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Abstract
The use of Fluorescence Correlation Spectroscopy (FCS) to study conformational dynamics in
diffusing biopolymers requires that the contributions to the signal due to translational diffusion are
separated from those due to conformational dynamics. A simple approach that has been proposed to
achieve this goal involves the analysis of fluctuations in Fluorescence Resonance Energy Transfer
(FRET) efficiency. In this work, we investigate the applicability of this methodology by combining
Monte Carlo simulations and experiments. Results show that diffusion does not contribute to the
measured fluctuations in FRET efficiency in conditions where the relaxation time of the kinetic
process is much shorter than the mean transit time of the molecules in the optical observation volume.
However, in contrast to what has been suggested in previous work, the contributions of diffusion are
otherwise significant. Neglecting the contributions of diffusion can potentially lead to an erroneous
interpretation of the kinetic mechanisms. As an example, we demonstrate that the analysis of FRET
fluctuations in terms of a purely kinetic model would generally lead to the conclusion that the system
presents complex kinetic behavior even for an idealized two-state system

Introduction
Fluorescence correlation spectroscopy (FCS) is a technique based on the measurement of the
spontaneous fluctuations of the fluorescence signal of a small number of molecules.1–5
Fluorescence fluctuations are usually measured in an optically restricted sub-micron
observation volume, and then analyzed statistically to reveal kinetic information about the
processes that lead to these fluctuations. Such processes include concentration fluctuations via
molecular diffusion in vitro and in vivo6–9, chemical reactions10,11, photophysical
processes12–14, conformational dynamics15–17, etc. Fluorescence fluctuations are
mathematically defined as deviations of the intensities from the mean (δI(t) =I(t) − 〈I(t)〉), and
are quantified by their normalized auto (x = y) or cross (x ≠ y) correlation functions (eq. 1),
which are a measure of the similarity between the fluorescence intensity measured at a given
time t in detector x and the intensity measured after a certain lag time τ in detector y. The auto-
and cross-correlation functions of the fluorescence fluctuations are related to the corresponding
correlation functions of the fluorescence intensities as shown in eq. 1. In FCS, the correlation
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decays are measured experimentally and the kinetic parameters of the processes of interest are
then extracted by fitting the results with the appropriate physical models.

(1)

The use of FCS to study conformational dynamics in biological macromolecules has increased
in popularity in the last decade. In essence, the approach involves labeling the biopolymer with
a fluorophore-quencher or donor-acceptor Fluorescence Resonance Energy Transfer (FRET)
pair, so that the intensity of fluorescence of these reporters is a direct measure of the distance
between them.18,19 Conformational changes in the biopolymer result in fluctuations in
florescence intensity, and therefore the fluorescence correlation functions contain information
about the characteristic timescales of the process. FCS has been used to study conformational
dynamics in nucleic acids20–25, proteins26–30 and protein-DNA complexes19,31.

However, an important limitation of FCS when used to study conformational dynamics is the
fact that translational diffusion is also a source of fluorescence fluctuations, since the number
of photons emitted by a molecule depends on its position within the observation volume created
by the optical setup. The measured intensity in both the donor and acceptor detectors will then
fluctuate not only as a consequence of conformational dynamics, but also as molecules diffuse
in and out of the observation volume. The interpretation of the auto- and cross- correlation
curves will therefore depend on the relative timescales of the dynamics one wishes to study
and the residence time of the molecule in the observation volume (τD), which is dictated by
translational diffusion. For typical biological polymers (D ~ 10−10 − 10−11 m2s−1), the
residence time in the confocal volume is of the order of 100 μs − 1 ms. Therefore, the
contributions of conformational dynamics are temporally separated from the contributions due
to diffusion only if the relaxation time of the kinetic process (τR) is lower than approximately
1μs.24 For slower processes, additional analysis has to be carried out in order to deal with the
overlap of these two timescales.

A variety of approaches have been proposed to address the issue of separating the contributions
of translational diffusion and conformational dynamics to the experimentally measured
correlation decays18,22,32,33. Bonnet et al.18 were the first to address the problem, and
proposed a method that involves comparing the autocorrelation decay of the donor-acceptor
(or fluorophore-quencher) double-labeled biomolecule with the corresponding decay of a
control consisting of a donor-only (or fluorophore-only) sample. For the control, the
autocorrelation function consists of the diffusion contribution only, while the autocorrelation
decay of the double-labeled sample can be described as the product of the same diffusion term
and a kinetic term that depends on the relaxation time of the reaction. The latter can be then
isolated from the ratio of the autocorrelation decay of the two samples. Although seemingly
simple, this procedure suffers from a series of limitations due to the fact that it relies on the
need of performing two independent measurements under identical optical and chemical
conditions (see ref. 32 for a more thorough discussion). To overcome these issues, other
methods that do not require a control measurement were subsequently proposed.

