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Abstract
The localization of two members of the Slc39a (zip1 and zip4) family of zinc transporters was
examined in the brains of adult mice. Zip1 was highly enriched in brain regions with high densities
of neuronal cell bodies, including the hippocampus, thalamus, and perifontal cortex. Zip1 was also
expressed in commissural fiber tracts such as the corpus callosum and anterior commissure, but little
was found in the internal and external capsules. Also, very low amounts of zip1 mRNA were detected
in resting astrocytes and reactive astrocytes that were examined at 14 days after inflicting a stab
wound. Zip1 mRNA was detected in ependymal cells lining the third and lateral ventricles and
epithelium cells in the choroid plexus. Interestingly, zip4 mRNA was detected in the choroid plexus
but not in the ependymal cells or other neural elements. Zip4 mRNA was also detected in brain
capillaries, but zip1 mRNA was not. In zip4 knockout heterozygotes that express green fluorescent
protein regulated by the zip4 promoter, green fluorescent protein was detected in brain capillaries.
Because zip4 levels are regulated by dietary Zn, our studies suggest that the brain has the potential
of adapting to changes in Zn status.
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Zinc-binding proteins account for nearly half of the transcription regulatory proteins in the
human genome and are the most abundant class of proteins in the human proteome (Coleman,
1998; Nyborg and Peersen, 2004). Interestingly, the concentration of zinc in bacteria, yeast,
and mammals is similar, approximately 0.1–0.5 M. Very likely these similarities reflect the
requirement for zinc for the basic biological mechanisms. In mammals, however, specialized
functions performed by the prostate (Hu and Friede, 1968; Apgar, 1985) and brain require
higher levels. In the forebrain, for example, a subset of glutamatergic neurons displays a pool
of Zn that is sequestered in synaptic vesicles (Wenzel et al., 1997; Frederickson, 1989;
Slomianka, 1992), whereas neurons displaying synaptic zinc in the cerebellum and spinal cord
are γ-aminobutyric acid (GABA)-ergic (Birinyi et al., 2001; Wang et al., 2001a,b). Zinc is
released upon synaptic activity and is a potent inhibitor of N-methyl-D-aspartate (Li et al.,
2001a,b; Qian and Noebels, 2005) and GABAA receptor subtypes (Hosie et al., 2006). At
glycine receptors, Zn potentiates at submicromolar concentrations and inhibits at
submillimolor concentrations (Bloomenthal et al., 1994; Laube et al., 1995). Zn has also been
shown to inhibit noncompetitively excitatory amino acid transporters 1 (Vandenberg et al.,
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1998) and 4 (Mitrovic et al., 2001) and has a distinctive role in myelination by stabilizing
interactions between lipids and myelin basic protein (Earl et al., 1988; Nuzzo et al., 2002).
Mild zinc deficiency impairs cognitive development in rats (Massaro et al., 1982; Keller et al.,
2000) and probably in humans (Bhatnagar and Taneja, 2001). In neurological diseases and
experimental models, Zn has been shown to be a mediator of toxicity. For example, the number
of dying neurons is reduced with a Zn chelator in a brain trauma model and in a brain ischemic
model in rats (Suh et al., 2000a; Lee et al., 2002). The involvement of Zn in Alzheimer's disease
was suggested because Zn was shown to promote aggregation of β-amyloid in vitro, and high
amounts of Zn have been measured in plaques in Alzheimer's disease (Lee et al., 1999; Suh et
al., 2000b; Bush, 2002).

Zinc homeostasis is accomplished predominantly by members of two families of zinc
transporters. Member of the Slc30a family (also referred to as ZnT or the cation diffusion
family) mediate Zn efflux, and members of the Slc39a family (also referred to as zip) mediate
Zn influx. Members of both families are located in different tissues and in different cellular
organelles. ZnT1, for example, is expressed in neurons in several brain regions, including
cerebellum, cerebral cortex, and olfactory bulb (Sekler et al., 2002). ZnT3 is highly specific
and is located in nerve terminals that display vesicular Zn, such as mossy fibers boutons of the
hippocampus (Wenzel et al., 1997). In ZnT3 knockout mice, vesicular Zn is lost, which
suggests that ZnT3 regulates vesicle Zn (Cole et al., 1999).

