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OBJECTIVE—The inability of pancreatic �-cells to appropri-
ately respond to glucose and secrete insulin are primary defects
associated with �-cell failure in type 2 diabetes. Mitochondrial
dysfunction has been implicated as a key factor in the develop-
ment of type 2 diabetes; however, a link between mitochondrial
dysfunction and defective insulin secretion is unclear.

RESEARCH DESIGN AND METHODS—We investigated the
changes in islet mitochondrial function and morphology during
progression from insulin resistance (3 weeks old), immediately
before hyperglycemia (5 weeks old), and after diabetes onset (10
weeks old) in transgenic MKR mice compared with controls. The
molecular and protein changes at 10 weeks were determined
using microarray and iTRAQ proteomic screens.

RESULTS—At 3 weeks, MKR mice were hyperinsulinemic but
normoglycemic and �-cells showed negligible mitochondrial or
morphological changes. At 5 weeks, MKR islets displayed abro-
gated hyperpolarization of mitochondrial membrane potential
(��m), reduced mitochondrial Ca2� uptake, slightly enlarged
mitochondria, and reduced glucose-stimulated insulin secretion.
By 10 weeks, MKR mice were hyperglycemic and hyperinsuline-
mic and �-cells contained swollen mitochondria with disordered
cristae. �-Cells displayed impaired stimulus-secretion coupling
including reduced hyperpolarization of ��m, impaired Ca2�-
signaling, and reduced glucose-stimulated ATP/ADP and insulin
release. Furthermore, decreased cytochrome c oxidase–depen-
dent oxygen consumption and signs of oxidative stress were
observed in diabetic islets. Protein profiling of diabetic islets
revealed that 36 mitochondrial proteins were differentially ex-
pressed, including inner membrane proteins of the electron
transport chain.

CONCLUSIONS—We provide novel evidence for a critical role
of defective mitochondrial oxidative phosphorylation and mor-
phology in the pathology of insulin resistance–induced �-cell
failure. Diabetes 59:448–459, 2010

I
nsulin resistance is the earliest detectable abnormal-
ity in patients at high risk of developing type 2
diabetes (1); however, recurring findings from clin-
ical studies reveal that insulin resistance alone is

insufficient to cause diabetes. Patients in early-stage type 2
diabetes always present with defects in pancreatic �-cell
insulin secretion (2,3); however, the mechanisms involved
in �-cell failure are largely unknown.

Pancreatic �-cells sense changes in blood glucose and
secrete insulin to maintain normoglycemia. Glucose sens-
ing in �-cells is largely controlled by the activity of
glucokinase (4) and mitochondrial metabolism, which
drives the respiratory chain and subsequently ATP produc-
tion via oxidative phosphorylation (OxPhos). The critical
regulatory role of ATP production by OxPhos is under-
scored by the observation that disrupting mitochondrial
oxidative metabolism blocks glucose-stimulated insulin
secretion (GSIS) (5,6). After closure of the ATP-sensitive
K� (KATP) channels, Ca2� enters the cytosol and triggers
the secretion of insulin from the cell. Thus, in response to
changes in nutrient supply, there is a complementary
regulation of OxPhos and other mitochondrial factors to
maintain cellular ATP and NADH levels, providing efficient
metabolic coupling signals to trigger insulin secretion.