One simple alternative proposed by Klenerman and coworkers22,34 involves the analysis of
the fluctuations of the so-called proximity ratio, a function related to the FRET efficiency. The
rationale behind this approach is that in contrast to the individual acceptor and donor intensities
(IA and ID), the calculated proximity ratio (p)
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(2)

depends strongly on the separation between the donor and acceptor molecules, but not on the
position of the molecule in the observation volume. Therefore, the correlation function Gp(τ)
(eq.3) of the proximity ratio p is expected in principle to have contributions only from
conformational dynamics, but not from molecular diffusion.

(3)

It is important to note that the same can be argued for any other function that represents ratios
of fluorescence intensities, such as the ratiometric function proposed by Li et al.35

In this work, we demonstrate that although the above arguments regarding the ability of Gp to
eliminate diffusion contributions are intuitively true at first sight, they are erroneous unless
diffusion is significantly slower than kinetics (τD ≫ τR). We support this claim with the results
of Monte Carlo simulations and experiments, and discuss the limitations and consequences of
using this approach in biophysical studies.

Materials and Methods
Simulations

Diffusion—A three dimensional random walk was used to simulate translational diffusion as
follows. Initially, N molecules are placed randomly inside a box with semiaxis Lx = Ly = Lz/s,
where s is a shape factor that depends on the optical setup defined as s = ω2/ω1, and ω1 and
ω2 are the radial and axial semiaxes of the observation volume. Each molecule moves based
on its diffusion coefficient (D), so that the length of one step (dr) is given by36:

(4)

where dt is the simulation step time. Each step of the simulation involves moving each
individual molecule a distance dr in a random direction determined by two random angles
generated for each particle: 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π.

(5)

This method produces results consistent with theoretical predictions as long as dr is small
compared with the size of the observation volume and dt is small with the relevant timescales
of the physical processes being considered.37

Conformational Dynamics—To simulate the kinetic contributions, each molecule is
allowed to be in one of two states (1, 2). Initially, the state of the N molecules is chosen
randomly taking into account that the probability that a molecule exists in state 1 is (K+1)−1,
where K is the equilibrium constant of the process. The reaction is simulated by a Poisson
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process with rates k12 and k21 for the forward and backward reaction respectively. Such process
can be approximated using a discrete Bernoulli approximation so that the probability of
‘success’ (the reaction occurs) in each interval dt is given by p = k.dt, where k depends on
whether the forward or backward reaction is considered. Thus, for each simulation step,
molecules in state 1 change to state 2 with a probability k12.dt and molecules in state 2 change
to 1 with probability k21.dt. This method approximates a Poisson process as long as p is small
so the probability of two or more ‘successes’ in an interval is negligible.38

Fluorescence Intensity—The intensities in detectors D,A (donor, acceptor) were calculated
for each molecule and each simulation step as

(6)

where j1,2 and h1,2 represent the intensity measured in the donor and acceptor detectors when
a molecule in state 1 or 2 is exactly at the center of the observation volume. These values define
the proximity ratios in each state: p1,2 = h1,2/(h1,2 + j1,2).

The recorded fluorescence intensity in each detector is then calculated as the sum of the
contributions of all molecules in the box. Shot noise was simulated by determining the final
measured intensity randomly from a Poisson distribution with a mean value that equals the
calculated fluorescence intensity from all molecules. Although shot noise has a clear impact
in the signal-to-noise ratio of the simulated FCS decays, it is not an important variable in the
analysis of their shapes and amplitudes, which is the focus of this paper.

The approach described above was tested using a variety of input parameters that are typically
encountered in FCS experiments, and the results were always consistent with the well-
established physical models for the auto- and cross-correlation functions of the fluorescence
intensities (see Supporting Information for details and examples).

