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Abstract
We present a survey of recent advancements in the emerging field of patient-specific modeling (PSM). Researchers
in this field are currently simulating a wide variety of tissue and organ dynamics to address challenges in various
clinical domains. The majority of this research employs three-dimensional, image-based modeling techniques.
Recent PSM publications mostly represent feasibility or preliminary validation studies on modeling technologies,
and these systems will require further clinical validation and usability testing before they can become a standard
of care. We anticipate that with further testing and research, PSM-derived technologies will eventually become
valuable, versatile clinical tools.

computer simulation; clinical decision support techniques; computer-assisted three dimensional imaging

INTRODUCTION
Patient-specific modeling (PSM) is the development

of computational models of human pathophysiology

that are individualized to patient-specific data. PSM

is gaining more attention from research groups

around the world because of its potential to improve

diagnosis, optimize clinical treatment by predicting

outcomes of therapies and surgical interventions, and

inform the design of surgical training platforms. Most

current medical diagnostic practices lead to rough

estimates of outcomes for a particular treatment

plan [1], and treatments and their outcomes usually

find their basis in the results of clinical trials.

However, these results might not apply directly to

individual patients [2] because they are based on

averages. As an alternative, PSM can be used as

a theranostic tool to tailor treatment and optimize

an individual’s therapy. PSM is also valuable for

obtaining information on physical properties that

cannot be measured, such as tissue stress, which,

for example, might serve as a better predictor of

the likelihood of rupture in vascular aneurysms [3].

Recently, PSM has drawn attention from gov-

ernment funding agencies. In 2006, the European

Union initiated a consortium ‘Structuring the

Europhysiome’, which has led to the Virtual

Physiological Human (VPH) project [4, 5]. This

project aims to stimulate research in the field of

PSM for personalized and predictive healthcare,

and encompasses a number of more specific sub-

projects [6]. In November 2007, the National

Institutes of Health (NIH) posted a Funding

Opportunity Announcement regarding PSM

(Predictive Multiscale Models of the Physiome

in Health and Disease [7]). One of the major

goals of this grant is to stimulate the design of real-

istic computational models to make predictions

about clinical outcomes. More recently, as a

direct result of the American Recovery and

Reinvestment Act of 2009, the National Institute

of Biomedical Imaging and Bioengineering

announced a challenge grant ‘Towards the Virtual

Patient’, with the same goal as the prior NIH

announcement.
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Despite the attention, PSM has not yet become

a standard of care in clinical practice because evalu-

ation of the predictive capability of these models

has not yet been performed on a large scale [8].

A possible explanation for the lack of such studies

could be related to the many manual steps in the

workflow from data acquisition to model result [8].

Therefore, one of the challenges is to automate

particular steps in this workflow as much as possible

[8–14]. Figure 1 shows the typical aspects of this

workflow with a specific focus on three-dimensional

(3D) model creation and validation.

The goal of this article is to more broadly illumi-

nate recent work in PSM by providing a survey of

current publications in the field, to discuss these

advancements, and describe the challenges that

modelers currently face. We selected the publications

included in this survey from a PubMed search on

‘patient-specific modeling’ performed in May 2009.

This search was limited to articles published between

January 2008 and May 2009. We have organized the

article according to the tissues and organs modeled

in these publications: blood vessels, heart, bones,

brain, skeletal muscle and teeth/periodontia. We

also include a section on modeling tumors because

it has received much attention in recent literature.

We hope that this survey will introduce modelers

and clinicians to new modeling methods and tech-

nologies, and encourage the cross-pollination of

modeling techniques among the various research

communities working in PSM.

BLOODVESSELS
Appearing in the late 1990s, PSM of blood vessels

aims to investigate the effects of cardiovascular

devices on physiologic function and to predict out-

comes of therapies for individual patients [15]. This

field uses imaging techniques [e.g. magnetic reso-

nance imaging (MRI), computed tomography

(CT), ultrasound (US)] and image processing (acqui-

sition, segmentation and registration techniques) to

generate meshes on which mathematical models

of fluid flow (e.g. the Navier–Stokes equation)

are solved computationally [8, 15]. These are

referred to as models of computational fluid

dynamics (CFD). In models that incorporate fluid-

solid interactions, the mechanics (deformation and

stresses) of the vessel wall are also taken into account.

In CFD models, fluid velocity vectors and pressures

are calculated throughout the domain of interest,

constrained by boundary conditions. The latter typi-

cally involve no-slip boundary conditions at the

vessel wall and in- and outflow boundary conditions

Figure 1: Typical workflow for creating and validating a 3D, patient-specific model. Assignment of patient-specific
material properties could include additional steps in which material parameters are estimated using a numerical-
experimental approach (when properties cannot be measured directly or obtained from external sources).
PS, patient-specific; Asterisks, if required.
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at the in- and outlet of the vessel. Computational

methods to solve these problems include the finite

volume method, finite element (FE) method and

finite difference method. The popular FE method

is used to solve partial differential equations (PDEs)

on complex-shaped domains for a variety of physical

problems, including CFD, solid mechanics, electric

and magnetic fields and electrophysiology. For the

FE method, a continuous domain is discretized into

elements and nodes and the solution is approximated

on the domain by linear or higher order functions,

which are defined in the elements. For an in-depth

explanation of the FE method, see Finite Element

procedures by Bathe [16].

