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The secreted molecule sonic hedgehog (Shh) is essential for many developmental processes in
vertebrates, including the induction of motor neurons (reviewed in Ingham, 1998; Wicking et
al., 1999). Three hedgehog genes, shh (Krauss et al., 1993), tiggy-winkle hedgehog (twhh;
Ekker et al., 1995) and echidna hedgehog (ehh; Currie and Ingham, 1996) are expressed in
various tissues in zebrafish embryos. However, only mutations in shh have been identified thus
far (Schauerte et al., 1998). Therefore, the precise roles of the three zebrafish hedgehog genes
in inducing particular cell types such as motor neurons remain unclear (Beattie et al., 1997;
Chandrasekhar et al., 1998).

We showed previously that embryos homozygous for a deletion of shh (Schauerte et al.,
1998) exhibit characteristic deficits in branchiomotor neuron (BMN) populations in the
zebrafish hindbrain (Chandrasekhar et al., 1998). We now demonstrate that knockdown of
shh function by morpholino (MO) injection phenocopies the shh loss-of-function motor neuron
phenotype. Furthermore, our studies using a morpholino targeted against twhh indicate that
Shh and Twhh cooperatively induce all branchiomotor neurons in zebrafish.

We injected control (con) or gene-specific MOs (Nasevicius and Ekker, 2000) into 1-8 cell
stage embryos obtained either from sonic-you (syu'®) heterozygotes (syu'4:shh deletion allele;
Schauerte et al., 1998; Table 1) or from wild-type fish (Table 2). All fish carried an isletl-
GFP transgene that is expressed in all branchiomotor neurons (nV, nVII, nX BMNSs), except
the nIX (Fig. 1A; Higashijima et al., 2000). In all experiments summarized in Table 1, except
the shh MO injections, syut* homozygous mutant embryos were unambiguously identified on
the basis of U-shaped somites and curled trunks (van Eeden et al., 1996; Schauerte et al.,
1998). Uninjected and control (con) MO-injected embryos exhibit the wild-type branchiomotor
neuron (BMN) phenotype (Fig. 1A) and the syu mutant BMN phenotype (Fig. 1E) in
approximately 3:1 Mendelian ratios (Table 1). In contrast, injection of increasing amounts of
shh MO from ~6 to 25 ng per embryo into syut* incross embryos leads to a decrease in the
wild-type BMN phenotype from 75% to 21% and a concomitant increase in the syu mutant
BMN phenotype (Fig. 1F) from 16% to 41% (Table 1). Because a majority of 25 ng shh MO-
injected wild-type embryos also develop U-shaped somites (Nasevicius and Ekker, 2000), the
embryos scored for the syu mutant BMN phenotype following shh MO injection are composed
of syut +/+, +/—, and —/— genotypes, which were not distinguished from one another. Injection
of increasing amounts of shh MO from ~6 to 25 ng per embryo into wild-type embryos leads
to a decrease in the wild-type BMN phenotype from 97% to 27% and a concomitant increase
in the syu mutant BMN phenotype (Fig. 1F) from 0% to 19% (Table 2). In addition, the number
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of embryos exhibiting a reduced BMN phenotype, in which motor neuron loss is a subset of
the loss seen in syu mutants, increases from 3% (6.25 ng shh MO) to 54% (25 ng shh MO)
(Fig. 1C, D; Table 2).

These results demonstrate that injection of shh MO leads to the loss of specific populations of
BMNs, and that this loss is either a subset of or identical to the deficits resulting from a deletion
of shh (Chandrasekhar et al., 1998). Taken together with our previous observations on the
effect of shh MO on somite morphology, fin, and eye development (Nasevicius and Ekker,
2000), these results suggest strongly that shh MO injection generates the shh loss-of-function
phenotype.

Because shh, twhh, and ehh are all expressed in midline tissues in the zebrafish embryo, we
also investigated the role of twhh in BMN induction using a twhh-specific morpholino
(Nasevicius and Ekker, 2000). Injecting 25 ng per embryo of twhh MO has no effect on BMN
development in wild-type embryos obtained either from syut* heterozygotes or from wild-type
fish (Fig. 1B; Table 1, 2). In contrast, injection of twhh MO into syu mutants leads to an almost
complete loss of GFP-expressing cells from the hindbrain (Fig. 1G; Table 1), generating a
“double mutant” phenotype. Because twhh MO injection has no effect on somite development
(Nasevicius and Ekker, 2000), the twhh MO-injected embryos exhibiting near-total loss of
BMNs could be unambiguously identified as “double mutants™ because they developed U-
shaped somites and curled trunks characteristic of syu mutants. When shh MO and twhh MO
are co-injected into embryos from wild-type fish, over 90% of the injected embryos display
either the syu mutant BMN phenotype or the “double mutant” phenotype (Fig. 1H; Table 2).
The dramatic loss of BMNSs upon injection of twhh MO into syu mutants or co-injection of shh
and twhh MOs into wild-type embryos suggest strongly that twhh is necessary for motor neuron
induction in the zebrafish hindbrain.

The hindbrains of twhh MO-injected wild-type (n = 171) and syu mutant (n = 61) embryos
exhibit no signs of cell death, even though the mutant hindbrains contain few GFP-expressing
cells (Fig. 2A, B). Furthermore, hoxb1l is expressed normally in rhombomere 4 in twhh MO-
injected syu mutants (n = 3) that were examined by epifluorescence prior to in situ hybridization
to confirm that GFP-expressing hindbrain cells were missing (Fig. 2C, D). These results
demonstrate that the extensive loss of BMNs in twhh MO-injected syu mutants does not result
from aberrant development or degeneration of the hindbrain.