Less is know about the 14 members of the SLC39 family (Eide, 2003). Zip1 mRNA has been
found in almost all tissues (Dufner-Beattie et al., 2003a), and zip1 protein mediates Zn uptake
in prostate cells (Franklin et al., 2003) and the K562 erythroleukemic cells line (Gaither and
Eide, 2001). Zip4 mediates uptake of Zn, but its expression is highly restricted to the intestine,
pancreatic islets, and visceral yolk (Dufner-Beattie et al., 2004; Kim et al., 2004). In the
intestine, zip4 mediates uptake of Zn at the luminal surface and is up-regulated within days of
feeding rodents a Zn-deficient diet (Dufner-Beattie et al., 2003b; Liuzzi et al., 2004).

To gain a better understanding of Zn homeostasis in the brain, we examined the regional and
cellular expression of zip1 and zip4 mRNA in rat brain. Zip1 mRNA was located in all
identified brain regions with high densities of neuronal cell bodies and in some white matter
tracts, ventricles, and choroid plexus, although little was found in normal or reactive astrocytes
or in brain capillaries. Interestingly, zip4 mRNA was identified in the brain but was restricted
to choroid plexus and brain capillaries.

Materials and Methods
Animals

Rats were purchased from Charles River. Zip4 heterozygous knockouts were generated as
previously described (Dufner-Beattie et al., 2007).

In Situ Hybridization
Rats were anesthetized with xylaket and perfused with fixative (4% paraformaldehyde in 0.15
M phosphate buffer, pH 7.2) through the heart. Brains were excised and placed in fixative for
72 hr and incubated for 2 days at 4°C in 30% sucrose in PBS. Sections were cut at 25 μm with
a cryostat and dried. Sections were hybridized with sense and antisense digoxygenin-labeled
riboprobes. The vectors for making the probes were gift from Dr. Eide, University of
Wisconsin. After hybridization, slides were washed twice in 50% formamide, 5× SSC (pH
4.5), and 1% SDS for 30 min at 70°C, and then twice in 50% formamide, 2× SSC (pH 4.5) for
30 min at 65°C. Sections were incubated overnight at 4°C with anti-DIG antibody conjugated
to alkaline phosphatase (AP; Boehringer) at a 1:2,000 dilution. After extensive washing steps
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in washing buffer (100 mM Tris, 25 mM MgCl2, 150 mM NaCl), detection of AP activity was
performed using an NBT (4-nitroblue tetrazolium chloride)-based assay (Boehringer).

Stab Wound
Adult F-344 rats were anesthetized by intraperitoneal injection of ketamine hydrochloride (100
mg/kg) and xylazine (5 mg/kg). Rats were fixed on a stereotactic frame, and a 1-cm-long
incision was made on the head skin with a scalpel. A 3-mm burr hole was drilled lateral to the
bregma in the skull, and an 18-gauge needle was inserted 4.5 mm deep in the striatum under
stereotactic control. At 14 days after the wound was placed, rats were euthanized by
asphyxiation and processed for in situ hybridization.

Immunocytochemistry
The localization of zip4 was accomplished with a mouse strain expressing green fluorescent
protein driven by the zip4 promoter sequence (Dufner-Beattie et al., 2007). To generate the
strain, mice with a targeted disruption of the Zip4 gene were generated by homologous
recombination in embryonic stem cells. The targeting construct fused the initiator methionine
codon of Zip4 with the open reading frame of the enhanced green fluorescent protein (EGFP)
reporter followed by several stop codons. This disrupted the protein-coding sequence of Zip4
and deleted the remaining codons in exon 1. The remainder of the gene was not altered. This
allowed for EGFP expression that was driven by the Zip4 promoter in targeted cells with a
targeted disruption in the zip4 gene. To stain for green fluorescent protein and laminin, sections
were incubated in five changes in CitroSol for 2 min each, dehydrated in buffers with
decreasing concentrations of ethanol for 2 min, and incubated for 15 min in warm 10 mM
sodium citrate, pH 6.0. Sections were digested in 25% pepsin in 0.01 N HCl at room
temperature for 15 min, washed in PBS for 5 min, and blocked with 5% normal goat serum
with 2% Triton X-100 in PBS. Sections were incubated with antibody against laminin at 1:300
at 4°C overnight, washed three times in PBS, and incubated in secondary antibody at 1:250
for hours. Finally, sections were washed three times in PBS, and coverslips were placed over
section with Prolong (contains an antifading chemical and DAPI).