Of all the modeling subfields discussed here,

PSM of blood vessels had the highest number of

recent publications. Additionally, several recent

reviews focus specifically on PSM of blood vessels.

Ricotta et al. [1] reviewed methods regarding carotid

and coronary stenoses, aortic aneurysms and aortic

dissection. Taylor and Figueroa [15] focused on

methods for obtaining anatomic and physiologic

data, computational methods and applications

regarding disease and intervention prediction and

listed important future developments that are neces-

sary for advancing the field.

The majority of papers regarding PSM of blood

vessels focus on aneurysms, which are pathological

dilations of the artery walls. These dilations are asso-

ciated with high mortality and morbidity rates due

to hemorrhage following rupture. In recent compu-

tational studies, two types of aneurysms have gained

much attention: those of the abdominal aorta and

arteries in the brain.

Abdominal aortic aneurysm
Abdominal aortic aneurysms (AAA) occur in 2–4%

of males over the age of 65 in the West [17].

Rupture of an AAA is associated with a mortality

rate of 50–75%.

The main objective for modeling of AAA is

to improve the prediction of rupture so that an inter-

vention can be performed [3, 18]. Currently, aneur-

ysms are repaired when the maximal diameter

exceeds 5.0–5.5 cm, but other factors such as throm-

bus formation make it impossible to obtain an abso-

lute correlation between size and risk of rupture.

Recently, it has been suggested that asymmetry

should be taken into account in rupture risk assess-

ment [3] because of a redistribution of wall stress.

In assessing wall stress, most studies have assumed

isotropic material properties of the cardiac wall.

However, researchers have shown that anisotropic

properties yield higher peak stresses [19, 20]. This

more realistic implementation demonstrates that

it is likely more important that material properties

be obtained on a patient-specific basis [19].

Prediction of rupture might be greatly improved

when vessel growth and remodeling is taken into

account [21, 22]. To this end, Figueroa et al. [21]

recently presented a new computational framework

of fluid-solid mechanics in which their coupled

momentum method [23] is combined with stress-

mediated growth and remodeling algorithms.

Cerebral aneurysm
Cerebral aneurysms occur in �2% of the population

[24]. The 1-month case fatality rate of rupture

of a cerebral aneurysm (leading to subarachnoid

hemorrhage) is estimated to be between 30 and

40% [25]. Two-thirds of survivors of cerebral

aneurysm rupture experience a reduction of quality

of life.

As with AAAs, it is believed that wall stress is

a better predictor of rupture than, for example,

aneurysm diameter [26]. Regions of rupture might

also be influenced by concentrated jets impinging

on the walls [27].

Most computational studies of cerebral aneurysms

have focused on assessing the effects of interventions,

such as clipping of arteries [28] and cardiovascular

devices such as stents [29], on hemodynamics. The

main goal is to use computational models to opti-

mize treatments and devices, taking into account

factors that play a role, such as thrombus formation

[28, 30, 31]. In stent design, Kim et al. [29] recently

demonstrated that flow rate and wall shear stress are

influenced by stent porosity, strut design and mesh

hole shape.

Material properties
Most CFD studies assume Newtonian fluid behavior

(constant fluid viscosity, as with water). Rayz et al.
[30] showed that in two out of three patient models,

the use of non-Newtonian fluid behavior (where

viscosity depends on the fluid shear rate, as with

blood) improved the relation between regions of

slow flow and thrombus formation. Because it has

been shown that wall shear stress is increased in the

presence of turbulent flow, Tan et al. [32] employed

newly developed turbulence models and transitional

variants in CFD simulations. They concluded that
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the results from the transitional models are closer to

reality, but that further validation is necessary.

Interventions, cardiovascular devices and
surgical planning
Marsden et al. [33] tested the performance of two

Y-graft designs used in the conduit Fontan operation

with CFD. The Y-grafts improved the distribution

of blood flow to both lungs as opposed to other

employed methods. The authors conclude that

this design is promising and should be evaluated clin-

ically, but more studies are needed to verify

improvements.

To treat patients who were born with one cardiac

ventricle and persistent left superior vena cava

(LSVC), the procedure of bilateral bidirectional

Glenn (BBDG) is usually applied. Sun et al. [34]

investigated the power losses and flow patterns of

a patient-specific BBDG connection at different

levels of pulmonary flow splits and found this to

be dependent on the flow ratio between left and

right pulmonary arteries. Such surgeries on congen-

ital heart defects require a prolonged cardiopulmon-

ary bypass (CPB), affecting 20,000 children

annually. However, during commonly performed

CPB, major disturbances in flow and perfusion

were observed through modeling, demonstrating

the need for optimized CPB configurations, wave-

forms and cannula tip designs [35].

Two other recent articles describe systems con-

cerned with planning cardiovascular surgeries, one

for peripheral vascular bypass [36], and one for cor-

recting congenital heart defects [37]. The former

system uses a one-dimensional (1D) model to simu-

late blood dynamics in the peripheral vasculature.