A pivotal role of mitochondria in the pathogenesis of
type 2 diabetes is underlined by the finding that mitochon-
drial DNA (mtDNA) mutations in humans, as well as
pancreatic �-cell–specific deletion of mitochondrial genes
in animal models, reduces OxPhos capacity and causes
diabetes (7,8). Recent data suggest that �-cells normally
contain a filamentous network of mitochondria, but when
mitochondria become chronically fused or fragmented,
GSIS is impaired (9–11). Abnormal mitochondrial mor-
phology and function was observed in pancreatic �-cells
postmortem from type 2 diabetic patients (12,13). How-
ever, there is currently no information on how mitochon-
dria in human �-cells adapt when an individual becomes
insulin resistant (14). Several studies have implicated
impaired skeletal muscle mitochondrial OxPhos, in-
creased oxidative stress, and altered morphology in the
etiology of insulin resistance, proposing a mechanism for
the development of diabetes and obesity (15–17). It is
possible that similar changes occur in �-cells and so to
understand whether �-cell mitochondrial dysfunction is
causative or correlative in the process of insulin resistance
leading to hyperglycemia/�-cell dysfunction, we have stud-
ied the transgenic MKR mouse (18). One unique feature of
the MKR mouse is that it does not harbor a �-cell genetic
defect, but rather a dominant-negative IGF-I receptor
mutation specifically in skeletal muscle. This causes mus-
cle insulin resistance early in life followed by systemic
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insulin resistance and finally �-cell dysfunction and hyper-
glycemia by 8 weeks of age (18,19). In contrast with other
insulin-resistant models, MKR mice allow the study of
progression from insulin resistance to type 2 diabetes in
the absence of obesity (20).

In this study, we systematically characterized and com-
pared mitochondrial morphology, metabolic function, and
the molecular changes at three time points in 1) insulin
resistance (3 weeks old), 2) glucose intolerant but just
before the onset of hyperglycemia (5 weeks old), and 3)
diabetic (10 weeks old) MKR mouse islets. Our study
provides the following findings: 1) insulin resistance alone
is not associated with pancreatic �-cell mitochondrial
dysfunction; 2) decreased mitochondrial function and
abnormal morphology occurs before the onset of hyper-
glycemia and plays a role in �-cell failure and type 2
diabetes in MKR mice; 3) proteins in the mitochondrial
inner membrane, including rate-limiting enzymes of the
TCA cycle and multiple components involved in OxPhos,
are decreased in MKR diabetic islets; and 4) genomic and
proteomic analyses reveal transcriptional changes of a
subset of mitochondrial proteins that account for changes
in protein abundance; however, translational and post-
translational modifications also influence the expression
of other mitochondrial proteins in diabetic �-cells. There-
fore, defective mitochondrial OxPhos and morphology
play a critical role in the pathology of insulin resistance–
induced �-cell dysfunction.

RESEARCH DESIGN AND METHODS

Reagents. Fluorescent dyes Rhod-2 and Rh123 were from Molecular Probes
(Eugene, Oregon). Dispase II was from Roche Diagnostics (Germany). Other
reagents were from Sigma-Aldrich Canada.
Animal care. Mice were maintained in a 12-h light/dark cycle and had free
access to water and food (diet no. 8664; Harlan Tekland, Madison, WI). MKR and
FVB male mice were used as described previously (19). Animal care was
conducted according to protocols and standards of the Canadian Council on
Animal Care and approved by the Animal Care and Use Committee at the
University of Toronto.
Mouse pancreatic islet isolation and dispersion. Pancreatic islets were
isolated as described previously (21).
Ultrastructural islet analysis. Electron microscopic analysis was com-
pleted on islets isolated from five to seven mice per genotype essentially as
previously described (22). The samples were observed under a Philips CM100
electron microscope operating at 75 kV. Images were recorded digitally using
a Kodak 1.6 Megaplus camera system operated using AMT software (Ad-
vanced Microscopy Techniques Corporation). �-Cells were recognized by the
typical ultrastructural appearance (13). The area and number of �-cell
mitochondrion and dense core insulin granules were quantified by analyzing
50–100 10,000� magnification electron microscopic images from random
areas of islets isolated from each mouse. Area and number were determined
by using the threshold setting and the particle analysis tool in Image J
software.
Islet GSIS and ATP/ADP ratio. Islet insulin secretion and ATP/ADP
measurements were performed as described previously (23). Total islet
ATP/ADP ratio was determined in the islets after GSIS using the ApoSENSOR
ATP/ADP Ratio Assay Kit (BioVision, Mountain View, CA).
Mitochondrial membrane potential. Mitochondrial membrane potential
(��m) was measured using Rh123 in dispersed �-cells as reported previously
(21). Fluorescent responses after the addition of nutrient substrates (11
mmol/l glucose or 10 mmol/l ketoisocaproic acid [KIC]) and the respiration
inhibitor (5 mmol/l sodium azide) were compared with baseline (1 mmol/l
glucose) and used to characterize mitochondrial hyperpolarization and depo-
larization, respectively. A decrease in fluorescence corresponded to an
increase in ��m. The identification of �-cells was based on size and
mitochondrial hyperpolarization (21).
Mitochondrial Ca2� imaging. Dispersed islet cells were loaded with Rhod-2
(1 �mol/l) during a 45-min pretreatment at 37°C in Krebs-Ringer buffer. The
loaded cells were transferred to a perifusion chamber on the thermo platform
of an Olympus fluorescent BX51W1 microscope. Images were collected using
540 nm excitation and tetramethylrhodamine methyl ester emission filter set.