Experiments—FCS measurements were carried out using a custom confocal optical setup.
A 532 nm CW laser (Crystalaser, Reno NV) was attenuated to approximately 50 μW and
focused into a 1.4 NA objective lens (Olympus PlanApo 100X/1.4NA Oil). The same objective
was used to collect the emitted light, which was passed through a 100 μm-pinhole to reject out-
of-focus light, and further split into the donor and acceptor signals with a dichroic mirror
(Omega XF2021). Donor and acceptor intensities were measured with 1 μs time resolution
using two independent avalanche photodiodes (Perkin Elmer Optoelectronics, SPCM-
AQR14). Band pass filters were used in front of each detector to further reduce background
and crosstalk (Omega 3RD560-620 for the donor, and Chroma BP670/40 for the acceptor).
The experimental conditions of the measurements with nucleosomes have been described
elsewhere.19

Results and Discussion
Consider a system that contains two populations of molecules. Molecules can exist in state 1
(with proximity ratio p1) or state 2 (with proximity ratio p2 > p1), but they interconvert only
in timescales that are much slower than their average residence in the observation volume (i.e.
τR ≫ τD). In other words, molecules diffuse in either state 1 or 2, but never interconvert during
their transit through the observation volume. Typically, FCS experiments are carried out in
conditions such that there are about 10 molecules on average in the observation volume at the
time. According to the arguments presented by Klenerman and coworkers22,34, the donor and
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acceptor intensities will fluctuate as molecules diffuse closer or further away from the focal
point, but because the donor-acceptor distance for each molecule would remain fixed
throughout the experiment (molecules do not interconvert), the proximity ratio will be constant
except for experimental uncorrelated noise. Therefore, it follows from this argument that the
Gp decay is expected to be zero at all lag times for systems in which τR ≫ τD.

Here, we challenge the validity of these arguments, and claim that such a system will present
fluctuations in the measured proximity factor in the timescales of molecular diffusion. The key
aspect of the discussion is that the observation volume is inhomogeneous, and as a consequence
the proximity ratio will actually depend on the position of all molecules. A typical optical setup
using one-photon excitation, a high numerical aperture objective, and a pinhole in the detection
path has an observation volume which is approximately Gaussian (fig. 1 and eq. 6).39

Consequently, molecules closer to the focal point are excited and detected more efficiently,
dominating the contributions to the measured fluorescence intensity. At any time, the proximity
ratio is calculated from the measured acceptor and donor intensities, which depend on the
position of all molecules in the observation volume (r). The measured proximity ratio is
therefore

(7)

where IAi (r) and IDi (r) are the acceptor and donor intensities of molecule i, ri represents the
molecule position, and the sum is performed over all molecules present in the sample. In reality,
contributions are negligible for molecules at distances much larger than the dimensions of the
observation volume (defined by ω1 and ω2).

It is then clear that the experimentally measured p will fluctuate as molecules diffuse throughout
the observation volume: even if it is true that the individual proximity ratios remain constant
as molecules diffuse, high values will be measured when molecules in state 2 are close to the
focal point by chance, while low values will be measured when molecules in state 1 are in that
region. Note that this is true only because the sample is heterogeneous (i.e. at a given time
different molecules have different p values).

The proximity ratio will therefore fluctuate in the timescale of diffusion in situations in which
the diffusion time is much faster than the relaxation time of the kinetic process. In general, it
is expected that both diffusion and conformational dynamics will contribute to the Gp decay
unless fluctuations are dominated by kinetics (τD ≫ τR). In this case, fluctuations in FRET
efficiency occur at timescales much shorter than diffusion, so the system appears static at the
timescales comparable with the relaxation time of the system. In addition, at the timescales
relevant for diffusion, the two-state system can be approximated as a homogeneous one-state
system with a proximity factor that is the average of the individual p values weighted by the
relative lifetimes of the two states. Such a system will therefore show no contributions from
diffusion in any timescale.

All statements in this discussion were verified by Monte Carlo simulations and experiments
as described below.
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The case τR ≫ τD
In this section, we analyze the situation in which diffusion is much faster than conformational
dynamics. Our motivation for this analysis relies on our interest in applying FCS techniques
to the study of conformational dynamics in nucleosomes. In these studies, we consider the
equilibrium between two states: a high FRET state in which the DNA is tightly wrapped around
the protein core, and a low FRET state in which the DNA has partially unwrapped in a
spontaneous way. For all practical purposes, this system can be represented by an equilibrium
between two species that can be distinguished by their different proximity ratio. In earlier work,
we determined that the relaxation time of the conformational transition is about 50 ms for this
particular type of nucleosomes, while the average residence time of these particles in the
observation volume is of the order of 1ms.19,32 The kinetic relaxation time of the process was
determined by two independent methods. In the first study19, we followed the methodology
introduced by Bonnet et al described above, which uses a donor-only sample as a control. In
this case, we calculated the relaxation time from the ratio of the donor autocorrelation function
of the donor-acceptor sample and the corresponding function measured for a donor-only
nucleosome. The result is shown in figure 2 as black circles together with a fit to a two-state
model (green curve) from which we obtained the relaxation time. In the second study32, we
obtained very similar results by applying a method developed in our laboratory that relies on
the analysis of the ratio of the donor autocorrelation and the donor-acceptor cross-correlation.
In this case, we proved that because the auto- and cross-correlation decays share the same
diffusion contributions, their ratio depends only on the kinetic terms that one wishes to isolate.

