-and chloro-tyrosine levels are higher in coronary artery disease
patients than in control subjects; and 3) apoAI tyrosine chlorination, whether in endogenous
plasma or after in vitro MPO-mediated modification, is associated with the specific loss of
ABCA1-mediated cholesterol acceptor activity, such that apoAI cholesterol acceptor activity
was inversely correlated with apoAI nitro- and chloro- tyrosine levels48,49,50,51,52,53. Wu et
al. demonstrated LCAT binding to apoAI at residues 159–180 in rHDL; and, that Tyr166 is
required for LCAT activation, such that MPO induced loss of LCAT activation correlates with
loss of the Tyr166 containing parent peptide54. Additionally, Zheng et al. demonstrated direct
binding of MPO with apoAI, and identified residues 190–203 in apoAI helix 8 as the region
that bind to MPO, thus providing a mechanism for the selective modification of apoAI in
plasma48. However, the precise mechanism by which MPO modification renders apoAI
dysfunctional remains controversial.

Both groups using mass spectroscopy studies identified apoAI Tyr192, within helix 8, as the
most sensitive site to MPO mediated chlorination 51,52. Furthermore, Bergt et al.
demonstrated, using short synthetic peptides, that tyrosine chlorination is maximally stimulated
when the tyrosine is three residues away from a lysine residue, which is the case for the sensitive
Tyr192 53. The University of Washington group claimed that MPO impairment of apoAI’s
ABCA1-mediated cholesterol acceptor activity is through methionine oxidation and site-
specific chlorination of Tyr192, as treatment of MPO modified apoAI with the enzyme
methionine sulfide reductase could partially restore apoAI’s cholesterol acceptor activity,
particularly in a recombinant apoAI (r-apoAI) isoform with Try192 replaced by Phe43. On the
other hand, the Cleveland Clinic group made r-apoAI with all seven Tyr residues replaced by
Phe (7YF isoform), and found that it is equally susceptible to MPO or HOCl loss of cholesterol
acceptor activity as the wild type isoform55. Furthermore, replacement of the three Met
residues in apoAI with Val residues actually increased susceptibility to low doses of H2O2 in
the complete MPO chlorination system, showing that apoAI Met residues can absorb HOCl
oxidation without loss of function, hence protecting the other residues56, and in agreement with
the prior finding42. Thus, the site directed substitution and cholesterol efflux data indicate that
neither methionine nor tyrosine serve as the oxidant sensitive residue involved in MPO-induced
apoAI inactivation. Thus, the levels of plasma apoAI nitro-and chloro-tyrosine may serve as
physiological useful and specific markers of MPO activity in vivo, even though tyrosine
modification does not appear to be responsible for turning the “good” HDL-cholesterol “bad”.

Smith Page 4

Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2011 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Discovery of MPO-resistant apoAI
The Cleveland group extended and confirmed several prior observations on the effects of MPO
or HOCl on apoAI structure, specifically the loss of alpha helix content, and the loss of
tryptophan and lysine residues. MPO treatment of apoAI leads to the transient conversion of
apoAI lysine residues to lysine ε-chloramine that spontaneously decompose to α-aminoadipic
acid, a product that is enriched in apoAI recovered from atheroma vs. plasma55,56. However,
apoAI with lysine residues modified and rendered less reactive by reductive methylation is not
protected from MPO induced loss of function57,56. Thus, lysine modification by MPO is not
likely to be the initiating event in formation of dysfunctional HDL. The Cleveland group used
mass spectrometry to identify mono- and di-hydroxytryptophan at all four Trp positions in
apoAI isolated from human atheroma56. Thus, Peng et al. created r-apoAI with all four Trp
residues replaced. The replacement by four Leu residues leads to an inactive 4WL isoform,
while the replacement by four Phe residues creates an active 4WF isoform56. Thus, apoAI
activity appears to require both hydrophobic and aromatic residues in the Trp positions. When
the 4WF and wild type apoAI isoforms were treated with increasing oxidant stress from MPO
or HOCl, the 4WF isoform is markedly resistant to loss of cholesterol acceptor activity56. Thus,
the 4WF apoAI isoform is MPO resistant, and may be a better therapeutic reagent to promote
the regression of atherosclerotic plaques, an environment where MPO and MPO-derived
oxidants are abundant. If this strategy is successful, then “good” cholesterol can be made
“better”.

Diagnostic use of dysfunctional HDL
Figure 1 summarizes the central role that inflammation plays in creating dysfunctional HDL
and reduced RCT. Biomarkers associated with dysfunctional HDL may be useful for
identifying subjects at most risk for a coronary event. Hazen and colleagues reported that
plasma MPO levels are positively associated with CAD and the risk of a subsequent major
adverse cardiac event 58,59. MPO levels are predictive of events, but are not a specific marker
of dysfunctional HDL. In a mixed cohort of cardiovascular disease subjects and controls, Zheng
et al., using mass spectrometry, demonstrated that the level of apoAI chlorotyrosine was a
better predictor of cardiovascular disease than the levels of total plasma chloro-or nitro-tyrosine
48. This type of assay is more specific for dysfunctional HDL, but is too laborious for routine
clinical use. The identification of specific modified residues in apoAI, such as chlorotyrosine
and hydroxytryptophan make it possible to develop novel and scalable immunoassays specific
for oxidized/dysfunctional HDL. Through the development these new assays, it will be possible
to perform observational and interventional studies to determine the association of
dysfunctional HDL with CAD, cerebrovascular events, and mortality. Just as the recent
JUPITER trial demonstrated the benefit of statin treatment for subjects with elevated CRP and
normal LDL levels60, in the future, dysfunctional HDL levels may be used as a criterion for
treatment to prevent CAD.
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Figure 1.
Central role of inflammation in creating dysfunctional HDL and disrupting RCT. Cholesterol/
sterol trafficking from the foam cell to their excretion is shown in black arrows. The effects of
inflammation are shown in red. FC, free cholesterol; CE, cholesterol ester; TG, triglycerides.
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