Estimation of oxidation of 2�,7�-dichlorodihydro-fluorescein-diacetate

(DCF). Oxidative stress was estimated in dispersed �-cells using the fluores-
cence emission of 2�,7�-dichlorodihydro-fluorescein-diacetate (DCF) as re-
ported previously (24).
Respiration measurements. O2 consumption was measured using a Clark-
type electrode coupled to an Oxygraph unit (Hansatech, Pentney, U.K.).
Freshly isolated, dispersed, and permeabilized (with saponin, 80 �g/ml, 5 min)
islets were suspended at a concentration of 0.6–0.9 mg protein/ml in incuba-
tion medium containing 0.25 mol/l sucrose, 10 mmol/l HEPES, 1 mmol/l MgCl2,
20 �mol/l EGTA, and 0.1% BSA, pH 7.3. Ascorbic acid (10 mmol/l) and
N,N,N�,N�-tetramethyl-p-phenylenediamine (TMPD) (0.4 mmol/l) were added
as substrate and used to estimate cytochrome c oxidase activity (25). Oxygen
kinetic traces were analyzed by measuring the slopes of the oxygen consump-
tion curves minus background. Respiration rates were converted into molar
oxygen units using O2 solubility in sucrose medium, as previously reported
(21).
RNA extraction, gene expression profile, and quantitative RT-PCR.

Sample processing, microarray experiments, and quantitative PCR were
performed as described previously (26), and primers are listed in supple-
mental Table S4 in the online appendix available at http://diabetes.
diabetesjournals.org/cgi/content/full/db09-0129/DC1.
Mitochondrial DNA analysis. Total DNA was extracted from islets using a
QIAamp DNA Mini Kit (Qiagen, Germany). The content of mtDNA was
calculated using quantitative PCR by measuring the ratio of mitochondrially
encoded Cox1, Cox2, and Cox3 versus a nuclear-encoded gene (�-actin).
Proteomic analysis. The global protein expression profiles of freshly iso-
lated islets from 10-week-old MKR and control mice were determined using
the isobaric tags for relative and absolute quantification (iTRAQ) quantitative
proteomic approach combined with high-performance liquid chromatography
mass spectrometry/mass spectrometry (HPLC-MS/MS). Three independent
iTRAQ analyses using islets from 8–10 mice were performed. The detailed
experimental design and results were reported elsewhere (26). Cluster
analysis of detected mitochondrial proteins was performed using GoMiner
(27) and GeneMAPP (28) programs.
Statistical analysis. All experiments were performed with islets pooled from
at least three to five mice of each genotype and three to six independent
preparations. Results are expressed as means � SE. Statistical significance
was assessed using either a Student’s t test or one-way or two-way ANOVA for
repeated measures followed by multiple Bonferroni comparisons. P 	 0.05
was considered statistically significant.

