Skip to main content
. Author manuscript; available in PMC: 2011 Feb 1.
Published in final edited form as: Muscle Nerve. 2010 Feb;41(2):240–246. doi: 10.1002/mus.21464

Table 5.

Regression equations to predict QSART volume from Q-Sweat volume accounting for age when significant

Endpoint Regression equation Model R2 RMSE*
Forearm
 Men 1.25 + 1.47 × (Q-Sweat vol. in μL) 0.55 1.25
 Women 0.435 + 1.27 × (Q-Sweat vol. in μL) 0.47 0.67
Distal leg
 Men 0.927 + 1.47 × (Q-Sweat vol. in μL) 0.62 1.04
 Women 0.309 + 1.81 × (Q-Sweat vol. in μL) − 0.010 × (Age in y) 0.86 0.54
Proximal leg
 Men 0.877 + 1.17 × (Q-Sweat vol. in μL) 0.51 0.92
 Women 0.495 + 1.79 × (Q-Sweat vol. in μL) − 0.012 × (Age in y) 0.69 0.63
Foot
 Men 0.841 + 1.11 × (Q-Sweat vol.) 0.35 0.89
 Women 0.397 + 1.52 × (Q-Sweat vol. in μL) 0.33 0.71
*

Root mean square error. Approximately 95% of QSART values can be expected to fall within 2 RMSE of the regression line.