Results
Zip1 mRNA is expressed in several brain regions. Previous studies found high levels of zip1
mRNA expression in whole brain (Dufner-Beattie et al., 2003a) To determine whether
expression was specific to different regions or expressed throughout the brain, a series of
coronal sections was hybridized with a zip1 cDNA probe. Zip1 mRNA was found in several
regions, including hippocampus, cerebellum, thalamus, and piriform cortex (Fig. 1). The
pattern of staining is very similar to that of Nissl staining, which indicates that much of the
hybridization signal is in regions enriched with neuronal cell bodies.

Zip1 mRNA Is Expressed in Oligodendrocytes
Because the strong hybridization signals were found in regions with high densities of neuronal
cell bodies, we determined whether zip1 mRNA was associated with oligodendrocytes by
examining white matter tracts. Curiously, the expression of zip1 mRNA was observed in some
but not all. Commissural tracts such as the corpus callosum and the anterior commissure
displayed very intense staining, but almost no staining was observed in projecting tracts such
as the internal and external capsules. Hybridization was also weak in the optic chiasm (Fig. 2).

Astrocytes Express Less Zip1 mRNA
A closer examination of the cingulum revealed distinct differences in the cell types expressing
zip1 mRNA. The cingulum is a white matter tract and expressed zip1 mRNA, which is similar
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to our observations for the corpus callosum. There is also a population of astrocytes
(GFAP+) immediately adjacent to the cingulum that expressed very little, if any, zip1 mRNA
(Fig. 3). To learn more about astroglial expression of zip1 mRNA, a model of gliosis was
employed. To induce gliosis, a mechanical injury was given by inserting an 18-gauge needle
into the cerebrum of anesthetized rats. Reactive astrocytes were observed at 14 days after injury
as shown by intense GFAP staining (Fig. 3). Similar to the observations of resting astrocytes
in the cingulum, the expression of zip1 mRNA was much lower in the areas with astrocytes.

Expression of Zip1 and Zip4 mRNA in the Choroid Plexus and Ventricles
Because Zn is both required and potentially toxic in the brain, mechanisms should be needed
for zinc homeostasis. Intense staining for zip1 mRNA was observed in the cells lining the third
ventricle as well as cells lining the lateral ventricles, which indicates expression in ependymal
cells (Fig. 4A). Furthermore, the choroid plexus also displayed high amounts of zip1 mRNA
(Fig. 4B).

Zip4 mRNA was also examined because a recent study reported severe neurodevelopmental
problems in heterozygotic zip4 knockouts. These problems might be due to nutritional Zn
deficiency. Additionally, zip4 might be more directly involved in zinc homeostasis in the brain.
To examine the expression of zip4 mRNA in the brain, in situ hybridization was performed as
for zip1. Expression was observed in the choroid plexus epithelium but not the ependyma (Fig.
4C,D). It thus appears that the choroid plexus expresses three members of the SLC39A family,
zip1, zip4 (both shown here), and zip6 (Chowanadisai et al., 2005).

Expression of Zip1 and Zip4 mRNA in Brain Capillaries
Brain capillaries, unlike most other capillaries in other tissues, display properties similar to
epithelial cells and express transporters to bring nutrients into the brain. The staining for zip1
mRNA was barely detected in capillary structures (Fig. 5A,B), which is different from the
epithelial cells of the choroid plexus. Interestingly, capillaries expressed zip4 mRNA (Fig.
5C,D). To verify this observation, the heterozygotic zip4 knockout mouse strain was used
because it expresses green fluorescent protein regulated by the zip4 promoter. The location of
cells expressing zip4 was examined by double antibody staining with an antibody against green
fluorescent protein and an antibody against laminin for detecting brain capillaries. In the brain,
antibody against laminin is used to identify capillaries (Eriksdotter-Nelsson et al., 1986; Jucker
et al., 1996) Brains from wild-type animals did not display staining for GFP, as expected,
though many capillaries were detected (Fig. 6). GFP-positive staining was observed in the zip4
knockouts in capillaries.