The latter allows users to manipulate and deform

3D PSM of cardiovascular anatomy like sculpting

clay, then recompute the alterations in blood flow

through the modified vessels.

Validation
For both aortic and cerebral aneurysms, researchers

have focused on validation of their methods. In

many cases though, studies were focused on validat-

ing newer measurement techniques with CFD simu-

lations. The main findings of these studies were that

(i) phase-contrast magnetic resonance angiography

(PC-MRA) is accurate in determining velocities,

but cannot accurately quantify wall shear stress

[38], (ii) that it should only be used for inlet and

outlet boundary conditions in numerical simulations

[39, 40] and (iii) that inlet boundary conditions

may have important implications for aneurysm

growth [41].

Future challenges
Investigators are faced with several challenges

related to the accurate prediction of vessel wall

stress. First, wall thickness is an important determi-

nant of wall stress. Hence, in order to improve

predictions of aneurysm rupture, research methods

for the assessment of patient-specific vessel wall

thickness are necessary [42]. Currently, CT and

MRI are not accurate enough to obtain this

in vivo. Secondly, growth and remodeling algorithms

are expected to improve model predictions in the

long term, but experiments need to be performed

to validate these types of algorithms [21, 22].

Finally, methods need to be applied that will

obtain unloaded vessel geometries [43, 44]. Most

current studies generate anatomical models from

vessel geometries and define these as the undeformed

state in FE models. This will lead to an over-

estimation of wall stress, because in reality, vessels

in patients are subject to (varying) pressures and are

therefore in a deformed state.

BONES
Examples of recent PSM studies on bones focus on

vertebrae [13, 45–49], the pelvis [14, 50, 51], the

femur [52–54], the mandible [55], glenoid bone

[56], the index finger [10], knee joint [57] and

skull [58]. Bone is typically assumed to be physically

and geometrically linear; hence the linear FE method

is often used to model this tissue. Cartilage, however,

is much softer, necessitating non-linear FE methods

with neo-Hookean material behavior assigned to

cartilage [50].

Vertebrae
Drevelle et al. [45] published results on PSM of chil-

dren’s spines, and demonstrated that their model

could potentially predict the progression of scoliosis

(a condition in which the spine is pathologically

curved). In the following year, this group simulated

all the steps involved in these specific surgeries

and demonstrated that their modeling methods pre-

dicted the outcome of corrective surgery for scoliosis

in 20 patients [46]. These simulations may help in

optimizing scoliosis corrective surgery [46, 49] or

scoliosis brace design [48] because it has been
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shown that techniques employed by different sur-

geons result in different outcomes [47].

Mesh generation can be a limiting step with

respect to speed in the workflow of generating

PSM, thus O’Reilly and Whyne [13] proposed

a method in which meshes of vertebrae are

created from an existing parametric mesh using

morphing techniques. This method results in a

rapid generation of patient-specific vertebrae geome-

tries. Additionally, in performing a simulation of

imposing load on the vertebrae, patient-specific

material properties were assigned to the cortical

and trabecular bone, based on the density from

the CT images [59, 60].

Pelvis
3D modeling of the pelvis has applications in

treating osteoarthritis patients and in anticipating

the effects of total hip arthroplasty. For example,

Anderson et al. [50] developed a new FE model

that simulates cartilage contact pressure in the hip

joint and provides a non-invasive means of charac-

terizing patient-specific hip joint mechanics. In

another recent study, Barrat et al. [51] developed

a 3D modeling method based on US data, principle

component analysis and statistical shape models

(SSM) in order to avoid the risks associated with

CT scans performed before orthopedic surgery.

They showed that their method could be used

to generate accurate models of the pelvis and

femur surfaces during total hip replacement sur-

gery without a CT scan. Both of these hip modeling

studies used a small number of cadavers for validation

data, illustrating the need for more comprehensive

clinical validation of these pelvic models. Shim

et al. [14] recognized this need and therefore devel-

oped a new, faster FE modeling process that may

accelerate wider model validation. They show that

larger FEs can be used in their models to speed

up computations without sacrificing model accuracy

and efficacy. They also demonstrated that sparse, or

incomplete sections of patient-specific hip models

can be supplemented with generic data from the

Visible Human [61] to make more complete

models. This development is important in determin-

ing a ‘minimum PSM dataset’ that is necessary in

order to design a reliable predictive model.

Femur
In order to reduce risk of a mal-aligned component

and notching with subsequent femoral neck fracture,

Bailey et al. [52] validated a computer navigation

system for setting the femoral component stem

shaft angle during hip resurfacing surgery. Using

this imageless method, surgeons identified anatomi-

cal landmarks on the shaft, and the computer created

a PSM for setting the shaft angle. The study shows

that surgeons were able to accurately and consistently

place the femoral component at the planned target

angle using the computer navigation system. The

system was validated using a relatively high number

of human patients (35) undergoing hip resurfacing

surgery.

Zheng and Schumann [54] provide another

example of a study aimed at minimizing the radiation

exposure necessary to construct 3D surface models

of bone. They tested a method using point distribu-

tion models for creating 3D representations of the

proximal femur from 2D calibrated X-rays. Their

study showed clinically accurate validation against

data from 22 cadaver bones.