Because nucleosomes present dynamics in the 50 ms-timescale, one would in principle expect
the proximity ratio correlation to decay in the same timescale. However, the analysis of the
same data according to equations 2 and 3 yielded dramatically different results (figure 2, red
curve). Not only the measured Gp decays at much shorter timescales, but it also closely
resembles the decay of the donor autocorrelation (GDD, figure 2), which in this case is a very
good approximation of the diffusion contributions of the system. It is therefore clear that in
this situation Gp does not reflect the timescales of conformational dynamics, but rather the
timescales of diffusion.

Monte Carlo simulations were then performed to confirm this result and discard the possibility
of artifacts related to the experimental optical arrangement. Briefly, the simulation involves a
two-state system diffusing freely in a box containing a Gaussian observation volume at the
center. The two states (1 and 2) are distinguishable by their different proximity ratio values.
The number of photons per unit time emitted by a molecule depends on its state, and on its
position within the observation volume. The measured intensity in each detector (donor,
acceptor) is calculated as the sum of the contributions of all molecules in the box. Details are
given in the Materials and Methods section.

Figure 3 shows the result of a simulation with τR = 50 ms and τD = 1.1 ms (all other parameters
used in this and all other simulations are listed in the Supporting Information). In this plot, the
green curve represents the kinetic term (Aexp(−τ/τR)), the black curve the diffusion term (eq.
9), and the red curve is the Gp decay obtained in the simulation. It is evident that the decay of
the proximity function correlation does not represent the kinetic term as was originally
suggested in the original publications. In fact, the Gp decay is very close to the decay expected
for pure diffusion contributions, as we observed experimentally with the nucleosome samples
as described above. An attempt to fit the Gp decay with a kinetic model (blue curve, inset) has
serious consequences, as discussed next.

The assumption that the correlation function of the proximity ratio does not depend on diffusion
can lead to serious artifacts. This approach has been mostly used to investigate the kinetic
behavior of DNA hairpins containing a donor-acceptor pair.22,34,35 In these works,
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experimentally measured Gp decays were fitted to a purely kinetic model described by a
stretched exponential:

(8)

The conclusion of these experiments was that DNA hairpins do not behave as a two-state system
(i.e. they present non-Arrhenius kinetics) because β values around ~0.4–0.5 were needed to fit
the decays under a large variety of conditions. These results contradicted the early work of
Bonnet et al., who measured Arrhenius behavior (β = 1) for the same system using the ‘control’
method described above (i.e. the ratio of the autocorrelation functions of the double-labeled
hairpin and the donor-only hairpin). Interestingly, Klenerman and coworkers also measured a
β-value very close to 1 using Bonnet’s approach, in disagreement with the lower values that
the same group obtained for the same sample using the proximity ratio correlation method.35

The disagreement between the different methods of analysis can be explained taking into
account the contributions of diffusion to the Gp decay described above. In the limit τR ≫ τD,
the Gp decay will be dominated by diffusion, and thus described mathematically by the well-
known equation derived by Elson and Madge in their early work.2

(9)

Here, 〈N〉 is a measure of the average number of molecules in the observation volume, defined
as 〈N〉 = Cπ3/2ω1

2ω2, where C is the sample concentration in units of number of particles per
unit volume.3 An attempt to analyze this decay in terms of a kinetic model will undoubtedly
lead to the need of using a stretched parameter β < 1. As an example, we fitted the
experimentally measured Gp decay of the nucleosome sample described above (fig 2, red
curve), and obtained τR = 0.67ms and β=0.37. The relaxation time obtained in this analysis is
about two orders of magnitude shorter than the one measured by other methods of analysis,
and very close to the diffusion time of this sample. A similar result was obtained in the
simulations. The blue curve in the inset of figure 3 is a trace according to eq. 8 with β=0.67
and τR= 2.8 ms (more than one order of magnitude shorter than the actual τR), showing that
this type of analysis would lead to the conclusion that the kinetic behavior of the system is
complex, even in the highly idealized 2-state system used in the simulation. The measured
relaxation time will be much shorter than the actual relaxation time (k12 + k21)−1, and will in
fact be a measure of the diffusion time. The value of β needed to fit the experimental results
is lower than the value needed to fit the simulation results due to deviations from a perfect
Gaussian observation volume in the actual optical apparatus. As an example, we have fitted
the experimental autocorrelation function of tetramethylrhodamine diffusing freely in aqueous
buffer with a stretched exponential (eq. 8) and also obtained β =0.37 (see supplemental
information).