RESULTS

Insulin secretion and ATP/ADP ratio. At 3 weeks of
age, MKR mice are normoglycemic, but have significantly
increased fasting plasma insulin levels (P 	 0.001) com-
pared with WT (Fig. 1A and B). Five weeks of age
represents the time point just before the onset of hyper-
glycemia in MKR mice, whereas at 6 weeks, their blood
glucose is 
20 mmol/l (19). In contrast, 10-week-old MKR
mice were clearly hyperglycemic (P 	 0.001) and hyper-
insulinemic (P 	 0.001), and this was consistent with
previous results (Fig. 1A and B) (18,26). MKR mice are
hyperlipidemic by 3 weeks of age, and their plasma
triglycerides remain elevated throughout their lifespan
(18,29). Ex vivo islet characterization revealed no signifi-
cant difference in GSIS or ATP/ADP ratio at 3 weeks of age
(Fig. 1C and E). Islets isolated from 5- and 10-week-old
MKR mice had significantly higher basal insulin secre-
tion (data not shown) but did not stimulate secretion to
the same extent as WT islets in the presence of high
glucose (Fig. S1 in the online appendix and Fig. 1D).
Islets from 10-week-old WT mice showed increased total
intracellular ATP/ADP ratio after glucose stimulation,
whereas islets from diabetic MKR mice showed a
blunted response (Fig. 1F).
Mitochondrial membrane potential. Oxidative phos-
phorylation produces a proton gradient across the inner
mitochondrial membrane, which hyperpolarizes the mito-
chondrial membrane and drives ATP synthesis. Therefore,
we measured changes in ��m in �-cells using Rhodamine
123 (Rh123) under nutrient stimulation (30). At all ages,
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the addition of 11 mmol/l glucose hyperpolarized (de-
creased Rh123 fluorescence) and 5 mmol/l of the respira-
tory inhibitor NaN3 completely depolarized ��m (Fig.
2A–C and Fig. S2A in the online appendix). There was no
difference in glucose-induced hyperpolarization of ��m in
�-cells from 3-week-old MKR and control mice. However,
�-cells from 5- and 10-week-old MKR mice showed a 46
and 41% decrease in hyperpolarization of ��m, respec-
tively, suggesting defective glucose metabolism and mito-
chondrial function (Fig. 2C). Defective mitochondrial
function was further substantiated using KIC, which is a
direct substrate for the mitochondrial TCA cycle and

bypasses glycolysis (31). �-Cells from 3-week-old MKR
and control mice (Fig. 2D and F) exhibited a similar
response to KIC, whereas �-cells from 5- and 10-week-old
MKR mice displayed 41 and 56% lower hyperpolarization
of ��m, respectively (Fig. 2E and F and Fig. S2B in the
online appendix).
Mitochondrial Ca2�. The uptake of Ca2� into the mito-
chondria reflects mitochondrial metabolic capacity and
potentially activates key dehydrogenases of the TCA cycle
and OxPhos (32). At 3 weeks of age, 11 mmol/l glucose
caused a similar increase in Rhod2 fluorescence in islets
from MKR and WT mice (Fig. 3A and B), indicating similar
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mitochondrial calcium [Ca2�]m accumulation. However,
islets from 5-week-old mice showed a significant 40%
reduction (P 	 0.05) (Fig. 3C and D) and 10-week-old
diabetic islets showed an even greater 60% attenuation in
[Ca2�]m uptake in response to high glucose stimulation,
compared with WT (P 	 0.001) (Fig. 3E and F). Direct
confirmation of reduced [Ca2�]m loading capacity in MKR
islets was obtained using permeabilized �-cells (Fig. S3)
and a slight but significant reduction in cytosolic Ca2�

uptake was observed in whole islets from 6- and 10-week-
old MKR mice (P 	 0.05) (Fig. S4).