Finally, Pahr and Zysset [53] published a study

aimed at creating numerically efficient FE models

of femoral and vertebral bone. The authors detail

a modeling technique that includes a new self-

correcting cortical shell thickness evaluation algo-

rithm for generating bone iso-surface meshes.

Other bones
Researchers have recently used PSM to model a

variety of other bones. de Zee et al. [55] used PSM

to determine that differences between the left and

right articular eminence inclinations in the mandible
of a single patient were consistent with a minimiza-

tion of joint loads. Their model predictions of the

final shape of the eminence following distraction

osteogenesis were consistent with measurements

made 6.5 years after the procedure.

Diedrichs et al. [56] used PSM to quantify glenoid
bone defect sizes and generate bone graft shapes

from models of non-pathological contralateral

bone. Their method was validated using five cada-

veric specimens and may ultimately help surgeons

create bone grafts that more anatomically fit these

defects.

To further automate the generation of 3D bone

models, Gasmann et al. [10] created an artificial

neural network (ANN) to automatically segment

the bones of the human index finger from CT scans.

The results of the neural network showed good

agreement with results from two trained human

technicians, and were computed in less than one-
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tenth of the time needed by the technicians.

Subburaj et al. [57] also sought to automate model

generation further by creating a system that auto-

matically localizes and labels anatomical landmarks

on knee joint models. Their system analyzes the sur-

face curvature of the model and labels regions using

a ‘spatial adjacency relationship matrix’. The auto-

mated program performed as well as or better when

compared to labeling performed by three experi-

enced orthopedic surgeons.

Lastly, a study by D’Ambrosio et al. [58] used

PSM to locate the least-invasive surgical paths

through the skull and into the brain during a craniot-

omy procedure. This work represents the first

patient-specific objective cranial base approach

assessment model in the literature

Future challenges
The high contrast that bone tissue provides during

CT and US imaging has helped facilitate the auto-

mated segmentation techniques mentioned above.

However, to further validate these methods, they

must be tested using other bones and other imaging

modalities [10]. Also, several authors have stressed

the need for more patient data for performing fur-

ther validation studies on bone models [54, 55, 62]

and for expanding training sets used for SSM [51]

and ANN processing [10].

HEART
Recent studies of patient-specific cardiac modeling

other than coronaries (see ‘Blood vessels’ section)

focused on ventricular fluid flow [63, 64], electro-

physiology [65, 66], growth and remodeling [67],

valve mechanical behavior [68, 69], circulation

hemodynamics [70] and electromechanics [71, 72].

Since the beginning of this millennium [73, 74],

more groups around the world are recognizing that

the combination of whole heart electrophysiology

and mechanics—electromechanics—is important for

a good understanding of cardiac regional and global

function. Recently, more efforts are being directed

into the development of tightly coupled models

of cardiac electromechanics at or above the tissue

level [75–80]. Because electromechanical events

take place at the (sub-) cellular level, these models

are generally multiscale in nature. For a thorough

recent review on multiscale modeling that focuses

on the heart we refer to Southern et al. [81].

Cardiac tissue is typically assumed to be physically

and geometrically non-linear (strain magnitudes of

50% are normal). Hence, non-linear FE methods

are used to solve these modeling problems.

Interventions and cardiovascular devices
Doenst et al. [63] investigated the effects of left

ventricular reconstructive surgery, which involves

removal of diseased cardiac tissue, on left ventricular

blood flow and showed that ejection fraction and

blood washout increased slightly. For the right

ventricle, Tang et al. [64] demonstrated that right

ventricular performance and wall stress can be opti-

mized by adjusting the amount of scar removal and

patch design.

Although implantable cardiac defibrillator (ICD)

systems are routinely implanted in adult patients

using a transvenous approach, this is not possible

in children due to their small size. Jolley et al. [65]

used models of the torso and heart in children to

investigate the effects of ICD lead placement on

electric fields. Relatively small changes in electrode

position resulted in significant changes in predicted

defibrillation thresholds (DFT) and lengthening

the electrode decreased DFT and distribution of

the voltage gradient.

Starfinger etal. [70] proposed a method to identify

septic shock with a minimum set of measurements

to obtain patient-specific parameters for the circula-

tion and tested this successfully in pigs. The model

accurately captured hemodynamics throughout the

course of sepsis. The investigators proposed that

the estimation of systemic resistance could be

used as an indicator for admission of medicine in

critical care.

Cardiac electromechanics
Le Rolle et al. [71] proposed a model-based approach

to analyze Tissue Doppler Imaging (TDI). TDI

is used to evaluate regional contraction in the

myocardium of the heart and has been useful in

differentiating healthy from ischemic tissue. Model

parameters for the left ventricle were estimated

by minimizing strain signals between the computa-

tional model and strain signals obtained with TDI

in several myocardial segments. The model was

able to identify failing segments in a patient with

dilated cardiomyopathy.