The case τD ≫ τR
Diffusion is not expected to contribute significantly to the Gp decay when the relaxation time
of the reaction is much shorter than the mean residence time of the particle in the observation
volume. Figure 4 shows the result of a simulation with τR = 37 μs and τD = 0.94 ms, where it
is clear that the Gp decay (red curve) can be adequately described by a monoexponential
function with a relaxation time that equals the reciprocal of the sum of the rates used in the
simulation (green curve).
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Evidently, a non-monoexponential decay in this case would be truly indicative of complex
kinetics. Experimentally, a safe way of testing that the Gp decay is not contaminated with
diffusion contributions would be to perform experiments under different optical conditions.
The size and shape of the observation volume (given by ω1 and ω2) can be modified by changing
the numerical aperture of the objective and the size of the detection pinhole. These parameters
will affect τD, but should have no influence on the measured relaxation time provided that
Gp is determined exclusively by kinetic contributions. It should be noted that temporal
resolution is lost in the calculation of Gp in this type of analysis because fluorescence intensities
need to be binned so that there are enough photons in both the donor and acceptor channels
(the proximity ratio cannot be calculated when no photons are recorded in both detectors).
Experimentally, this requires a binning time of ~20 μs, making it hard to determine relaxation
times in a similar timescale.22 Consequently, even when the Gp decay describes the kinetic
term adequately when τD ≫ τR, the relaxation times accessible experimentally by this approach
are limited by the low intensities measured in the experiment. In contrast, intensity correlation
functions (GDD, GDA and GAA) can be determined with much better time-resolution, allowing
the study of much faster processes.24,27

The case τD ≈ τR
In the most general case the Gp decay will have contributions of both diffusion and
conformational dynamics. Because diffusion can be described with a stretched exponential
with β ~0.7 (lower values are expected for non-ideal optical setups as described above), its
contributions are expected to result in a non-monoexponential Gp decay even for an idealized
two-state system. As an example, figure 5 shows the result of a simulation with τD = 150 μs
and τR = 250 μs. The simulated Gp decay (red line) can be successfully fitted with a stretched
exponential with β = 0.85 and τR = 0.37(k12 + k21)−1 (blue line). The kinetic contribution (exp
[−t(k12 + k21)]) is plotted in green for comparison. The contributions of diffusion not only
distort the monoexponential behavior of the kinetic component but also influence the relaxation
time obtained from the analysis. The non-exponential nature of the Gp decay is visibly obvious
from the curvature of the data in a linear-log plot (inset).

The case of DNA hairpins
The idea of measuring and analyzing fluctuations in the proximity ratio as a way of isolating
kinetic contributions was proposed in the context of studies of the kinetics of loop closure in
DNA hairpins. A stretched exponential model (eq. 8) was used to analyze the results, and β-
values in the range 0.4–0.5 were consistently obtained in all experiments. In all cases, the
relaxation times obtained from the fits were in the range 100–350 μs, very close to the τD values
expected for these molecules in a typical FCS setup.22,34,35 The results of these studies were
interpreted as being a consequence of the existence of a complex energy landscape, in
disagreement with other FCS studies18 and transient spectroscopy T-jump experiments40–42.

The results and discussion presented so far suggest that the Gp decays measured in these studies
may have significant diffusion contributions. Because these contributions were overlooked in
the interpretation of the proximity ratio fluctuations, it is likely that the reported relaxation
times and β-values do not represent the true kinetic behavior of DNA hairpins. It is crucial to
stress that the kinetic behavior of these samples might be indeed complex, and we are not
implying that a simple 2-state model necessarily describes the system appropriately. Non-
exponential kinetics has been reported by Kim et al.24, who investigated the kinetics of the
initial step of DNA hairpin folding by monitoring fluorescence fluctuations in a DNA hairpin
containing a fluorophore susceptible to quenching by proximity to guanosine residues. Jung
et al.43 investigated the unfolding kinetics of DNA hairpins in flowing solution and observed
stretched exponentials with β-parameters of the order of 0.7 for hairpins containing
polythymine loops. However, we do not believe these conclusions regarding the non-
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exponential behavior of hairpins can be derived from the proximity ratio experiments, which
are likely to be influenced by translational diffusion.