Mitochondrial respiration. Maximal respiratory capac-
ity of islet mitochondria was estimated by measuring the
activity of complex IV (cytochrome c oxidase) while using
ascorbic acid as substrate (25). The rate of decrease in
oxygen tension in the chamber, reflecting respiration by
mitochondria, was significantly lower in 10-week-old
MKR diabetic islet cells compared with WT (P 	 0.01),
indicating reduced mitochondrial oxidative capacity
(Fig. 3G and H).
Mitochondrial morphology. We documented mitochon-
drial morphology changes in pancreatic �-cells of hyper-
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insulinemic (3 weeks old), just before hyperglycemia (5
weeks old), and diabetic (10 weeks old) MKR mice using
electron microscopy. �-Cells in 3-week-old MKR and WT
mice had similar mitochondrial morphology (Fig. 4A and

B). Further quantitative analysis revealed no significant
difference in mitochondrial number and area or insulin
granule number (Fig. 4C and J and Fig. S6A–C in the online
appendix). �-Cells from 5-week-old WT mice showed
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abundant insulin granules and mitochondria (Fig. 4D and Fig
S6D), whereas MKR �-cells contained significantly less gran-
ules (P 	 0.05) (Fig. 4J and Fig S6E and F), 22% fewer
mitochondria (P � 0.1), and 30% larger mitochondria (P 	
0.05) (Fig. 4E and F). By 10 weeks of age, MKR �-cells
contained significantly less granules (P 	 0.001) (Fig. 4J and
Fig S6G–I) and 43% fewer mitochondria (P 	 0.001); how-

ever, each mitochondria was 
75% larger (P 	 0.01) (Fig. 4H
and I) compared with WT. Notably, the mitochondria in
these cells were often swollen, and the inner mitochondrial
membranes had a disrupted structure with abnormal cristae.
Molecular defects in MKR diabetic islets
Genomics. To investigate the molecular defects respon-
sible for the altered mitochondrial morphology and
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images at 10,000� magnification (Fig. S6) and number was quantified (J). A total of 50–100 images were analyzed per age with 5–7 mice per
genotype. Data are means � SE. *P < 0.05; **P < 0.01; ***P < 0.001 compared with age-matched WT.
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metabolic coupling in MKR �-cells, we performed a
simultaneous analysis of transcript and protein expression
profiles in freshly isolated islets from 10-week-old MKR
and WT mice (Table S1 and S2; Fig. 5 and Fig. S7). Using
the GoMiner software (27), we determined that 55 of 854
differentially expressed genes were located in mitochon-
dria based on Gene Ontology nomenclature. Approxi-
mately 50% (29 genes) of those genes were reduced in
MKR diabetic islets. Cluster analysis revealed that 17
genes in the mitochondrial inner membrane were dys-
regulated in diabetic islets, with 65% of them being
reduced. Several genes related to cell apoptosis, includ-
ing CYCS, LGALS12, and SGPP1, were upregulated in
MKR diabetic islets, whereas genes involved in gluta-
mate metabolism were decreased (Fig. 5D and Fig.
S7D). Genes in the OxPhos pathway, including Atp5o,
Atp5g1, Ndufa1, and Ndufa3, were increased in MKR
diabetic islets (Fig. 5F). Interestingly, neither the mi-
croarray nor qPCR results revealed a significant differ-
ence in the expression of transcription factors and
co-regulators such as nuclear respiratory factor 1
(NRF1), PGC1a, ESRRA, GABPA, GABPB, Tfam, Mfn2,
Polg1, and Ucp2 between the two genotypes (Fig. S7C).
These genes have previously been implicated in regula-
tion of the mitochondrial electron transport chain and
mitochondrial biogenesis (16,17).
Proteomics. Protein expression ultimately affects cellular
function, so we performed global protein profiling of islets
to complement the microarray data. Using an iTRAQ
proteomic strategy combined with HPLC-MS/MS, 
590
unique proteins were detected at 95% confidence in islets
from 10-week-old MKR and WT mice (26). Cluster analysis
based on subcellular location revealed 107 proteins be-
longing to the mitochondrial compartment, and 36 of these
proteins were differentially expressed in MKR diabetic
islets versus control (Fig. 5B, Table S3). Remarkably,