Discussion
Our study is the first extensive study examining the location of zip1 and zip4 in the rat brain.
Zip1 was examined because its mRNA is highly expressed in whole brain compared with the
other members of the Slc39a family (Dufner-Beattie et al., 2003a). The high levels of zip1
likely are due to its expression in neurons. All the brain regions with high numbers of neurons
expressed high levels of zip1 mRNA. Furthermore, astrocytes did not express zip1 mRNA.
Because other studies found zip1 as a plasma membrane zinc transporter, very likely zip1 is a
plasma membrane zinc transporter for neurons. A recent study also found expression of zip6
(LIV-1) in hippocampal and cortical neurons, but other brain regions were not described
(Chowanadisai et al., 2005). Zip6 (Chowanadisai et al., 2008) and zip1 (Gaither and Eide,
2001; Franklin et al., 2003) are both plasma membrane transporters, which raises the possibility
that the same cells displays more than one plasma membrane zinc transporter. One possible
explanation is that transporters display different locations to achieve different functions. For
example, a transporter at the neuronal cell body might ensure proper zinc uptake to synthesize
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transcription factors, whereas zinc transporters at the presynaptic and postsynaptic terminals
would satisfy the need for synaptic function. Indeed, a specialized member of the Slc30a family,
ZnT-3, is expressed only at synaptic vesicles (Palmiter et al., 1996).

The expression of zip4 mRNA in choroid plexus and brain capillaries was quite intriguing,
because it was not found previously in whole brain by RT-PCR (Dufner-Beattie et al.,
2003a). Very likely, expression was not observed because the concentration of zip4 mRNA
was too low. Accordingly, zip4 might be expressed in other organs not yet identified but
restricted to specific cell types. Zip4 mRNA is most abundant in tissues involved in zinc
homeostasis, such as the intestine, visceral endoderm, pancreatic islets, and yolk sac (Dufner-
Beattie et al., 2004). Several members of the Slc39a family respond to changes in extracellular
zinc at the protein level, but zip4 is the only member whose level of mRNA and protein
increases (Dufner-Beattie et al., 2003b). The explanation for why these cells express zip4 is
that they are involved in nutrient uptake and zinc homeostasis. In the same way, capillaries
might be involved in similar processes in the brain. Indeed, brain capillaries express many
transporters for nutrients. For example, brain capillaries are involved in iron homeostasis as
indicated by their expression of the transferrin receptor and divalent metal transporter 1 (Moos,
1996). Similarly, iron deficiency increases transferrin receptor, divalent metal transport 1, and
iron uptake (Taylor et al., 1991; Burdo et al., 2004; Garcia et al., 2007), although these increases
vary and depend on rat strain, length of time, and level of iron in the diet. The presence of zip4
in brain capillaries suggests that the brain is capable of adapting to changes in serum zinc that
could come from the diet.

Metallothionein expression is induced by Zn and has been suggested to be involved in zinc
homeostasis (Maret, 2000; Lee et al., 2003). In the brain, astrocytes are the major cell type
expressing metallothionein (Penkowa et al., 1999; Hidalgo et al., 2001), which suggests that
they might have an important role in Zn homeostasis in the brain. Therefore, it was surprisingly
that resting astrocytes express little zip1 mRNA and even more surprising that higher levels
of zip1 were not found in reactive astrocytes, which express even more metallothionein than
resting astrocytes (Penkowa et al., 1997; Chung et al., 2008). One possibility is that astrocytes
express a different member of the Slc39a family. Zip6 is the only member of the Slc39a family
examined in the brain in situ, but its location in astrocytes was not indicated. Zip8 and Zip14
are other candidate astroglial zinc transporters because their mRNA has been observed in brain
(Girijashanker et al., 2008). Another possibility, however, is that the higher levels of
metallothionein in astrocytes are due to Zn taken up from other types of transporters, for
example, voltage-dependent calcium channels. Astrocytes express the L-type voltage-
dependent calcium channel, which was shown to mediate zinc uptake in astrocytes (Sheline et
al., 2002) and pancreas islet cells (Gyulkhandanyan et al., 2006). The authors of the latter study
suggest that the L-voltage-dependent calcium channel mediates fast zinc transport, whereas
members of the SLC39 family mediate slower Zn transport. Accordingly, astrocytes might
express metallothionein as a result of taking up Zn because of synaptic activity rather than
storing Zn from a nutritional transporter.