The amplitude of the Gp decay
So far, we have established that the characteristic timescale of the Gp decay is given by the
relaxation time of the reaction in conditions in which τD ≫ τR (i.e. the Gp decay is dominated
by the kinetic contributions). The actual determination of k12 and k21 requires that the
equilibrium constant of the process is known. This information is contained in the amplitude
of the Gp decay (Gp(0)).

The value of Gp(0) depends on the mean number of molecules in the observation volume
(〈N〉), the equilibrium constant of the reaction (K = f2/f1), and the ratio of the proximity ratios
of the two states (Q = p2/p1).

Wallace et al. reported that the amplitude of the Gp decay can be expressed as Gp(0) = K× [(1
− Q2)/(1 + QK)]2/〈N〉. However, here we present a revised expression, which we verified
through Monte Carlo simulations.

In the case of a single-molecule, and in conditions so that τD ≫ τR, it is expected that the
proximity ratio will fluctuate between p1 and p2 as the molecule changes conformation.
Therefore, the amplitude of the decay under these conditions is:

(10)

Note that the numerator in the previously published equation was K(1− Q2)2, which would
erroneously predict that Gp → ∞ as p1 →0.

More importantly, the expression in reference 22 predicts that Gp increases indefinitely as 〈N
〈 decreases. It is critical to stress that 〈N〉 = 1 does not represent single-molecule conditions in
a system in which molecules diffuse freely, as a Poisson distribution with a mean of 1 predicts
that the probability of observing more than one molecule at the time is about 0.26. Therefore,
eq. 10 should be valid in the limit 〈N〉 → 0, which ensures that no more than one molecule
contributes to the fluctuations in proximity ratio. As 〈N〉 increases, the fluctuations in the
proximity ratio about its mean value are expected to decrease, and the measured proximity
ratio will ultimately equal the mean at all times at large concentrations (〈p2〉 = 〈p〉2 when
〈N〉 →∞). Thus, the maximum measurable amplitude is given by equation 10, and Gp(0) is
expected to decrease to zero as 〈N〉 →∞. Mathematically:

(11)

Note that the difference between 〈N〉 and 〈N〉 + 1 can be significant at the low concentrations
used in FCS (〈N〉 ~10). Equation 11 is consistent with the result of dozens of simulations using
different 〈N〉, Q and K values. All results are included as Supporting Information.

Other considerations
In this work, we demonstrated that the autocorrelation function of the proximity factor will in
general depend on both diffusion and kinetics, even for the idealized two-state system of the
figure. In practice, the GP decay will also be affected by other experimental issues including
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optical artifacts due to non-overlapping confocal volumes for the donor and acceptor detectors,
and contributions from fluorophore photophysics. For instance, single-molecule experiments
have shown that the existence of photoinduced dark states contributes to broadening in FRET
distributions.44 The efficiency of formation of these dark states depends on laser intensity, and
will thus depend on the particular trajectory of the molecule through the observation volume.
The existence of these dark states will therefore contribute to further diffusion-dependent
fluctuations in FRET efficiency.

Equation 11 suggests that equilibrium constants can be in principle determined by FCS, but in
practice such determinations are often difficult due to the presence of background, and the fact
that the value of the parameter Q is usually not known. Background can be a problem,
particularly at the low sample concentrations used in these experiments. It has been well-
established that the presence of non-correlated background does not distort the shape of the
correlation decays of the fluorescence intensities, but just affects their amplitudes.45

Simulations show that the same is true for the Gp decay only at sample concentrations high
enough so that the observation volume contains several fluorescently labeled molecules at all
times. Under these conditions, background just decreases the amplitude of the Gp decay, but
because the shape is not distorted the determination of τR in the presence of background would
still be possible in principle if τD ≫ τR. However, our simulations show that background can
contaminate the GP decay when experimental conditions are such that the observation volume
does not contain any fluorescent molecule a significant fraction of the time. We demonstrated
that diffusion contributions appear in the Gp decay under these conditions, even when τD ≫
τR. A thorough discussion of the effects of background is included as Supporting Information.

Conclusions
We have investigated the applicability of the proximity ratio correlation function to the study
of conformational dynamics in biopolymers diffusing in solution. Our results show that, in
contrast to what had been previously established in other studies, the proximity ratio correlation
decay has significant contributions from translational diffusion. These conclusions are
supported by the results of experiments and Monte Carlo simulations. Diffusion contributions
are negligible only when the relaxation time of the process is much shorter than the mean transit
time of the biomolecules through the optical observation volume. In all other cases, both
conformational dynamics and translational diffusion contribute to the fluctuations in the
proximity ratio and FRET efficiency. Neglecting the contributions of diffusion has therefore
the potential of introducing significant artifacts in the analysis of the kinetic behavior of the
polymer.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
This work was supported by NSF CAREER grant PHY-0644414 and NIH grant 1R03ES016291-01. We thank
Jonathan Widom (Northwestern University) for kindly donating the nucleosome samples.