61% (22 proteins) of changed mitochondrial proteins
were located in the inner mitochondrial membrane, and all
but one (CYCS) of these proteins were decreased (Fig. 5B

and Fig S8B). Those inner membrane proteins are mainly
involved in mitochondrial OxPhos and include key en-
zymes in the TCA cycle, �-oxidation, glutamate metabo-
lism, and electron transport chain (Fig. 5B–F). A
comparison of the 55 differentially expressed genes and 36
proteins revealed only 10 gene-protein pairs that changed
similarly at both the mRNA and protein level (Fig. 5A and
B), implying that posttranslational modifications must
contribute significantly to the decrease in protein and
altered mitochondrial phenotype.
DCF fluorescence and mtDNA measurement. We quan-
tified the amount of DCF fluorescence and measured the
expression of antioxidant genes by qRT-PCR (24,33). At 3
weeks of age, MKR and WT dispersed islets showed
similar oxidation of DCF and no major differences in
antioxidant enzyme expression (Fig. 6A, B, and E and Fig.
S9A). However, at 10 weeks of age, MKR islet cells
exhibited a marked twofold increase in the fluorescent
signal from oxidized DCF (P 	 0.001) and significantly
upregulated antioxidant gene expression compared with
WT (Fig. 6C, D, and F and Fig. S9B). Chronic exposure to
pro-oxidants leads to mtDNA damage in a variety of
experimental models (16,34). The ratio of mtDNA to
nuclear DNA in islets isolated from 3-week-old mice was
similar (Fig. 6G); however, mtDNA content was signifi-
cantly lower in 10-week-old MKR islets (Fig. 6H).

DISCUSSION

Our study reveals that mitochondrial defects do not ap-
pear during the early stages of insulin resistance (3-week-
old MKR mice); however, just before the onset of
hyperglycemia, mitochondrial defects are already appar-
ent, and when the mice are diabetic (hyperglycemic,
hyperinsulinemic, and hyperlipidemic [35]), there are clear
metabolic and morphological defects in �-cell mitochon-
dria. Consistent with abnormalities in mitochondrial mor-
phology and decreased OxPhos, 22 of 36 differentially
expressed mitochondrial proteins were located in the
inner membrane, and 95% of them were decreased in MKR
diabetic islets. Complexes I–IV of the electron transport
chain are located at the inner mitochondrial membrane,
and the flux of electrons along this respiratory chain
establishes the proton gradient, which in turn generates
the ��m and drives the production of ATP. In �-cells from
MKR mice, just before and after the onset of hyperglyce-
mia, glucose-induced hyperpolarization of ��m was re-
duced compared with control. Our finding is in agreement
with a study that showed lower glucose-induced ��m and
ATP/ADP ratio in islets from human type 2 diabetic
patients (12). These changes could be mediated by re-
duced glucose sensing, reduced mitochondrial metabo-
lism, or a combination of both. However, the reduced ��m
hyperpolarization in response to KIC (which is a direct
substrate for the TCA cycle, bypassing glycolysis) suggests
that impaired glucose sensing is not the primary defect. No
alteration in glucokinase expression (data not shown)
corroborates this idea. Despite having significantly less
insulin granules at 5 and 10 weeks of age, the MKR mice
maintain the ability to secrete insulin in vivo in response to
potent secretagogues such as arginine (19). Therefore, the
inability of glucose to hyperpolarize ��m is likely a key
defect, resulting in a reduced ATP/ADP ratio and GSIS.