Evidence was also presented demonstrating the expression of zip1 mRNA in oligodendrocytes
in some white matter tracts but not others. Corpus callosum and anterior commissure displayed
much more zip1 mRNA than the internal and external capsules or the optic chiasm. In our
review of the literature, an explanation for these differences is not apparent. The differences
were so striking that they likely were not due to differences in cell numbers. Similar to our
suggestions for astrocytes, the white matter tracts that do not express zip1 mRNA might express
a different transporter that is due to special Zn requirements. In any event, our data support the
concept of heterogeneity in expression of SLC39 family members in white matter tracts in the
brain.
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In summary, the data presented demonstrate that zip1 is expressed in neurons and in a
subpopulation of oligodendrocytes, with little in astrocytes. The expression of zip4 in brain
capillaries and choroid plexus suggests that the brain expresses homeostatic mechanisms for
adapting to changes in zinc status.
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Fig. 1.
Zip1 mRNA broadly expressed in neuronal cell bodies in different brain regions. In situ
hybridization with the antisense zip1-specific probe was performed on coronal sections of
hippocampus (A,B), cerebellum (C,D), thalamus (E), and piriform cortex (F) from rats that
were 70 days old. Hybridization with a probe in the antisense (A,C,E,F) sense (B,D) directions
were examined. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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Fig. 2.
Zip1 mRNA expressed in some white matter tracts. In situ hybridization with antisense zip1-
specific probe was performed on coronal sections of corpus callosum (A), anterior commisure
(B), internal and external commissure (C), and optic chiasm (D) from rats that were 70 days
old.

Belloni-Olivi et al. Page 10

J Neurosci Res. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
Zip1 mRNA and GFAP expression in cingulum. Coronal sections of the cingulum were first
hybridized with the antisense zip1-specific probe (A) and then stained with rabbit antibody
against GFAP, followed by Texas-red conjugated anti-rabbit IgG (B). A stab wound was
inflicted in rats as described in Materials and Methods, and coronal sections were prepared 14
days later at the site of injury. Sections were prepared from the injured area and hybridized
with the antisense zip1-specific probe (C,E), followed by staining with rabbit antibody against
GFAP (D,F) as described. An arrow indicates the stab wound. [Color figure can be viewed in
the online issue, which is available at www.interscience.wiley.com.]
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Fig. 4.
Zip1 and zip4 mRNA expression in ependyma and choroid plexus. Coronal sections of
ventricles (A) and choroid plexus (B) were hybridized with antisense zip1 probe. Choroid
plexus was also hybridized with a zip4 antisense (C) and sense probes (D). [Color figure can
be viewed in the online issue, which is available at www.interscience.wiley.com.]
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Fig. 5.
Zip4 mRNA not zip1 mRNA is located in capillaries. Coronal sections were prepared from
cerebral cortex and hybridized with antisense zip1-specific probe (A,B) or with a zip4
antisense-specific probe (C). Sections were also hybridized with a zip4 sense probe (D).
Arrows point to microvessels. [Color figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]
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Fig. 6.
Localization of zip4 promoter-driven expression of zip4 and green fluorescent protein and
laminin in brain capillaries. Coronal sections from cerebral cortex from wild-type (WT) and
zip4 heterozygous knockout mice (zip4 KO) were stained with antibodies against green
fluorescent protein (GFP) and laminin as described in Materials and Methods. GFP is a reporter
gene for zip4 expression and laminin stains for capillaries. Micrograph merging both images
are shown. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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