References and Notes
1. Magde D, Webb WW, Elson E. Phys Rev Lett 1972;29:705–708.
2. Magde D, Elson EL, Webb WW. Biopolymers 1974;13:29–61. [PubMed: 4818131]
3. Krichevsky O, Bonnet G. Rep Prog Phys 2002;65:251–297.
4. Haustein E, Schwille P. Annu Rev Bioph Biom 2007;36:151–169.

Gurunathan and Levitus Page 10

J Phys Chem B. Author manuscript; available in PMC 2011 January 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



5. Gosch M, Rigler R. Adv Drug Deliv Rev 2005;57:169–190. [PubMed: 15518928]
6. Benda A, Benes M, Marecek V, Lhotsky A, Hermens WT, Hof M. Langmuir 2003;19:4120–4126.
7. Schwille P, Korlach J, Webb WW. Cytometry 1999;36:176–182. [PubMed: 10404965]
8. Sengupta P, Balaji J, Maiti S. Methods 2002;27:374–387. [PubMed: 12217654]
9. Willems PHGM, Swarts HG, Hink MA, Koopman WJH. Method Enzymol 2009;456:287–302.
10. Rauer B, Neumann E, Widengren J, Rigler R. Biophys Chem 1996;58:3–12. [PubMed: 17023344]
11. Qian H, Elson EL. P Natl Acad Sci USA 2004;101:2828–2833.
12. Tinnefeld P, Buschmann V, Weston KD, Sauer M. J Phys Chem A 2003;107:323–327.
13. Widengren J, Mets U, Rigler R. J Phys Chem 1995;99:13368–13379.
14. Widengren J, Schwille P. J Phys Chem A 2000;104:6416–6428.
15. Doose S, Barsch H, Sauer M. Biophys J 2007;93:1224–1234. [PubMed: 17513377]
16. Gurunathan K, Levitus M. Prog Nucleic Acid Res Mol Biol 2008;82:33–69. [PubMed: 18929138]
17. Haupts U, Maiti S, Schwille P, Webb WW. P Natl Acad Sci USA 1998;95:13573–13578.
18. Bonnet G, Krichevsky O, Libchaber A. Proc Natl Acad Sci U S A 1998;95:8602–8606. [PubMed:

9671724]
19. Li G, Levitus M, Bustamante C, Widom J. Nat Struct Mol Biol 2005;12:46–53. [PubMed: 15580276]
20. Kim HD, Nienhaus GU, Ha T, Orr JW, Williamson JR, Chu S. P Natl Acad Sci USA 2002;99:4284–

4289.
21. Schwille P, Oehlenschlager F, Walter NG. Biochemistry 1996;35:10182–10193. [PubMed: 8756483]
22. Wallace MI, Ying LM, Balasubramanian S, Klenerman D. J Phys Chem B 2000;104:11551–11555.
23. Edman L, Mets U, Rigler R. P Natl Acad Sci USA 1996;93:6710–6715.
24. Kim J, Doose S, Neuweiler H, Sauer M. Nucleic Acids Res 2006;34:2516–2527. [PubMed: 16687657]
25. Humpolickova J, Benda A, Sykora J, Machan R, Kral T, Gasinska B, Enderlein J, Hof M. Biophys J

2008;94:L17–L19. [PubMed: 17965130]
26. Neuweiler H, Lollmann M, Doose S, Sauer M. J Mol Biol 2007;365:856–869. [PubMed: 17084857]
27. Nettels D, Gopich IV, Hoffmann A, Schuler B. P Natl Acad Sci USA 2007;104:2655–2660.
28. Mukhopadhyay S, Krishnan R, Lemke EA, Lindquist S, Deniz AA. P Natl Acad Sci USA

2007;104:2649–2654.
29. Bismuto E, Gratton E, Lamb DC. Biophys J 2001;81:3510–3521. [PubMed: 11721012]
30. Neuweiler H, Doose S, Sauer M. P Natl Acad Sci USA 2005;102:16650–16655.
31. Kobayashi T, Kodani Y, Nozawa A, Endo Y, Sawasaki T. Febs Letters 2008;582:2737–2744.