The proteomic scan of MKR diabetic islets revealed
decreased expression of multiple proteins involved in
oxidative metabolism, including several components of
the mitochondrial respiratory chain. The reduction of
three components in complex IV, which regulates COX
activity in response to ATP binding (36), may be respon-
sible for the lower rate of cytochrome c oxidase–depen-
dent oxygen consumption in MKR diabetic islets.
Decreased cytochrome c oxidase activity has previously
been demonstrated in islets from a diabetic patient (37),
and a critical role of mitochondrial substrate oxidation in
the �-cell has been demonstrated in patients with muta-
tions in the mitochondrial genome (38). Similarly, we
observed that proteins related to oxidative pathways were
decreased in 10-week-old diabetic islets. Electron transfer
flavoproteins are necessary electron acceptors for many
dehydrogenases in the mitochondria, which then transfer
electrons to the mitochondrial respiratory chain via elec-
tron transfer flavoprotein–ubiquinone oxidoreductase
(39). The reduction in electron transfer flavoproteins likely
reduces flux through the respiratory chain in MKR �-cells.
Furthermore, downregulation of the adenine nucleotide
translocator (SLC25A4) was observed in MKR islets. Ade-
nine nucleotide translocators transfer ATP to the cytosol
in exchange for ADP (40). Collectively, the downregula-
tion of these numerous mitochondrial proteins in MKR
islets are likely associated with the decreased oxidative
function, ATP production and transport, and consequently
impaired GSIS.
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Mitochondria couple cellular metabolism with Ca2�

homeostasis and signaling. Several studies have suggested
a role for enhanced mitochondrial Ca2� in modulating ATP
levels and insulin secretion from cells (rev. in 32); how-
ever, this idea is somewhat controversial (30,41). In turn,
mitochondrial Ca2� uptake is highly dependent on the
potential gradient of the inner mitochondrial membrane.
MKR pre-diabetic and diabetic �-cells exhibited signifi-
cantly attenuated mitochondrial Ca2� uptake in response

to glucose, which could not be accounted for by reduced
cytosolic Ca2� uptake. It is difficult to distinguish whether
the lower mitochondrial Ca2� capacity has reduced the
activity and hence expression of enzymes regulating the
TCA cycle (such as IDH2 and OGDH) to further augment
the mitochondrial respiratory defect or if the reduced
Ca2� uptake is a consequence of impaired hyperpolariza-
tion of ��m due to a reduced flow of substrate through the
electron transport chain. Regardless, the data support the
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FIG. 6. Increased pro-oxidant levels and mitochondrial DNA damage in MKR diabetic islet cells. Dispersed islet cells from 3-week-old (A and B)
and 10-week-old (C and D) mice were incubated with 10 �mol/l DCF in Krebs-Ringer buffer containing 2.8 mmol/l glucose for 45 min at 37°C. After
washing with Krebs-Ringer buffer, cell fluorescence was measured at 480 nm excitation and 510 nm emission using an Olympus fluorescent
BX51W1 microscope. A–D: Representative fluorescent (upper panel) and light (lower panel) images of the islet cells. E and F: The average
fluorescence intensity was calculated by tracing around each cell and averaging the fluorescence across the entire field of view. (n � 4 with three
mice per genotype in each experiment.) mtDNA quantity (G and H) was calculated as the ratio of COX to �-actin DNA levels. (n � 3 with 8–10
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representation of this figure is available in the online issue.)
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idea of reduced mitochondrial metabolic capacity in MKR
islets just before and after the onset of hyperglycemia.

A potential consequence of mitochondrial dysfunction is
increased production of ROS. Indeed, we observed that
10-week-old diabetic islets exhibited a twofold increase in
the production of oxidized DCF but enhanced expression
of antioxidant genes compared with control. Generally,
increased ROS is a function both of the efficiency of
transfer of electrons through the respiratory chain and the
level of antioxidant defense in the cell (normally low in
�-cells) (42). The enhanced antioxidant gene expression in
diabetic MKR islets suggests a compensatory response for
the increased oxidative stress (33). Therefore, it appears
that the oxidative stress is probably a consequence not a
cause of the mitochondrial metabolic dysfunction we
observe in 10-week-old MKR islets. The proteomics study
revealed decreased expression of a major mitochondrial
antioxidant protein, manganese superoxide dismutase
(SOD2), in MKR diabetic islet mitochondria. Interestingly,
gene expression of Sod2 was not changed, again showing
the importance of posttranslational modification. SOD2
converts superoxide to oxygen plus hydrogen peroxide
and serves as the primary defense against mitochondrial
superoxide accumulation (43). Impaired SOD2 activity has
been found in islets from type 1 and 2 diabetic patients
(44,45) and type 1 diabetic animals (46). Collectively, the
increased oxidative stress and attenuated ��m in MKR
islets potentially cause further deterioration of mitochon-
drial function.