A set of simplified models of cardiac electrome-

chanics and a workflow for obtaining patient-specific

data was proposed by Kerckhoffs et al. [82] and

Sermesant et al. [72]. Their workflow includes
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obtaining ventricular geometry with MRI, electrical

parameter values by electroanatomical mapping

and mechanical parameter values by matching simu-

lated and measured LV volumes. A similar strategy

regarding electrophysiology was proposed by Pfeifer

et al. [66] in which the torso was also included.

Future challenges
Most future challenges of PSM of blood vessels,

such as experiments needed to validate growth and

remodeling algorithms [83] and determination of

unloaded geometries, also apply to cardiac modeling.

Southern et al. [81] noted the challenge of designing

computational models that can be used for long-QT

drug trials. To date, many (non-cardiovascular) drugs

do not pass the trial phase, because they have the

side effect of prolonging the QT phase in the

ECG, which may lead to arrhythmias. Indeed,

computer-aided drug design is now a widely recog-

nized field that facilitates the design and discovery of

new drugs [84, 85]. The preDiCT project, part of

the VPH [86], aims to predict the impact of drugs on

the heart’s rhythm using computer models. Multi-

scale computational cardiovascular models could

reduce the costs associated with clinical trials and

could even lead to drug design tailored to the

patient.

BRAIN
PSM of the brain has recently focused on simulating

deep brain stimulation (DBS) for patients with

Parkinson’s Disease and other movement disorders

[87–89], brain deformations as a result of craniotomy

procedures [90, 91], needle-tissue brain interactions

[92], and intracranial pressure dynamics in traumatic

brain injury patients [93]. All these studies employed

the FE method to obtain model solutions except

the publication by Wakeland et al., in which a com-

partmental fluid dynamics model was used.

Deep brain stimulation
DBS is an established treatment procedure for

patients with Parkinson’s disease (PD) where either

the globus pallidus or subthalamic nuclei are

stimulated using surgically implanted electrodes.

However, researchers do not completely understand

the mechanisms whereby this treatment imparts ben-

efits to the patient. To illuminate these mechanisms

two research groups [87, 88] developed 3D PSM

from either MRI or CT scans that simulated the

electrical stimulation procedure. Astrom et al. [87]

describe their general FE model-generation method

and its use in identifying brain regions affected

during DBS in one patient studied retrospectively.

Their simulations help explain why the patient

showed negative side effects following DBS: the

simulated electrical field generated during stimula-

tion covered brain regions implicated in those side

effects.

Maks et al. [88] also created 3D patient-specific

brain models to help understand the positive effects

of DBS in PD patients. The authors simulated DBS

using models created from scans of 10 different PD

patients. They found that in the five patients that

responded best to DBS, all but one had the majority

of their activated tissue volume outside the subtha-

lamic nucleus. This finding suggests that the stimu-

lation of tissue outside the subthalamic nucleus

may be an important contributor to the therapeutic

benefits of DBS.

Brain deformation during craniotomy
Two recent papers describe PSM studies aimed at

predicting brain deformation following the removal

of part of the skull. To find an optimally detailed

model for predicting deformation, Wittek et al. [91]

produced FE brain models from a single patient at

three different complexity levels. They found that

the linear elastic model, the least complex, per-

formed just as well as hyperviscoelastic and hyper-

elastic alternatives in predicting intra-operative

positions of brain landmarks. They recommend

using the simpler model because it affords a 29%

savings in computational time, but note that, while

applicable to a wide variety of neurosurgical situa-

tions, their method does not extend to surgeries

involving cutting and/or tissue removal.

Shiavone et al. [90] also considered the problem

of predicting brain deformation during craniotomy.

In their recent article they describe a new method

for extracting a constitutive law of brain elasticity

using an elasticity-measuring device applied in vivo.
Clinicians may be able to better tune patient-specific

FE brain models using data from this device and thus

better predict deformation during surgery.

Needle-tissue brain interactions and
intracranial pressure dynamics
In developing technology for modeling/planning

surgeries, Wittek et al. [92] validated a new FE

model that predicts force dynamics during needle
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insertion into the brain. Their model accounts for

material and geometric non-linearities and showed

good agreement with empirical validation measure-

ments from pigs. However, their method depends

on measuring patient-specific material properties

of the brain and meninges. The authors stress the

need for technology, such as that described above

by Shiavone et al. [90] that would provide such

measurements in humans.

Using a compartmental fluid dynamics model,

Wakeland et al. [93] developed a method for predict-

ing intracranial pressure (ICP) dynamics in patients

with traumatic brain injury. Their system predicted

changes in ICP for nine patients during respiratory

rate and head of bed elevation challenge sessions.

The system show modest success in predicting ICP

dynamics given an initial parameterization phase at

the start of a session, but less success when this para-

meterization was used to predict dynamics in subse-

quent sessions.

Future challenges
Recent authors have stressed the need for more

accurate segmentation and registration methods

for brain structures [87, 89]. These methods may

improve if the resolution of diffusion tensor

imaging for modeling heterogeneous brain tissue

can be increased [89]. There are also future chal-

lenges for integrating in vivo brain elasticity measure-

ments with other published models [90] and for

more precisely characterizing the physical properties

of brain tissues such as gray and white matter [87],

the pia mater and meninges [92].

