Table 5.
Regression equations to predict QSART volume from Q-Sweat volume accounting for age when significant
| Endpoint | Regression equation | Model R2 | RMSE* |
|---|---|---|---|
| Forearm | |||
| Men | 1.25 + 1.47 × (Q-Sweat vol. in μL) | 0.55 | 1.25 |
| Women | 0.435 + 1.27 × (Q-Sweat vol. in μL) | 0.47 | 0.67 |
| Distal leg | |||
| Men | 0.927 + 1.47 × (Q-Sweat vol. in μL) | 0.62 | 1.04 |
| Women | 0.309 + 1.81 × (Q-Sweat vol. in μL) − 0.010 × (Age in y) | 0.86 | 0.54 |
| Proximal leg | |||
| Men | 0.877 + 1.17 × (Q-Sweat vol. in μL) | 0.51 | 0.92 |
| Women | 0.495 + 1.79 × (Q-Sweat vol. in μL) − 0.012 × (Age in y) | 0.69 | 0.63 |
| Foot | |||
| Men | 0.841 + 1.11 × (Q-Sweat vol.) | 0.35 | 0.89 |
| Women | 0.397 + 1.52 × (Q-Sweat vol. in μL) | 0.33 | 0.71 |
Root mean square error. Approximately 95% of QSART values can be expected to fall within 2 RMSE of the regression line.