We successfully rescued the “double mutant” motor neuron phenotype of twhh MO-injected
syu mutants by co-injecting synthetic, full-length twhh RNA (Ekker et al., 1995; Table 1).
BMN cell numbers are unchanged or slightly higher in 100% (68/68) of wild-type embryos
co-injected with twhh MO and twhh RNA, relative to twhh MO-injected wild-type embryos
(n=53) (Fig. 3A, B). In contrast, BMN cell numbers are dramatically higher in 82% (28/34) of
syu mutant embryos co-injected with twhh MO and twhh RNA, relative to twhh MO-injected
syu mutants (n = 11) (Fig. 3C, D). Furthermore, the organization of the BMNSs in the rescued
mutant embryos is similar to that in wild-type embryos. These results suggest strongly that the
dramatic loss of BMNs in twhh MO-injected syu mutants results from the specific loss of Twhh
activity.

We have shown that twhh MO has a synergistic effect on BMN induction when injected into
syu mutants, or when co-injected with shh MO into wild-type embryos. However, injecting

twhh MO alone into wild-type embryos has no effect on BMN induction (Figs. 1B, 3A), somite,
fin, and eye development (Nasevicius and Ekker, 2000), or on the expression of Hh-induced
genes such as patched (Nasevicius and Ekker, 2000), neurogeninl, and nk2.2 (S.B. and A.C.,
unpublished results). These observations suggest that Twhh represents a subset of Hh-mediated
signaling, and that its contribution becomes apparent only when Shh activity is either missing
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or greatly reduced. Because Shh and Twhh have similar biological activities (Chandrasekhar
et al., 1998;Currie and Ingham, 1996;Ekker et al., 1995;Lauderdale et al., 1998), our results
further suggest that subsets of zebrafish BMNs are sensitive to, and therefore induced by,
different concentrations of total hedgehog activity, rather than different hedgehog proteins.
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FIG. 1.

Shh and Twhh act cooperatively in branchiomotor neuron (BMN) induction in zebrafish. All
panels show dorsal views of the hindbrain with anterior to the left. The images are fluorescent
micrographs of live, 48 HPF (Hours Post Fertilization) embryos embedded in 3%
methycellulose, and shows the distribution of GFP-expressing BMNSs. (A, B) In wild-type
embryos injected with either control MO (A) or twhh MO (B), the development of BMNS is
unaffected. The n\V motor neurons are found in rhombomere 2 (r2) (arrowhead) and r3 (arrow),
the nVII motor neurons are found in r6 and r7, and the nX motor neurons (asterisk) are found
in the caudal hindbrain. (C, D) In many wild-type embryos injected with shh MO, the n\V motor
neurons in r3 are either greatly reduced in number (arrow in C) or missing (D), whereas the
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nV neurons in r2 (arrowheads) are unaffected. The nX neurons (asterisks) are also slightly
reduced in number. (E) In syu homozygotes injected with control MO, the nV neurons in r3
are greatly reduced or missing, the nV neurons in r2 are unaffected (arrowhead), the nVII
neurons are slightly reduced, and the nX neurons are greatly reduced in number (asterisk). This
BMN phenotype is identical to that described previously using immunohistochemistry
(Chandrasekhar et al., 1998). (F) Many wild-type embryos injected with shh MO exhibit the
same BMN phenotype as syu mutant embryos (E). (G, H) Most (95%) syu mutant embryos
injected with twhh MO (G) and many (28%) wild-type embryos co-injected with shh MO and
twhh MO (H) exhibit an almost complete loss of GFP-expressing BMNs throughout the
hindbrain. Scale bar = 100 um.

Genesis. Author manuscript; available in PMC 2010 January 22.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duosnuely Joyiny vd-HIN

Bingham et al.

hoxb1

WT, twhh-MO

Page 6

syu, twhh-MO

DIC, GFP

A

8 Y o,

nv. nvil  nX -

B

FIG. 2.

Hindbrain development and patterning are not affected in “double mutants.” All panels show
side views of the hindbrain with anterior to the left. (A, B) Live, 30 HPF embryos were
embedded in 3% methylcellulose and photographed using DIC optics and GFP
epifluorescence. The fluorescent images of the GFP-expressing cells were subsequently
superimposed on the DIC images using Photoshop software. In a twhh MO-injected wild-type
embryo (A), the GFP-expressing BMNs (nV, nVII, nX) are found in normal numbers at
characteristic locations. In contrast, in a twhh MO-injected syu “double mutant” (B), very few
GFP-expressing cells are found in an otherwise healthy hindbrain. (C, D) Twhh MO-injected
embryos were examined under epifluorescence at 23 HPF to select wild-type (n = 5) and
“double mutant” (n = 3) embryos, which were processed for hoxb1 in situ hybridization.
Hoxbl is expressed normally in rhombomere 4 in twhh MO-injected wild-type (C) and syu

mutant embryos (D). Scale bars = 100 pm.
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FIG. 3.

Twhh RNA injection rescues the BMN defects caused by twhh MO injection. All panels show
dorsal views with anterior to the left. Live, 48 HPF embryos were embedded in methylcellulose
and viewed under GFP epifluorescence. (A) In a twhh MO-injected wild-type embryo, BMN
development is normal. (B) In a twhh MO; twhh RNA-injected wild-type embryo, BMN
numbers are variably increased, and many GFP-expressing cells are located more dorsally (not
shown). (C) In a twhh MO-injected syu mutant, BMNs are almost completely missing. (D) In
atwhh MO; twhh RNA-injected syu mutant, BMN loss is prevented, and many GFP-expressing
cells are located at ectopic, dorsal locations (not shown). Scale bar = 100 um.
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