SKELETALMUSCLE
Recent studies regarding musculoskeletal PSM

have focused on shoulder muscle forces during

wheel chair propulsion [94], treatment of walking

patterns [95] with multibody dynamical models,

and treatment of deep tissue injury with non-linear

large-deformation FE models [96, 97].

Muscle dynamics
Many wheelchair users may experience shoulder

strain injuries. The design and analysis of patient-

specific musculoskeletal models of the upper body

might help to optimize wheel chair design to

reduce shoulder pain [94]. Results from a 3D

musculoskeletal model of the upper body showed

a large dependence of shoulder joint forces on

seat height and position, demonstrating the possibil-

ity of wheel chair design optimization.

Reinbolt et al. [95] presented a computational

framework to predict post-treatment changes in

walking patterns from pre-treatment measured data

for specific patients. First, model parameters are opti-

mized to the patient’s movement data and a 3D full

body gait model is then used to predict gait after

an intervention. The model successfully predicted

motion after two interventions: gait modification

(in which the patient is instructed to change his

or her walking pattern) and high tibial osteotomy

surgery.

Deep tissue injury
Deep tissue injury is a muscle lesion under intact

skin. Knowledge of deep tissue injury etiology is

yet to be established; however, causative factors

include pressure-related ischemia together with

excessive soft tissue deformation [98, 99]. Linder-

Ganz et al. [96] created a musculoskeletal FE model

of the thigh region of a 30-year-old male who was

found unconscious after 3 days. The person was lying

on his cell phone and MRI revealed deep tissue

injury between the cell phone and the thighbone.

Different material properties were assigned to differ-

ent tissue types. Using a damage law [100] and

muscle cell-death threshold, injured cells were

made stiffer linearly with the magnitude of compres-

sion stress and time. Stress served as a somewhat

better predictor of deep tissue injury, for regions

of predicted injury more closely matched those

obtained with MRI measurements.

In another study of deep tissue injury, a patient-

specific FE model was created of a residual limb

bearing the load from a prosthesis [97]. In this

study, the goal was to characterize the mechanics

of muscle tissue at the end of the limb using pressure

and MRI measurements and isotropic, non-linearly

viscoelastic large-deformation material models. The

authors found strain and stress concentrations in

the flap under the tibial end, exposing the patient

to relative higher risk to develop deep tissue injury.

Future challenges
An important future advancement in skeletal muscle

modeling will be to obtain injury thresholds for mus-

cles [101] in order to predict injury and optimize

prosthetic designs to minimize muscle stress and

strain concentrations.
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TEETH/PERIODONTIA
Researchers in orthodontics have also recently

published PSM studies using FE-based models.

Cattaneo et al. [102] created an FE model of the

left segment of a single human mandible to investi-

gate the type of tooth movements associated with

different orthodontic forces (as in the application

of braces). Their findings suggest that tooth

movement based on a given moment-to-force ratio

varies among individuals, and therefore may best

be predicted using PSM rather than the more

generalized, classically prescribed theory.

In a subsequent study [103], these same

authors used patient-specific FE modeling to

examine orthodontic forces on the tissues surround-

ing teeth. Again, their findings did not confirm

canonical orthodontic theory, suggesting that ortho-

dontic loading regimes can be better optimized

using PSM.

A third orthodontic modeling study by Kondo

et al. [104] used patient-specific FE models to deter-

mine whether molar loss increases stress and strain

in the periodontium. The authors found significantly

higher stress and strains in periodontal tissues of

the second premolars in patients with bilateral

molar loss versus those with unilateral or no molar

loss. They assert that this stress could not be pre-

vented by wearing a denture and advocate future

studies aimed at improving the usability of their

modeling system by clinicians.

Future challenges
Future directions for modeling teeth and surround-

ing tissues include validating models against in vivo
loading data from patients, incorporating the visco-

elastic properties of the periodontal ligament into

simulations, and obtaining patient-specific material

properties for model parameterization [102, 103].

Kondo et al. [104] also emphasized their intent to

enhance the usability of their simulation systems

for clinical investigators.

TUMORS
Recent applications of PSM in oncology have

focused on optimizing radiotherapy [105–107],

chemotherapy [108] and thermal treatment [109]

in cancer patients, researching the mechanics of

brain tumor growth [110, 111], and imaging can-

cerous breast tissue [112]. For further review of

current advancements in modeling tumors, please

see Juffer et al. [113] and Deisboeck et al. [114].

Optimization of cancer treatment
Treatment of cancer often requires the clinician

to find a means of destroying cancerous targets

while minimizing damage to surrounding tissues.

As an optimization problem, this challenge lends

itself to computer-based solutions, and several

recent articles have used PSM as a way of optimizing

cancer therapy. Campbell et al. [105] used patient-

specific single photon emission CT data to com-

pute radiation doses for treating liver tumors with

yttrium-90 microspheres. They found that their

PSM was better than more generic alternatives at

predicting outcomes of 14 cancer patients studied

retrospectively. They also infer that the model is

better at predicting the response to therapy, espe-

cially for smaller tumors.