The mitochondria of pre- and posthyperglycemic MKR
�-cells were swollen and distorted with fewer dense core
insulin granules. These data lend further support for the
concept of altered mitochondrial function in the develop-
ment of diabetes in MKR mice. The inner mitochondrial
membrane protein, mitofilin (IMMT), which was recently

reported to control cristae morphology and facilitate cor-
rect mitochondrial function (47), was decreased in MKR
diabetic islets at the protein but not mRNA level (Fig. 5B),
confirming again the importance of posttranslational mod-
ification in the regulation of the mitochondrial inner
membrane. Downregulation of mitofilin in Hela cells
caused a drastic change in the organization of the inner
membrane and was associated with high ROS produc-
tion (47). Thus, mitofilin may be a critical organizer of
the mitochondrial cristae morphology and indispens-
able for normal mitochondrial function; however, this
requires further validation. These changes in mitochon-
drial structure may be a biomarker for altered mitochon-
drial function. Several studies support that mitochondrial
morphology and metabolism play a linked role in �-cell
function and survival in vitro (9 –11). In addition, hyper-
glycemia-induced ROS production caused dynamic changes
in mitochondrial morphology (48), and hyperglycemia was
associated with enlarged mitochondria in Zucker diabetic
fatty (ZDF) rat islets (49). Exposure of human pancreatic
islets to cytokines induced �-cell damage, caused mito-
chondrial swelling and enlargement, and ultimately re-
duced cell survival (50). A distorted morphology similar to
that in MKR mouse islets has been reported in �-cell
mitochondria from diabetic mice with impaired respira-
tory chain function (7) and human type 2 diabetic patients
(12). Whether the decreased mitochondrial function seen
in MKR diabetic islets was caused by reduced mitochon-
drial content or reduced functional capacity of mitochon-
dria is unclear. Compared with control mice, we showed a
significant decrease in mtDNA in MKR diabetic islets,
which indicates that decreased mitochondrial content at
least partly explains reduced mitochondrial metabolic
coupling. However, when cytochrome c oxidase–depen-
dent oxygen consumption rate was normalized to mtDNA,
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a significant decrease was still observed. This result sug-
gests that functional impairments in mitochondrial oxida-
tive function are not fully accounted for by reduced
mtDNA, but by the interplay of decreased mitochondrial
function and content.

In conclusion, based on our analysis of the proteomic/
transcriptomic/metabolic phenotype of MKR mice, we
propose the following sequence of events for the progres-
sion of insulin resistance to �-cell dysfunction (Fig. 7): the
reduction of multiple proteins in the mitochondrial inner
membrane impairs OxPhos, initiating a cycle of reduced
redox-stimulated mitochondrial metabolic coupling fac-
tors, causing decreased ��m and mitochondrial Ca2�

capacity, a decline in ATP generation, and impaired GSIS.
Concomitantly increased islet oxidative stress might fur-
ther impair OxPhos and transduction of the glucose-
sensing signal. Moreover, reduced expression of the
adenine nucleotide translocator would inhibit the translo-
cation of ATP to the cytosol, further inhibiting normal
electron transport until the rate of ATP production falls
below that of ATP demand, resulting in metabolic failure
and impaired insulin secretion. Interestingly, many of the
observed mitochondrial impairments and reduced GSIS
occurred just before overt hyperglycemia and therefore
suggest that improving mitochondrial function may im-
prove defective �-cell secretion seen in type 2 diabetes.
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