[PubMed: 18619963]
32. Torres T, Levitus M. J Phys Chem B 2007;111:7392–7400. [PubMed: 17547447]
33. Van Orden A, Jung J. Biopolymers 2008;89:1–16. [PubMed: 17696144]
34. Wallace MI, Ying LM, Balasubramanian S, Klenerman D. P Natl Acad Sci USA 2001;98:5584–5589.
35. Li H, Ren X, Ying L, Balasubramanian S, Klenerman D. Proc Natl Acad Sci U S A 2004;101:14425–

14430. [PubMed: 15452356]
36. Berg, HC. Random Walks in Biology. Princeton University Press; Princeton: 1993.
37. Culbertson MJ, Williams JTB, Cheng WWL, Stults DA, Wiebracht ER, Kasianowicz JJ, Burden DL.

Anal Chem 2007;79:4031–4039. [PubMed: 17447726]
38. William, F. An introduction to probability theory and its applications. Wiley; New York: 1968.
39. Hess ST, Webb WW. Biophys J 2002;83:2300–2317. [PubMed: 12324447]
40. Ansari A, Kuznetsov SV. J Phys Chem B 2005;109:12982–12989. [PubMed: 16852611]
41. Shen YQ, Kuznetsov SV, Ansari A. J Phys Chem B 2001;105:12202–12211.
42. Ansari A, Kuznetsov SV, Shen YQ. P Natl Acad Sci USA 2001;98:7771–7776.
43. Jung JM, Van Orden A. J Phys Chem B 2005;109:3648–3657. [PubMed: 16851403]
44. Vogelsang J, Doose S, Sauer M, Tinnefeld P. Anal Chem 2007;79:7367–7375. [PubMed: 17822310]
45. Thompson, NL. Fluorescence Correlation Spectroscopy. In: Lakowicz, JR., editor. Topics in

Fluorescence Spectroscopy: Techniques. Vol. 1. Plenum Press; New York: 1991.

Gurunathan and Levitus Page 11

J Phys Chem B. Author manuscript; available in PMC 2011 January 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
A: schematics of the FCS simulation and idealized experimental measurement. Point molecules
diffuse freely throughout a Gaussian observation volume (green surface). The fluorescence
intensity of a given molecule depends on its location as

 (see eq. 6), where ω1 and ω2 represent the radial and
axial dimensions of the observation volume. Molecules contain a donor-acceptor FRET pair,
and interconvert between two different states with rates k12 and k21 for the forward and
backward reaction respectively. The two states are distinguishable by their different proximity
ratio. B: The fluorescence intensity, which is the sum of the contributions of all molecules, is
measured in two independent detectors (blue: donor, red: acceptor). The proximity ratio (p,
green trace) is calculated point-by-point as p = (IA/(IA + IB)). Fluctuations in intensity or in
proximity ratio are calculated as deviations from the mean: δf (t) = f (t) − 〈f (t)〉, where f (t) is
an intensity or proximity factor time series. C: Fluctuations are analyzed in terms of their auto-
or cross-correlation functions (eqs. 1 and 3).
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Figure 2.
Black circles (●): Ratio of the donor autocorrelation functions of donor-acceptor and donor-
only nucleosomes. Green curve: Fit to a two-state model giving 50 ms as the relaxation time
(see ref. 19). Black curve: experimental donor autocorrelation function (GDD) of donor-
acceptor double-labeled nucleosomes. Red curve: experimental proximity ratio correlation
(Gp) of donor-acceptor nucleosome calculated from the same data as GDD. All curves have
been arbitrarily normalized for clarity.
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Figure 3.
Results of a computer simulation with parameters τR = 50 ms and τD = 1.1 ms. Red curve:
proximity ratio correlation (Gp). Black curve: Diffusion model according to Eq. 9. Green curve:
two-state kinetic model (exp[−τ/τR]). Inset: Gp decay in red, together with a stretched
exponential decay (Eq. 8.) with parameters τR = 2.8 ms and β = 0.67 (blue curve). All curves
have been arbitrarily normalized for clarity.
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Figure 4.
Results of a computer simulation with parameters τR = 37 μs and τD = 0.94 ms. Red curve:
proximity ratio correlation (Gp). Black curve: Diffusion model according to Eq. 9. Green curve:
two-state kinetic model (exp[−τ/τR]). All curves have been arbitrarily normalized for clarity.
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Figure 5.
Results of a computer simulation with parameters τR = 250 μs and τD = 150 μs. Red curve:
proximity ratio correlation (Gp). Green curve: two-state kinetic model (exp[−τ(k12 + k21)]).
Blue curve: A stretched exponential with τR = 0.37(k12 + k21)−1 and β = 0.85. All curves have
been arbitrarily normalized for clarity. Inset: same data in a linear-log plot to stress the non-
exponential behavior of the Gp decay.
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