Gorelik et al. [108] also present a study on opti-

mizing cancer treatment for rare tumors based on

PSM. They used a computer algorithm in combina-

tion with patient-specific chemosensitivity tests on

xenografted tumors to devise an optimal treatment

plan for a single patient. After being treated using

the optimal therapy method predicted by the

model, the patient experienced relief of pancytope-

nia and a stabilization of the metastatic disease. The

patient retained a good quality of life for 6 months

until succumbing.

Titz and Jeraj [107] recently published a multi-

scale model that accounts for oxygenation levels

in simulating head and neck tumor growth. They

used this model to investigate the influence of

oxygenation on tumor responses to radiation

therapy. If validated against clinical cases, this type

of model could also be used to anticipate patient-

specific responses to radiotherapy.

Taking a more general approach to the applica-

tion of modeling for theranostic anti-cancer treat-

ment, South et al. [106] present a ‘theoretical

framework for optimizing radiotherapy based on

patient-specific radiobiological parameters derived

from a series of images’. This more basic approach

is not constrained to one type of model. Rather,

it is a generally applicable tool for assessing the

validity of a range of clinically useful cancer models.

Simulating brain tumors
Hogea et al. [110] published a model that simulates

the spatio-temporal spread of gliomas, and also
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accounts for mechanical deformations of the sur-

rounding brain tissue caused by tumor growth.

Given that patient-specific data on tumor growth

is generally sparse, their publication is concerned

with the inverse problem of identifying parameters

that control tumor dynamics.

Szeto et al. [111] also modeled glioma growth

to characterize the link between tumor kinetics

and the tumor’s hypoxic burden. They used

data from MRI and 18F-fluoromisonidazole PET

to tune PSM of tumors in 11 different human

subjects. Their results imply that more abnormally

shaped tumors tend to have a greater hypoxic

burden, and also support the theory that more

aggressive cell lines produce less spherical tumors.

Other tumor modeling
In developing a new computer-assisted method

of therapy for prostate cancer, Fuentes et al. [109]

created a complex, high-speed ‘cyberinfrastructure’

between two research sites in Texas. This integrated

system includes heat-transfer models of the prostate

and tumor, 3D tissue imaging, laser optics and

surgical control systems. The authors used their

cyberinfrastucture to develop and test a dynamic

data driven application system (DDDAS) that

guides laser therapy of prostate cancer. They tested

their system on two in vivo canine prostates and

in both cases obtained encouraging results.

Finally, Pathamanathan et al. [112] created 3D FE

models of the breast in order to help radiologists

and surgeons more precisely locate cancerous breast

tissue. By introducing artificial tumors into their

models, they were able to simulate deformations

of normal and pathological tissue. Their deformable

models can simulate breast shape during a variety

of clinical procedures, such as surgery or

mammography.

Future challenges
While there has been much recent progress in mod-

eling cancerous tissues, researchers require more data

for performing additional preclinical and clinical

model validation [107–109, 111, 112]. Other authors

[106, 111] have emphasized the need for validated

imaging methods that measure tumor burden and

hypoxia in vivo. Such methods can accelerate clinical

trials that test model-predicted tumor response to

therapy.

STATEOF THE ARTAND FUTURE
CHALLENGES
In this survey, we have found that PSM has recently

been employed to model the dynamics of a wide

variety of anatomical entities. Aside from the canon-

ical and pathological entities we have discussed

above, we found PSM examples for lung [115,

116], larynx [117] and kidneys [118] as well. We

chose to omit these studies from our discussion

above in order to provide ample room for addressing

more heavily researched areas. We have also found

that the vast majority of recent publications on

PSM are concerned with developing 3D mechanistic

models versus models of lower dimension and that

most articles represent feasibility or small-n validation

studies where models simulate a very particular clin-

ical condition. Given these findings, we foresee

large-n clinical validation studies, especially those of

3D models, as the major challenge facing patient-

specific modelers in the near future. Such studies

will also be necessary for FDA approval of medical

modeling systems. We see several rate-limiting

factors that impede progress towards these validation

studies: manual steps in the workflow between data

acquisition and model simulation, the identification

of patient-specific material properties, and the need

for model standardization. Eliminating these bottle-

necks will help accelerate PSM research and will

be vital for performing the studies required for

PSM to become a clinical standard of care.

Patient-specific material properties
With current imaging modalities, a geometry of

a tissue or organ is relatively easy to obtain, and

many of the 3D PSM reviewed here have incorpo-

rated patient-specific geometry. Assigning material

properties to these geometries using previously quan-

tified values (by in vitro measurements, for example)

may work in certain instances, but are not ideal due

to biological variation. Such assumptions will cause

even greater problems when material properties are

altered by disease. Hence, in order to create accurate

predictive PSM, obtaining patient-specific material

properties may well be as important as obtaining

geometries. For example, methods have been pro-

posed and tested to obtain the Young’s modulus

of bone by quantifying radio-density in CT images

[59, 60]. Mixed numerical-experimental methods

to obtain mechanical properties of biological tissue
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in vitro [119] can also be used to estimate material

properties in patients [120].

In 2007, the National Heart, Lung and Blood

Institute convened a workshop on research direc-

tions needed to develop methods to elucidate

human cardiac function [121]. One of the work-

shop’s recommendations related to PSM was that

material properties obtained through molecular and

cellular investigations of explanted tissues, including

histological and/or immunohistochemical character-

ization, should be combined with clinical data

and high-resolution, non-invasive structural, func-

tional (MR tagging, MR elastography, 3D US

speckle tracking), and electrophysiological imaging.

We extend this recommendation to include fields

other than cardiac research.

Translation to the clinic
Before a PSM can become standard of care, the

workflow involving modeling methods and equa-

tions has to be approved by the Food and Drug

Administration (FDA) and by similar institutions

in other countries. We anticipate that the model

would have to undergo the same approval proce-

dures as for medical devices. Currently, software

involved in cardiac electrophysiological mapping

is treated and approved by the FDA in this manner.

In anticipating the process of translating PSM

modeling research into a clinical standard of care,

we see the need for more standardized criteria for

evaluating published models. We anticipate that

as PSM moves further into the applied clinical

domain, clinicians will require metrics and standards

for evaluating and comparing competing models.

PSM tools will likely need to be flexible and accom-

modating of a spectrum of clinical cases, given

the variability among patients’ anatomy, physiology

and clinical situations. Model users must know,

therefore, the assumptions that are inherent in the

models available to them, since these assumptions

may invalidate their use for some patient cases.

Given multiple models to choose from, clinicians

will need to know how well each candidate model

matches empirical data for a given patient popula-

tion. This kind of validation is common among

biological modeling studies, and thus we encourage

clinicians interested in PSM to become familiar

with metrics often used by modelers to assess

model accuracy (e.g. the root mean square test).

Conversely, we also encourage model developers

to anticipate how they will test and communicate

the clinical efficacy of their simulation systems

to medical personnel. While a model may be well

validated against empirical data, its use may not

change clinical decision-making or improve patient

outcomes. PSM model developers will be challenged

to demonstrate not only their systems’ predictive

capabilities, but also their enhancement of patient

care.

The NIBIB’s Interagency Modeling and Analysis

Group (IMAG) [122] was created, in part, to

address some of the issues surrounding modeling

standards for PSM, and other efforts to standardize

information about model content and results are

being actively researched [123–128]. For example,

members of the systems biology community have

developed the Systems Biology Markup Language

(SBML), a standardized biochemical pathway

model description format that allows semantic links

to concepts in reference ontologies [124], the

Minimum Information Required in the Annotation

of Biochemical Models (MIRIAM) [125], a set

of model curation standards and the Minimum

Information About a Simulation Experiment

(MIASE) [123], a standard for reproducing numerical

simulation results. By facilitating model sharing and

reuse, these kinds of standards can help advance

PSM research and ease its adoption as a clinical

tool. However, because the publications returned

by our literature search focused on modeling at

the tissue and organ level, we foresee a demand for

model description and annotation standards that

scale to higher levels of biological organization and

extend beyond chemical networks into other phys-

ical domains.

Finally, because certain medical cases are more

time-sensitive than others, clinicians will need to

know the computational efficiency of the model

they are using. For example, the monitoring of

a patient in an intensive care unit requires faster-

than-real-time solutions as provided by ODE

models [70], but FE-based predictions for identifying

cardiac resynchronization therapy candidates [129]

are less time-sensitive. In the latter case, a model

that takes days to compute may still be clinically

viable. However, model users under more strict

time constraints must know approximately how

long a simulation will take to solve, and what
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tradeoffs exist between a model’s accuracy and its

computational timeliness. Likewise, model develo-

pers addressing clinical problems must be sensitive

to the time constraints of those who will be applying

their models in a clinical setting. Although com-

putational power remains a rate-limiting step in

some areas of 3D PSM, we anticipate that High

Performance Computing (HPC) using parallelization

techniques will widen this bottleneck. Recently

there has been much scientific interest in applying

Graphical Processor Units (GPUs) [130] to FE

models. When compared to conventional CPU

clusters, GPU computing has several significant

advantages related to performance, cost and accessi-

bility and can easily be applied in a clinical setting.

As PSM tools become more available to clinicians,

it will also be important to research how PSM fits

into clinical workflows. The introduction of new

computer-based technology in the medical industry

can be difficult and slow, and we hope to see

more studies in the near future that examine how

PSM, once put into clinical use, can be optimized

as a medical tool. Researchers have much work

ahead of them before PSM becomes a standard in

clinical practice; however, we believe that eventu-

ally, PSM will prove to be a valuable and versatile

technology that improves medical care in a myriad

of disciplines.

Key Points

� PSM is being applied to model the dynamics of a wide variety
of tissues and organs within awide variety of clinical domains.

� Most of the recent work in PSM employs 3D models versus
models of lower dimension.

� Most of the recent work in PSM represents feasibility and/or
preliminary validation studies.

� Major challenges in PSM include the need for more model
validation, further automation of common tasks in themodeling
workflow (such as image segmentation), and model description
and annotation standards that scale to higher levels of biological
organization.

� PSM model developers will be challenged to demonstrate
not only their systems’ predictive capabilities, but also their
enhancement of patient care.
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